l03 operational amplifiers applications 2powerunit-ju.com/wp-content/uploads/2018/10/l03...l03...

18
L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared by: Dr. Hani Jamleh, Electrical Engineering Department, The University of Jordan 2018-09-27 1 Medical Electronics - Dr. Hani Jamleh - JU

Upload: others

Post on 22-Aug-2020

33 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

L03Operational Amplifiers

Applications 2Chapter 9

Ideal Operational Amplifiers and Op-Amp Circuits

Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design,

4th Edition, Mc-Graw-Hill

Prepared by: Dr. Hani Jamleh, Electrical Engineering Department, The University of Jordan

2018-09-27 1Medical Electronics - Dr. Hani Jamleh - JU

Page 2: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

Op-Amp Applications

1. Inverting Amplifier2. Amplifier with T-

Network

3. Non-InvertingAmplifier4. Voltage Follower

(Buffer)

5. Summing Amplifier

6. Current to VoltageConverter

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 2

3

65

42

1

Page 3: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

Op-Amp Applications

7. Difference Amplifier

8. InstrumentationAmplifier

9. Integrator

10. Differentiator

11. Reference VoltageSource Design

12. Precision Half-waveRectifier

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 3

7

8

9

10

12

11

Page 4: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

9.3 Summing Amplifier

β€’ To analyze the op-amp circuit shown inFigure 9.14(a), we will use:

1. The superposition theorem and

2. The concept of virtual ground.

β€’ Using the superposition theorem, wewill:

1. Determine the output voltage due toeach input acting alone, then

2. Algebraically sum these terms todetermine the total output.

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 4

Figure 9.14(a)

Page 5: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

9.3 Summing Amplifier

β€’ If we set 𝑣𝐼2 = 𝑣𝐼3 = 0, the current 𝑖1is:

𝑖1 =𝑣𝐼1𝑅1

β€’ Since 𝑣𝐼2 = 𝑣𝐼3 = 0 and the invertingterminal is at virtual ground, thecurrents 𝑖2 and 𝑖3 must both be zero.β€’ Current 𝑖1 does not flow through either 𝑅2

or 𝑅3, but the entire current must flowthrough the feedback resistor 𝑅𝐹 , asindicated in Figure 9.14(b).

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 5

Figure 9.14(a)

Figure 9.14(b)

Page 6: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

9.3 Summing Amplifier

𝑖1 =𝑣𝐼1𝑅1

β€’ The output voltage due to 𝑣𝐼1 acting alone is:

𝑣𝑂(𝑣𝐼1) = βˆ’π‘–1𝑅𝐹 = βˆ’π‘…πΉπ‘…1

𝑣𝐼1

β€’ Similarly, the output voltages due to 𝑣𝐼2 and𝑣𝐼3 acting individually are:

𝑣𝑂(𝑣𝐼2) = βˆ’π‘–2𝑅𝐹 = βˆ’π‘…πΉπ‘…2

𝑣𝐼2

𝑣𝑂(𝑣𝐼3) = βˆ’π‘–3𝑅𝐹 = βˆ’π‘…πΉπ‘…3

𝑣𝐼3

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 6

Figure 9.14(a)

Figure 9.14(b)

Page 7: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

9.3 Summing Amplifier

β€’ Now we have:

𝑣𝑂(𝑣𝐼1) = βˆ’π‘–1𝑅𝐹 = βˆ’π‘…πΉπ‘…1

𝑣𝐼1

𝑣𝑂(𝑣𝐼2) = βˆ’π‘–2𝑅𝐹 = βˆ’π‘…πΉπ‘…2

𝑣𝐼2

𝑣𝑂(𝑣𝐼3) = βˆ’π‘–3𝑅𝐹 = βˆ’π‘…πΉπ‘…3

𝑣𝐼3

β€’ The total output voltage is the algebraic sum of theindividual output voltages:

𝑣𝑂 = 𝑣𝑂(𝑣𝐼1) + 𝑣𝑂(𝑣𝐼2) + 𝑣𝑂(𝑣𝐼3)

𝑣𝑂 = βˆ’π‘…πΉπ‘…1

𝑣𝐼1 +𝑅𝐹𝑅2

𝑣𝐼2 +𝑅𝐹𝑅3

𝑣𝐼3

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 7

Figure 9.14(a)

Page 8: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

9.3 Summing Amplifier

𝑣𝑂 = βˆ’π‘…πΉπ‘…1

𝑣𝐼1 +𝑅𝐹𝑅2

𝑣𝐼2 +𝑅𝐹𝑅3

𝑣𝐼3

β€’ The output voltage is the sum of the three input voltages,with different weighting factors.

β€’ This circuit is therefore called the inverting summingamplifier.

β€’ The number of input terminals and input resistors can bechanged to add more or fewer voltages.

β€’ A special case occurs when the three input resistancesare equal. When 𝑅1 = 𝑅2 = 𝑅3 ≑ 𝑅, then

𝑣𝑂 = βˆ’π‘…πΉπ‘…1

(𝑣𝐼1 + 𝑣𝐼2 + 𝑣𝐼3)

β€’ This means that the output voltage is the sum of the inputvoltages, with a single amplification factor.

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 8

Figure 9.14(a)

Page 9: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

Discussion

β€’ Up to this point, we have seen that op-amps can be used to:

β€’ Multiply a signal by a constant (e.g.𝑅𝐹

𝑅1)

β€’ Sum a number of signals with prescribed weights.These are mathematical operations.

β€’ Later in the chapter, we will see that op-amps can also be used tointegrate and differentiate.β€’ These circuits are the building blocks needed to perform analog

computationsβ€”hence the original name of operational amplifier.

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 9

Page 10: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

Discussion

β€’ Opamps, however, are versatile and can do much more than justperform mathematical operations, as we will continue to observethrough the remainder of this course.

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 10

Page 11: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

DESIGN EXAMPLE 9.4

β€’ Objective: Design a summing amplifier to produce a specified outputsignal.

β€’ Specifications: The output signal generated from an ideal amplifiercircuit is:

𝑣𝑂1 = 1.2 βˆ’ 0.5 sinπœ”π‘‘ (𝑉)

β€’ Design a summing amplifier to be connected to the amplifier circuitsuch that the output signal is:

𝑣𝑂 = 2 βˆ™ sinπœ”π‘‘ (𝑉)

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 11

Page 12: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

DESIGN EXAMPLE 9.4

𝑣𝑂1 = 1.2 βˆ’ 0.5 sinπœ”π‘‘ (𝑉) 𝑣𝑂 = 2 βˆ™ sinπœ”π‘‘ (𝑉)

β€’ Choices:1. Standard precision resistors with tolerances of

Β± 1 π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘ are to be used in the final design.

2. Assume an ideal op-amp is available.

β€’ Solution: In this case, we need only two inputs tothe summing amplifier, as shown in Figure 9.14.β€’ One input to the summing amplifier is the output of the

ideal amplifier circuit and

β€’ The second input should be a DC voltage to cancel the+ 1.2𝑉 signal from the amplifier circuit.

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 12

Figure 9.14

𝑉𝑂1

βˆ’1.2𝑉

Page 13: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

DESIGN EXAMPLE 9.4

𝑣𝑂1 = 1.2 βˆ’ 0.5 sinπœ”π‘‘ (𝑉) 𝑣𝑂 = 2 βˆ™ sinπœ”π‘‘ (𝑉)

β€’ If the voltage gains of each input to the summingamplifier are equal, then an input of βˆ’1.2𝑉 at the secondinput will cancel the +1.2𝑉 from the amplifier circuit.

β€’ For a βˆ’0.5𝑉 sinusoidal input signal and a desired 2𝑉sinusoidal output signal, the summing amplifier gainmust be:

𝐴𝑣 = βˆ’π‘…πΉπ‘…1

=2

βˆ’0.5= βˆ’4

β€’ If we choose the input resistances to be:𝑅1 = 𝑅2 = 30π‘˜Ξ©

β€’ Then the feedback resistance must be:𝑅𝐹 = 4 Γ— 30π‘˜Ξ© = 120π‘˜Ξ©

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 13

Figure 9.14

𝑉𝑂1

βˆ’1.2𝑉

Page 14: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

DESIGN EXAMPLE 9.4

𝑣𝑂1 = 1.2 βˆ’ 0.5 sinπœ”π‘‘ (𝑉) 𝑣𝑂 = 2 βˆ™ sinπœ”π‘‘ (𝑉)𝑅1 = 𝑅2 = 30π‘˜Ξ©

𝑅𝐹 = 4 Γ— 30π‘˜Ξ© = 120π‘˜Ξ©

β€’ Trade-offs: From Appendix C, we can choose precisionresistor values of 𝑅𝐹 = 124π‘˜Ξ© and 𝑅1 = 𝑅2 = 30 π‘˜Ξ©.The ratio of the ideal resistors is 4.13.

β€’ Considering the Β±1 π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘ tolerance values, the outputof the summing amplifier is:

𝑣𝑂 = βˆ’π‘…πΉ 1 Β± 0.01

𝑅1 1 Β± 0.01βˆ™ 1.2 βˆ’ 0.5 sinπœ”π‘‘ βˆ’

𝑅𝐹 1 Β± 0.01

𝑅2 1 Β± 0.01βˆ™ (βˆ’1.2)

β€’ The DC output voltage is in the range:βˆ’0.1926 ≀ 𝑣𝑂(𝐷𝐢) ≀ 0.1926 𝑉

β€’ The peak ac output voltage is in the range:1.967 ≀ 𝑣𝑂(π‘Žπ‘) ≀ 2.047 𝑉

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 14

Figure 9.14

𝑉𝑂1

βˆ’1.2𝑉

Page 15: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

EXERCISE PROBLEM Ex. 9.4

β€’ Design an inverting summing amplifier that willproduce an output voltage of:

𝑣𝑂 = βˆ’3(𝑣𝐼1 + 2𝑣𝐼2 + 0.3𝑣𝐼3 + 4𝑣𝐼4)

β€’ The maximum resistance is to be limited to:π‘…π‘šπ‘Žπ‘₯ = 400 π‘˜Ξ©

β€’ Answer: Recall the summing amplifier output for threeinputs:

𝑣𝑂 = βˆ’π‘…πΉπ‘…1

𝑣𝐼1 +𝑅𝐹𝑅2

𝑣𝐼2 +𝑅𝐹𝑅3

𝑣𝐼3

β€’ We expand it for Four inputs as:

𝑣𝑂 = βˆ’π‘…πΉπ‘…1

𝑣𝐼1 +𝑅𝐹𝑅2

𝑣𝐼2 +𝑅𝐹𝑅3

𝑣𝐼3 +𝑅𝐹𝑅4

𝑣𝐼4

β€’ Let 𝑅3 = π‘…π‘šπ‘Žπ‘₯ = 400π‘˜Ξ©. Why 𝑅3?

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 15

𝑣𝐼4𝑖4

𝑅4

Page 16: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

EXERCISE PROBLEM Ex. 9.4

𝑣𝑂 = βˆ’3(𝑣𝐼1 + 2𝑣𝐼2 + 0.3𝑣𝐼3 + 4𝑣𝐼4)

𝑣𝑂 = βˆ’π‘…πΉπ‘…1

𝑣𝐼1 +𝑅𝐹𝑅2

𝑣𝐼2 +𝑅𝐹𝑅3

𝑣𝐼3 +𝑅𝐹𝑅4

𝑣𝐼4

β€’ Let 𝑅3 = π‘…π‘šπ‘Žπ‘₯ = 400π‘˜Ξ©. 390π‘˜Ξ© + 10kΞ©

β€’ 𝑅𝐹 = 3 Γ— 0.3 βˆ™ 400π‘˜Ξ© = 360π‘˜Ξ©

β€’ 𝑅1 =360k

3= 120kΞ©

β€’ 𝑅2 =360k

3Γ—2= 60kΞ© 47π‘˜Ξ© + 13π‘˜Ξ©

β€’ 𝑅4 =360k

3Γ—4= 30kΞ©

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 16

Page 17: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

EXERCISE PROBLEM Ex. 9.4

β€’ Using the results of previous part for 𝑅’𝑠 values. Determine 𝑣𝑂 for:

a) 𝑣𝐼1 = 0.1𝑉, 𝑣𝐼2 = βˆ’0.2𝑉, 𝑣𝐼3 = βˆ’1𝑉, 𝑣𝐼4 = 0.05𝑉;β€’ Answer: 𝑣𝑂 = +1.2𝑉

b) 𝑣𝐼1 = βˆ’0.2𝑉, 𝑣𝐼2 = 0.3𝑉, 𝑣𝐼3 = 1.5𝑉, 𝑣𝐼4 = βˆ’0.1𝑉;β€’ Answer: 𝑣𝑂 = βˆ’1.35𝑉

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 17

Page 18: L03 Operational Amplifiers Applications 2powerunit-ju.com/wp-content/uploads/2018/10/L03...L03 Operational Amplifiers Applications 2 Chapter 9 Ideal Operational Amplifiers and Op-Amp

9.4 Noninverting Amplifier

β€’ In our previous discussions, the feedbackelement 𝑅2 or 𝑅𝐹 was connected betweenthe output and the inverting terminalcreating a negative feedback loop.

β€’ However, a signal can be applied to thenoninverting terminal while stillmaintaining negative feedback.

2018-09-27 Medical Electronics - Dr. Hani Jamleh - JU 18Figure 9.14(a)

Figure 9.10