l8: pre-planetesimal growth ormel (2016) [star & planet formation || lecture 8: pre-planetesimal...

25
Chris Ormel (2016) [Star & Planet Formation || L8: pre-planetesimal growth] 1/25 L8: Pre-planetesimal growth

Upload: lehanh

Post on 20-May-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Chris Ormel (2016) [Star & Planet Formation || L8: pre-planetesimal growth] 1/25

L8: Pre-planetesimal growth

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 2/25

Pre-planetesimal growth

● Collision physics– elastic, surface energy, sticking

● Coagulation equation– Smoluchowski equation, discrete vs continous, size

distribution function, analytical kernels, kernels

● Synthesis– fractal growth, compaction, fragmentation, “the

great divide”, many movies!

Chris Ormel (2016) [Star & Planet Formation || L8: pre-planetesimal growth] 3/25

Elasticity & surface tension

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 4/25

– contact physics, Hertz force, elastic energysurface energy, contact area

– collision time, coagulation equation, size distributions

Blackboard

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 5/25

JKRS potential

Q: Why negative δ and negative Ueq?

contact radius

disp

lace

men

t

energy minimum

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 6/25

Collision kernelTime for particle i to collide with particles j:

Collision rate between i and j:

Kij = σcol Δv = collision kernel (= reaction rate).

Smoluchowski's equation describes evolution of distribution function

t col=(n j σ col Δ v)−1

dnij

dt=K ij ni n j

mass

num

ber

1 2 3 4 5

∂ni

∂ t=

12∑j+k=i

K jk n j nk−ni∑all j

K ij n j

Smoluchowski equation – discrete form:

Smoluchowski equation – continuous form:

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 7/25

Collision kernel Kij

Collision kernel: Kij = σij * Δvij; orK(m1,m2) = ...

Three “analytical” kernels:

– constant K = 1– linear, K = (m1+m2)– product, K = m1*m2

one can solve analytically for the size distribution function f(m,t)

mass distribution for theconstant kernel →

Smoluchowski equation – continuous form:

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 8/25

Collision kernel Kij

Collision kernel: Kij = σij * Δvij; orK(m1,m2) = ...

Three “analytical” kernels:

– constant K = 1– linear, K = (m1+m2)– product, K = m1*m2

one can solve analytically for the size distribution function f(m,t)

mass distribution for theconstant kernel →

Smoluchowski equation – continuous form:

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 9/25

Collision kernel Kij

Collision kernel: Kij = σij * Δvij; orK(m1,m2) = ...

Three “analytical” kernels:

– constant K = 1– linear, K = (m1+m2)– product, K = m1*m2

one can solve analytically for the size distribution function f(m,t)

mass distribution for theconstant kernel →

Smoluchowski equation – continuous form:

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 10/25

Linear kernel

Linear kernel out-paces the constant kernel!

Growth is exponential(m ~ exp[t]); mass-doubling time stays constant

Both distributions are self-similar (same shape)

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 11/25

Product kernel

After t = 1:mass is no longer conserved; the small particles seems to get “eaten” by something.

Q: What happened?

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 12/25

Kernel summary

Constant Linear Product

Analytical Kij = cnst Kij ∝ m1+m2 Kij ∝ m1 m2

Similar to:(if σgeo ∝ m2/3)

Brownian Motion(Δv ∝ m–1/2)

Turbulence(Δv ∝ m1/3)

Gravitational focusing(σ ∝ m4/3)

Size distribution Narrow Broad Discontinuous(runaway bodies)

However:– We have assumed perfect sticking!– Constant internal density (ρ•) is not

guaranteed! ρ• will evolve with time!

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 13/25

Dust aggregates (fractals)

Seizinger et al. (2013)

Q: which aggregate is the largest?– by size– by mass– by aerodynamical size (tstop)

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 14/25

Fractal dimension S

ize

Min et al. (2006)

Fractal lawmass ~ (size)Df

Df = fractal dimens.(1 < Df < 3)

Consequence:Particles stay aerodynamically small, since:

tstop ~ mass/Area

at least as long as Δv is small (hit-and-stick growth)

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 15/25

Compaction, Fragmentation, Bouncing...

Paszun & Dominik (2009)

Hit-and-stick (low velocity) Restructuring/compaction(modest velocity) → fractal dimension increases

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 16/25

Bouncing

Lab experiments (microgravity)(TU-Braunschweig)

Weidling et al. (2012)

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 17/25

Fragmentation

Lab experiments (TU-Braunschweig)

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 18/25

The great divide

● Fractal growth proceeds until planetesimals[e.g. Wada et al. 2008, Okuzumi et al. 2012, Kataoka et al. 2013]

collisional compaction inefficient; Δv lowaggregates keep a fractal structure; growth outpaces drift; narrow size distribution (only growth); planetesimals form quickly (and fluffy)

● Fragmentation barrier[e.g. Guettler et al. 2010, Zsom et al. 2010, Birnstiel et al. 2010]

collisional compaction efficient; Δv increases; fragmentation barrier; growth terminates; broad size distribution (b/c fragmentation); planetesimals form by gravitational instability (→Lecture 9)

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 19/25

Summary: Birnstiel et al. (2010)

● Model include:– Coagulation +

fragmentation (size distribution)

– Radial drift (material transport)

● 3 Cases– Growth only– Growth & drift– Growth, drift, &

fragmentation orbital radius [AU]

grai

n si

ze [c

m]

Vertically-integrated distribution function

∫m2 f (m ,r , z)dz

Chris Ormel (2016) [Star & Planet Formation || L8: pre-planetesimal growth] 20/25

Growth only

Birnstiel et al. (2012)

Chris Ormel (2016) [Star & Planet Formation || L8: pre-planetesimal growth] 21/25

Growth + Drift

Birnstiel et al. (2012)

Chris Ormel (2016) [Star & Planet Formation || L8: pre-planetesimal growth] 22/25

Growth, drift, & fragmentation

Birnstiel et al. (2012)

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 23/25

Use K(m',m'') = K(m'',m')somewhere

What is key property of Dirac-δ function?

What [physical principle] is expressed...

Exercise 1.5

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 24/25

Exercise 1.6

See fig 1.5

Dimensional argument

z

σ = E* ε = E* ΔL/L

Equivalent to (dimensionless units)

U c=δac−23

δ ac3+

15

ac5

Chris Ormel (2016) [Star & Planet Formation || Lecture 8: pre-planetesimal growth] 25/25

Exercise 1.7 (HW) & 1.8