lab sim sproute exam

Upload: arnisadoryeskrimador

Post on 07-Aug-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Lab Sim Sproute Exam

    1/11

    1

    ---

  • 8/20/2019 Lab Sim Sproute Exam

    2/11

    2

    The show clns route command shows the Intermediate System-to-Intermediate System (IS-IS) Level 2 routingtable and static and Intermediate System-to-Intermediate System Interior Gateway Routing Protocol (ISO-

    IGRP) learned prefix routes. This table stores IS-IS area addresses and prefix routes.

    Examples

    The following is sample output from the show clns route command when the nsap argument is not used:

    Router # show clns route

    I SO- I GRP Rout i ng Tabl e f or Domai n 49. 0002, Ar ea 0007Syst emI d Next - Hop SNPA I nt er f ace Met r i cSt at emi l l es mi l l es *HDLC* Se1 8476 Up

    0000. 0000. 0007 mi l l es *HDLC* Se1 10476 Upr i ps 0000. 0000. 0000 - - - - 0 Up

    I SO- I GRP Rout i ng Tabl e f or Domai n 49. 0002Ar ea I d Next - Hop SNPA I nt er f ace Met r i cSt at e0002 0000. 0000. 0000 - - - - 0 Up

    Codes: C - connect ed, S - st at i c, d - Decnet I VI - I SO- I GRP, i - I S- I S, e - ES- I S

    C 49. 0002 [ 2/ 0] , Local I SO- I GRP Domai nC 49. 0001. 0000. 0000. 0005. 00 [ 1/ 0] , Local I S- I S NET

    C 49. 0002. 0007. 0000. 0000. 0005. 00 [ 1/ 0] , Local I SO- I GRP NETC 49. 0001 [ 2/ 0] , Local I S- I S Ar ea

    i 33. 3333. 3333 [ 110/ 10]vi a bakel , Et her net 0S 50. 1234 [ 10/ 0] , Di scard Ent r yI 55. 5555. 5555 [ 100/ 8476]vi a mi l l es, Ser i al 1S 77. 7777. 7777. 7777 [ 10/ 0]vi a Ser i al 0d 88. 8888. 8888. 0007 [ 120/ 0] , Decnet I V Entr yi 33. 4567. 8901 [ 110/ 10]vi a bakel , Et her net 0

  • 8/20/2019 Lab Sim Sproute Exam

    3/11

    3

    The following is sample output from the show clns command:

    Router# show clns

    Gl obal CLNS I nf ormat i on:2 I nt er f aces Enabl ed f or CLNSNET: 39.0004. 0030. 0000. 0C00. 224D. 00NET: 39.0003. 0020. 0000. 0C00. 224D. 00Conf i gur at i on Ti mer : 60, Def aul t Hol di ng Ti mer : 300, Packet Li f et i me 64

    ERPDU' s r equest ed on l ocal l y generated packet sI nt er medi at e syst em oper at i on enabl ed ( f or war di ng al l owed)I SO I GRP l evel - 1 Rout er: r emote

    Rout i ng f or Domai n: 39. 0003, Ar ea: 0020I SO I GRP l evel - 2 Rout er : DOMAI N_r emote

    Rout i ng f or Domai n: 39. 0003I S- I S l evel - 1- 2 Rout er :

    Rout i ng f or Area: 39. 0004. 0030

    Stateful switchover (SSO): La supervisora redundante está completamente inicializada y tanto lasconfiguraciones running y startup son sincronizadas entre las supervisoras. La información de la

  • 8/20/2019 Lab Sim Sproute Exam

    4/11

    4

    Capa 2 se mantiene en ambas supervidoras por lo que el hardware de conmutado funciona incluso

    durante el fallo. También se mantiene el estado de las interfaces en ambas supervisoras por lo tanto

    los enlaces no pierden enlace durante el fallo y el STP no se ve afectado. La información de la capa 3

    debe ser re-aprendida lo cual incluye reconstruir la tablas ARP y las tablas de adyacencia CEF de capa

    3.

    Graceful Restart (GR) (also known as Non Stop Forwarding (NSF)) and Non Stop

    Routing (NSR) are two different mechanisms to prevent routing protocol reconvergence

    during a processor switchover.

    Traditionally, when a networking device restarts, all routing peers associated with that device

    detect the device has gone down and routes from that peer are removed. The session is re-

    established when the device completes the restart. This transition results in removal and re-

    insertion of routes, which could spread across multiple routing domains. This was required

     because of the inability of the restarting device to forward traffic during the reload period.

    Today, dual processor systems which support Stateful Switch Over (SSO) or In-Service

    Software Upgrades (ISSU) can continue to forward traffic while restarting the control plane

    on the second processor. In this case, route removal and insertion caused by routing protocol

    restarts is no longer necessary, creating unnecessary routing instabilities, which are

    detrimental to the overall network performance. Graceful Restart and Non Stop Routing

    suppress routing changes on peers to SSO-enabled devices during processor switchover

    events (SSO or ISSU), reducing network instability and downtime.

    GR and NSR, when coupled with SSO provide the foundation for fast recovery from a

     processor failure and allow the use of ISSU to perform software upgrades with little

    downtime. SSO is necessary to handle other non routing protocol related items needed for the

    router to operate following a switchover. These include syncing the complete router

    configuration, Cisco Express Forwarding (CEF) forwarding entries and other neededinformation to the standby processor.

    Graceful Restart and Non Stop Routing both allow for the forwarding of data packets

    to continue along known routes while the routing protocol information is being restored

    (in the case of Graceful Restart) or refreshed (in the case of Non Stop Routing)

    following a processor switchover.

    When Graceful Restart is used, peer networking devices are informed, via protocol

    extensions prior to the event, of the SSO capable routers ability to perform graceful restart.

    The peer device must have the ability to understand this messaging. When a switchover

    occurs, the peer will continue to forward to the switching over router as instructed by the GR

     process for each particular protocol, even though in most cases the peering relationship needs

    to be rebuilt. Essentially, the peer router will give the switching over router a "grace" period

  • 8/20/2019 Lab Sim Sproute Exam

    5/11

    5

    to re-establish the neighbor relationship, while continuing to forward to the routes from that

     peer. Graceful Restart is available today for OSPF, ISIS, EIGRP, LDP and BGP. Standards

    are defined for OSPF, ISIS, BGP and LDP to ensure vendor interoperability.

    When Non Stop Routing is used, peer networking devices have no knowledge of any event

    on the switching over router. All information needed to continue the routing protocol peering

    state is transferred to the standby processor so it can "pick up" immediately upon a

    switchover.

     NSR is available today in Cisco IOS for ISIS and BGP. Unlike Graceful Restart, Non Stop

    Routing uses more system resources due to the information transfer to the standby processor.

    Standards are not necessary in the case of Non Stop Routing, as the solution does not require

    any additional communication with protocol peers. NSR is desirable in cases where the

    routing protocol peer doesn't support the RFCs necessary to support Graceful Restart,

    however it comes at a cost of using more system resources than would be if the same session

    used Graceful Restart. Often a simple software upgrade on the peer will allow the use of

    Graceful Restart over Non Stop Routing.

    Some protocols (BGP for instance) operate in a "hybrid" mode in Cisco IOS. In a typical PE

    type role, the majority of BGP routes will be learned from the network Route Reflectors over

    iBGP sessions, and those route reflectors are in the control of the operator. It is recommended

    to operate these sessions in GR mode and only run NSR to non managed CE type

    connections, since their software may not be easily changed to support GR. In addition,

    single CE connections generally have a relatively fewer number of routes, reducing the load

    on the router should NSR be necessary.

  • 8/20/2019 Lab Sim Sproute Exam

    6/11

    6

    Rout er # show clns neighbors

    Syst emI d I nt erf ace SNPA St ate Hol dt i me Type Prot ocol0000. 0000. 0007 Et3/ 3 aa00. 0400. 6408 UP 26 L1 I S- I S0000. 0C00. 0C35 Et3/ 2 0000. 0c00. 0c36 Up 91 L1 I S- I S0800. 2B16. 24EA Et 3/ 3 aa00. 0400. 2d05 Up 27 L1 M- I SI S0800. 2B14. 060E Et3/ 2 aa00. 0400. 9205 Up 8 L1 I S- I S

    Router# show clns neighbor areas

    Syst emI d I nt erf ace Ar ea Name St ate Hol dt i me TypePr ot ocol0000. 0000. 0009 Tu529 L2BB Up 26 L1L2 I S- I S0000. 0000. 0053 Et1 A3253- 01 Up 21 L1 I S- I S

    0000. 0000. 0003 Et1 A3253- 01 Up 28 L1 I S- I S0000. 0000. 0002 Et2 A3253- 02 Up 22 L1 I S- I S0000. 0000. 0053 Et2 A3253- 02 Up 23 L1 I S- I S

    Rout er # show clns is-neighbors

    Syst em I d I nt er f ace St at e Type Pr i or i t y Ci r cui t I d For mat0000. 0C00. 0C35 Ethernet1 Up L1 64 0000. 0C00. 62E6. 03 Phase V0800. 2B16. 24EA Ethernet0 Up L1L2 64/ 64 0800. 2B16. 24EA. 01 Phase V0000. 0C00. 3E51 Ser i al 1 Up L2 0 04 Phase V0000. 0C00. 62E6 Ethernet1 Up L1 64 0000. 0C00. 62E6. 03 Phase V

    ORF

    La función de Filtrado de rutas de salida basado en el prefijo BGP utiliza Border Gateway Protocol

    (BGP) Filtro de ruta de salida (ORF) enviar y recibir capacidades para minimizar el número de

    actualizaciones BGP que se envían entre los interlocutores BGP. La configuración de esta

    característica puede ayudar a reducir la cantidad de recursos del sistema necesarios para generar y

    procesar las actualizaciones de enrutamiento mediante la filtración de las actualizaciones de

    enrutamiento no deseados en la fuente. Por ejemplo, esta característica se puede utilizar para

    reducir la cantidad de procesamiento requerido en un router que no está aceptando rutas completas

    de una red de proveedor de servicios.

  • 8/20/2019 Lab Sim Sproute Exam

    7/11

    7

    Con esta característica que vamos a definir qué prefijos queremos recibir de nuestros pares BGP sin

    hacer ningún tipo de filtrado localmente. Esto lo conseguimos mediante la especificación de que el

    dispositivo BGP pares el filtrado o constriñe que queremos aplicar a las actualizaciones que se tarde

    van a ser enviado a nosotros, a diferencia de tener que recibir y procesar un grupo de prefijos BGP

    sólo para luego ser abandonado por un filtro configurado localmente. Básicamente vamos a ser

    capaces de decirle al otro router "Hey, no me envíe su mesa llena de BGP, solo quiero esto y lo otro

    prefijos".

    Ser capaz de hacer este tipo de configuración que nos permiten tener un uso más eficiente de los

    recursos en términos de CPU, memoria, ancho de banda y, en resumen, una interconexión de que es

    más rápido a converger. Voy a tratar de escribir un post futuro sobre el impacto de esta función en

    los grupos de pares y el uso de plantillas de políticas de pares, pero definitivamente necesito

    refrescar mi memoria con algunos conceptos antes de hacer eso.

  • 8/20/2019 Lab Sim Sproute Exam

    8/11

    8

    Router# show ip ospf neighbor

    I D Pr i St at e Dead Ti me Addr ess I nt erf ace

    10. 199. 199. 137 1 FULL/ DR 0: 00: 31 192. 168. 80. 37 Ether net 0172. 16. 48. 1 1 FULL/ DROTHER 0: 00: 33 172. 16. 48. 1 Fddi 0172. 16. 48. 200 1 FULL/ DROTHER 0: 00: 33 172. 16. 48. 200 Fddi 010. 199. 199. 137 5 FULL/ DR 0: 00: 33 172. 16. 48. 189 Fddi 0

    Rout er # show ipv6 ospf neighbor 

    Nei ghbor I D Pri St ate Dead Ti me I nt erf ace I D I nt erf ace172. 16. 4. 4 1 FULL/ - 00: 00: 31 14 POS4/ 0172. 16. 3. 3 1 FULL/ BDR 00: 00: 30 3 Fast Ether net 00172. 16. 5. 5 1 FULL/ - 00: 00: 33 13 ATM3/ 0 

    OSPF lab -

    3 ipv4 neighbors, 3 ipv6 neighbors and 4 interfaces.

  • 8/20/2019 Lab Sim Sproute Exam

    9/11

    9

  • 8/20/2019 Lab Sim Sproute Exam

    10/11

    10

    area 3 transit area, The ospf virtual link cost 1 and PE5 ospfv2&3 router ID 10.5.1.

  • 8/20/2019 Lab Sim Sproute Exam

    11/11

    11

    Gracias