l22 numerical methods part 2

32
L22 Numerical Methods part 2 • Homework • Review • Alternate Equal Interval • Golden Section • Summary • Test 4 1

Upload: jean

Post on 16-Jan-2016

45 views

Category:

Documents


0 download

DESCRIPTION

L22 Numerical Methods part 2. Homework Review Alternate Equal Interval Golden Section Summary Test 4. Problem 10.4. Yes, descent direction. Prob 10.10. No, not a descent direction. Prob 10.19. Slope. Prob 10.19 cont’d. Prob 10.19 cont’d. Prob 10.30. The Search Problem. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: L22 Numerical Methods part 2

L22 Numerical Methods part 2

• Homework• Review• Alternate Equal Interval• Golden Section• Summary• Test 4

1

Page 2: L22 Numerical Methods part 2

2

Page 3: L22 Numerical Methods part 2

Problem 10.4

3

2 2 21 2 3 1 2 2 3: ( ) 2 2 2 2

( 3,10, 12) (1,2,3)

Determine whether is a descent direction. . 0

given f x x x x x x xand at

i e

xd x

dc d

1 2

2 1 3

3 2 *

2 2 2(1) 2(2) 6( *) 4 2 2 4(2) 2(1) 2(3) 16

4(3) 2(2) 164 2x

x xf x x x

x x

c x

1 1 2 2 3 3

03

6 16 16 10

12

6( 3) 16(10) 16( 12)18 160 19250 0

c d c d c d

T

c d

c d c d

Yes, descent direction

Page 4: L22 Numerical Methods part 2

Prob 10.10

4

2 21 2 2 3

:( ) ( ) ( )

(4,8,4) (1,1,1)

Determine whether is a descent direction. . 0

givenf x x x xand at

i e

xd x

dc d

1 2

1 2 2 3

2 3 *

2( ) 2(1 1) 4( *) 2( ) 2( ) 2(1 1) 2(1 1) 8

2(1 1) 42( )x

x xf x x x x

x x

c x

1 1 2 2 3 3

04

4 8 4 8

4

4(4) 8(8) 4(4)16 64 1696 0

c d c d c d

T

c d

c d c d

No, not a descent direction

Page 5: L22 Numerical Methods part 2

Prob 10.19

5

1 2

2 1 3

3 2 *

2 2 2(2) 2(4) 12( *) 4 2 2 4(4) 2(2) 2(10) 40

4(10) 2(4) 484 2

1212 40 48 40

4812( 12) 40( 40) 48( 48)

(144 1600 2304)4048

x

x xf x x x

x x

c x

c d

2 2 21 2 3 1 2 2 3

:

( ) 2 2 2 2( 12, 40, 48) (2,4,10)

What is the slope of the function at the point?Find the optimum step size.

given

f x x x x x x xand at

xd x

Slope

Page 6: L22 Numerical Methods part 2

Prob 10.19 cont’d

6

( 1) ( ) ( )

( ) ( )

1 1 1

2 2 2

3 3 3( ) ( )

1

2

3

1

2

2

2 124 4010 48

2 ( 12) 2 124 ( 40) 4 4010 ( 48) 10 48

k k k

new old

new old

x x dx x dx x d

xxxxxx

x x d

2 2 21 2 3 1 2 2 3

2 2 2

( ) 2 2 2 2

(2 12 ) 2(4 40 ) 2(10 48 ) 2(2 12 )(4 40 ) 2(4 40 )(10 48 )

( ) 4048 25504 0* 4048 / 25504 0.15873

f x x x x x x x

f

x

Page 7: L22 Numerical Methods part 2

Prob 10.19 cont’d

7

alpha 0.15872

x1 0.095358x2 -2.34881x3 2.38143

f(x) 10.75031

( 1) ( ) ( )

( ) ( )

1

2

3

1

2

2

2 124 0.15873 4010 48

2 0.15873( 12) 0.0954 0.15873( 40) 2.3510 0.15873( 48) 2.38

k k k

new oldxxx

xxx

x x d

Page 8: L22 Numerical Methods part 2

Prob 10.30

8

( 1) ( ) ( )

( ) ( )

1

2

3

4

1

2

3

4

2221

4 23 2

2 ( 2)1 ( 2)4 ( 2)3 ( 2)

k k k

new oldxxxx

xxxx

x x d

2 2 2 2

2

( ) ((2 2 ) 1) ((1 2 ) 2) ((4 2 ) 3) ((3 2 ) 4)

( ) 16 16 4

f

f

2 2 2 21 2 3 4( ) ( 1) ( 2) ( 3) ( 4)

(2,1,4,3) ( 2,2, 2,2)( )

f x x x x

find f

xx d

Page 9: L22 Numerical Methods part 2

The Search Problem

• Sub Problem AWhich direction to head next?

• Sub Problem BHow far to go in that direction?

9

( )kx

Page 10: L22 Numerical Methods part 2

Search Direction… Min f(x): Let’s go downhill!

10

( *)Tf f x d

1( ) ( *) ( *)( *) ( *) ( *)( *)

2T Tf f f R x x x x x x x H x x x

1( * ) ( *) ( *)

2T Tf f f R x d x x d d H d

( ) ( )let ( *) then new oldor d x x x x * d x x d

( *) 0Tf x dDescent condition

( *)Tlet fc x

0c d

Page 11: L22 Numerical Methods part 2

Step Size?

How big should we make alpha?Can we step too “far?”

i.e. can our step size be chosen so big that we step over the “minimum?”

11

Page 12: L22 Numerical Methods part 2

12

Figure 10.2 Conceptual diagram for iterative steps of an optimization method.

We are hereWhich direction should we head?

Page 13: L22 Numerical Methods part 2

Some Step Size Methods

• “Analytical”Search direction = (-) gradient, (i.e. line search)Form line search function f(α)Find f’(α)=0

• Region Elimination (“interval reducing”)Equal intervalAlternate equal intervalGolden Section

13

Page 14: L22 Numerical Methods part 2

14

Figure 10.5 Nonunimodal function f() for 0

Nonunimodal functions

Unimodal if stay in locale?

Page 15: L22 Numerical Methods part 2

Monotonic Increasing Functions

15

Page 16: L22 Numerical Methods part 2

Monotonic Decreasing Functions

16

 

continous

Page 17: L22 Numerical Methods part 2

17

Figure 10.4 Unimodal function f().

Unimodal functions

monotonic increasing then monotonic decreasing

monotonic decreasing then monotonic increasing

Page 18: L22 Numerical Methods part 2

Some Step Size Methods

• “Analytical”Search direction = (-) gradient, (i.e. line search)Form line search function f(α)Find f’(α)=0

• Region Elimination (“interval reducing”)Equal intervalAlternate equal intervalGolden Section

18

Page 19: L22 Numerical Methods part 2

19

Figure 10.3 Graph of f() versus .

Analytical Step size

( 1) ( )( ) ( + ) ( )k kf f f x x d

( )

( ) ( ) ( )

( 1) ( ) ( )

given , and letthen

old

new old k

k k k

d xx x dx x d

( 1) ( )( ) ( + ) ( )'( )=0

k kf f ff

x x dSlope of line

search=c d

Slope of line at fmin0c d

Page 20: L22 Numerical Methods part 2

Analytical Step Size Example

20

2 21 2: ( ) ( 2) ( 1)

44

find optimal step size *and ( *)!

given f x x

and let and at

f

x

d c x

2 21 2

2 2

2

( ) ( 2) ( 1)

( ) ((4 4 ) 2) ((4 6 ) 1)( ) 52 52 13( ) 2(52 ) 52 0

* 1/ 2

f x x

fff

1

2

2 21 2

2 2

4 1/ 2( 4) 24 1/ 2( 6) 12

*1

( *) ( 2) ( 1)

(2 2) (1 1) 0

xx

f x x

x

x

1

2

2( 2) 2(4 2)2( 1) 2(4 1)

46

xx

d c

( 1) ( ) ( )

( ) ( )

1 1 1

2 2 2

1

2

4 ( 4) 4 44 ( 6) 4 6

k k k

new oldx x dx x dxx

x x d

2 2( ) ((4 4 ) 2) ((4 6 ) 1)( ) 2((4 4 ) 2)( 4) 2((4 6 ) 1)( 6) 0( *) (2 4 )( 4) (3 6 )( 6) 0

8 16 18 36 26 52 0* 26 / 52 1 / 2

fff

Page 21: L22 Numerical Methods part 2

Alternative Analytical Step Size

21

( 1) ( )

( 1) ( 1) ( 1)

( 1) ( ) ( )

( 1)( )

( 1) ( )

( 1) ( )

( ) ( + ) ( )'( )=0( ) ( ) ( )

0

since( )

( ) 0

0

k k

k T k k

k k k

kk

k k

k k

f f ffdf f d

d d

d

df

x x d

x x x

xx x d

xd

x d

c d

( 1) ( ) ( )

1

2

4 ( 4) 4 44 ( 6) 4 6

k k k

xx

x x d

( 1) ( ) 04

4 8 , 6 126

4(4 8 ) 6(6 12 ) 016 32 36 72 052 104 0

52 / 104 1/ 2

k k

T

c d

( 1) 1

2

2( 2)2( 1)

2(4 4 2)2(4 6 1)

4 86 12

k xx

c

New gradient must be orthogonal to d for ' ( )=0f

Page 22: L22 Numerical Methods part 2

Some Step Size Methods

• “Analytical”Search direction = (-) gradient, (i.e. line search)Form line search function f(α)Find f’(α)=0

• Region Elimination (“interval reducing”)Equal intervalAlternate equal intervalGolden Section

22

Page 23: L22 Numerical Methods part 2

23

Figure 10.6 Equal-interval search process. (a) Phase I: initial bracketing of minimum. (b) Phase II: reducing the interval of uncertainty.

“Interval Reducing”Region elimination

“bounding phase”

Interval reductionphase”

( 1)( 1)

2

l

u

u l

qq

I

Page 24: L22 Numerical Methods part 2

2 delta!

24

Page 25: L22 Numerical Methods part 2

Successive-Equal Interval Algorithm

25

x f(x)-5.0000 22.0067-4.0000 18.0183-3.0000 14.0498-2.0000 10.1353-1.0000 6.36790.0000 3.00001.0000 0.71832.0000 1.38913.0000 10.08554.0000 40.59825.0000 130.4132

( ) 2 - 4 exp( )f x x x x f(x)

0.0000 3.00000.2000 2.42140.4000 1.89180.6000 1.42210.8000 1.02551.0000 0.71831.2000 0.52011.4000 0.45521.6000 0.55301.8000 0.84962.0000 1.3891

x f(x)1.2000 0.52011.2400 0.49561.2800 0.47661.3200 0.46341.3600 0.45621.4000 0.45521.4400 0.46071.4800 0.47291.5200 0.49221.5600 0.51881.6000 0.5530

x f(x)1.3600 0.4561931.3680 0.4554881.3760 0.4550341.3840 0.4548331.3920 0.4548881.4000 0.4552001.4080 0.4557721.4160 0.4566051.4240 0.4577021.4320 0.4590651.4400 0.460696

x lower -5x upper 5

delta 1

02

0.2

1.21.6

0.04

“Interval” of uncertainty

1.361.44

0.008

Page 26: L22 Numerical Methods part 2

More on bounding phase I

Swan’s method

Fibonacci sequence

26

( 1) ( )

( 1) ( )

210

k k k

k k k

0

(1.618)k

jq

j

Page 27: L22 Numerical Methods part 2

Successive Alternate Equal Interval

27

  

 

Assume bounding phase has found Min can be on either side of

But for sure its not in this region!

1

32 1

3 3

b l

b l u

I

I I

u land

b

Point values… not a line

Page 28: L22 Numerical Methods part 2

Successive Alt Equal Int

28

ME 482 Optimal Design alt_eq_int.xls RJE 4/11/2012

Alternate Equal Interval Search for locating minimum of f(x)x lower 0.5x upper 2.618

Iteration xl 1/3(xu+2xl) 1/3(2xu+xl) xu Interval Optimal

1 x 0.5000000 1.2060000 1.9120000 2.6180000 2.118000 1.2060000f(x) 1.6487213 0.5160975 1.1186085 5.2362796 0.5160975

2 x 0.5000000 0.9706667 1.4413333 1.9120000 1.412000 1.4413333f(x) 1.6487213 0.7570370 0.4609938 1.1186085 0.4609938

3 x 0.9706667 1.2844444 1.5982222 1.9120000 0.941333 1.2844444 f(x) 0.7570370 0.4748826 0.5513460 1.1186085 0.47488264 x 0.9706667 1.1798519 1.3890370 1.5982222 0.627556 1.3890370 f(x) 0.7570370 0.5344847 0.4548376 0.5513460 0.45483765 x 1.1798519 1.3193086 1.4587654 1.5982222 0.418370 1.3193086

f(x) 0.5344847 0.4635997 0.4655851 0.5513460 0.4635997

( ) 2 - 4 exp( )f x x x

Requires two function evaluations per iteration

Page 29: L22 Numerical Methods part 2

29

Figure 10.8 Initial bracketing of the minimum point in the golden section method.

Fibonacci Bounding

Page 30: L22 Numerical Methods part 2

30

Figure 10.9 Graphic of a section partition.

Golden section

22

1,2

1 1 4(1)( 1)4

2 2(1)

1 5 1 2.236

2 20.618, 1.618

b b ac

a

2

leftside = rightside(1 )

[ ] (1 )[ ] (1 )

1 0

I II I

Page 31: L22 Numerical Methods part 2

Golden Section Example

31

ME 482 Optimal Design alt_gold.xls RJE 4/11/2012

Golden Section Region Elimiation Search for locating minimum of f(x)x lower 0.5 1-τ= 0.381966x upper 2.618 τ = 0.618034

Iteration xl xL+(1-τ) I xL+ τ I xu Interval I Optimal

1 x 0.5 1.309004 1.808996 2.618 2.118 1.30900399f(x) 1.6487213 0.4664682 0.8683316 5.2362796 0.4664682

2 x 0.5 0.999992 1.309004 1.808996 1.308996 1.30900404f(x) 1.6487213 0.7182921 0.4664682 0.8683316 0.46646819

3 x 0.999992 1.309004 1.499984 1.808996 0.809004 1.30900401 f(x) 0.7182921 0.4664682 0.4816814 0.8683316 0.46646824 x 0.999992 1.1909719 1.309004 1.499984 0.499992 1.30900403 f(x) 0.7182921 0.5263899 0.4664682 0.4816814 0.466468195 x 1.1909719 1.309004 1.3819519 1.499984 0.3090121 1.38195187

f(x) 0.5263899 0.4664682 0.4548602 0.4816814 0.45486022

( ) 2 - 4 exp( )f x x x

Page 32: L22 Numerical Methods part 2

Summary• General Opt Algorithms have two sub problems:

search direction, and step size

• Descent condition assures correct direction• For line searches…in local neighborhood…

we can assume unimodal!

• Step size methods: analytical, region elimin.• Region Elimination (“interval reducing”)

Equal interval Alternate equal interval Golden Section 32