lagrangian dynamics and statistical geometry in...

30
Lagrangian Dynamics and Statistical Geometry in Turbulence ...and Intermittency Laurent Chevillard & Emmanuel L ´ ev ˆ eque [email protected] & [email protected] Laboratoire de Physique, ENS Lyon, CNRS, France Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.1/30

Upload: dodang

Post on 12-Aug-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Lagrangian Dynamics and StatisticalGeometry in Turbulence

...and Intermittency

Laurent Chevillard† & Emmanuel Leveque†

[email protected] & [email protected]

†Laboratoire de Physique, ENS Lyon, CNRS, France

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.1/30

Page 2: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

3D Fluid Turbulence: Full velocity gradients

Direct Numerical Simulations(picture by Toschi)

kjhkjgfdfgdfsgdfgdfskjhflgjhfA =

∂ux∂x

∂ux∂y

∂ux∂z

∂uy

∂x

∂uy

∂y

∂uy

∂z∂uz∂x

∂uz∂y

∂uz∂z

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.2/30

Page 3: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

3D Nature of Turbulence and Non Locality of Pressure

Acceleration︷︸︸︷ai =

dui

dt=

∂ui

∂t+

Recquire 3D︷ ︸︸ ︷

(u.∇)ui

︸ ︷︷ ︸

Anti-Correlated

=

nonlinear︷ ︸︸ ︷

−∇ip︸ ︷︷ ︸

non local

+ν∇2ui

Incompressibility ↔ Poisson equation: ∇2p = −tr(A2)

Velocity Gradient Tensor: A =

∂ux∂x

∂ux∂y

∂ux∂z

∂uy

∂x

∂uy

∂y

∂uy

∂z∂uz∂x

∂uz∂y

∂uz∂z

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.3/30

Page 4: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

3D Nature of Turbulence and Non Locality of Pressure

Acceleration︷︸︸︷ai =

dui

dt=

∂ui

∂t+

Recquire 3D︷ ︸︸ ︷

(u.∇)ui

︸ ︷︷ ︸

Anti-Correlated

=

nonlinear︷ ︸︸ ︷

−∇ip︸ ︷︷ ︸

non local

+ν∇2ui

Incompressibility ↔ Poisson equation: ∇2p = −tr(A2)

→ Pressure Gradient: ∇ip(x) =∫

dy

Green fct.︷ ︸︸ ︷

Gi(|y − x|)︸ ︷︷ ︸

∼ 1

|y−x|2

tr(A2(y)

)Non Local!!

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.4/30

Page 5: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

3D Nature of Turbulence and Non Locality of Pressure

Acceleration︷︸︸︷ai =

dui

dt=

∂ui

∂t+

Recquire 3D︷ ︸︸ ︷

(u.∇)ui

︸ ︷︷ ︸

Anti-Correlated

=

nonlinear︷ ︸︸ ︷

−∇ip︸ ︷︷ ︸

non local

+ν∇2ui

Incompressibility ↔ Poisson equation: ∇2p = −tr(A2)

→ Pressure Hessian : Pij = ∇ijp(x) =

Local-Isotropic︷ ︸︸ ︷

−tr(A2(x)

) δij

3+

Non Local-Anisotropic︷ ︸︸ ︷

P.V.∫

dy Gij(|y − x|)︸ ︷︷ ︸

∼ 1

|y−x|3

tr(A2(y)

)

See Ohkitani & Kishiba (PoF,95) and Majda, Bertozzi (CUP,01)

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.5/30

Page 6: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

3D Nature of Turbulence and Non Locality of Pressure

Acceleration︷︸︸︷ai =

dui

dt=

∂ui

∂t+

Recquire 3D︷ ︸︸ ︷

(u.∇)ui

︸ ︷︷ ︸

Anti-Correlated

=

nonlinear︷ ︸︸ ︷

−∇ip︸ ︷︷ ︸

non local

+ν∇2ui

⇓∂

∂xj⇓

Time evolution of the velocity gradient tensor A =

∂ux∂x

∂ux∂y

∂ux∂z

∂uy

∂x

∂uy

∂y

∂uy

∂z∂uz∂x

∂uz∂y

∂uz∂z

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.6/30

Page 7: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

3D Nature of Turbulence and Non Locality of Pressure

Acceleration︷︸︸︷ai =

dui

dt=

∂ui

∂t+

Recquire 3D︷ ︸︸ ︷

(u.∇)ui

︸ ︷︷ ︸

Anti-Correlated

=

nonlinear︷ ︸︸ ︷

−∇ip︸ ︷︷ ︸

non local

+ν∇2ui

⇓∂

∂xj⇓

d

dtAij = −AiqAqj

︸ ︷︷ ︸

self-stretching term

Pressure Hessian︷ ︸︸ ︷

∂2p

∂xi∂xj+ ν

∂2Aij

∂xq∂xq︸ ︷︷ ︸

Viscous term︸ ︷︷ ︸

need to be modeled

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.7/30

Page 8: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

The Lagrangian evolution of the Eulerian velocity gradient tensor

See the review C. Meneveau, Lagrangian dynamics and models of the velocity gradienttensor in Turbulent flows, Ann. Rev. Fluid Mech. (2011)

Let Aij =∂ui

∂xjand

d

dt≡

∂t+ uq

∂xq

A =

Long11 Trans12 Trans13Trans21 Long22 Trans23Trans31 Trans32 Long33

Then, along a fluid trajectory (Léorat 75, Vieillefosse 82):

∇(Navier-Stokes) ⇒d

dtAij = −AiqAqj

︸ ︷︷ ︸

self-stretching term

Pressure Hessian︷ ︸︸ ︷

∂2p

∂xi∂xj+ ν

∂2Aij

∂xq∂xq︸ ︷︷ ︸

Viscous term︸ ︷︷ ︸

need to be modeled

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.8/30

Page 9: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Tracking Velocity Gradients along Lagrangian trajectories

DNS

• Yeung & Pope (89).

• Girimaji & Pope, J.F.M. (90).

• Pope & Chen , Phys. Fluids (90).

Experimental

• Zeff et al., Nature (2003).

• Luthi, Tsinober & Kinzelbach, J.F.M.(2005).

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.9/30

Page 10: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Statistical Intermittency and Geometry in turbulence

DNS Results Rλ = 150

−10 −5 0 5 10

−15

−10

−5

0

Long Trans

∂ju

i

ln P

Intermittency

• Non-Gaussianity

• Skewness• Anomalous scaling with Reynolds

number

−1 0 10

0.5

1

1.5

s*

P(s

*)

0 10

1

2

3

4

Min

Int.

Max

cos(ω,λi)

P[c

os(

ω,λ

i)]

Geometry

• Preferential alignment of vorticity

• Preferential axisymmetric expansion

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.10/30

Page 11: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

The RQ plane - Local Topology

See Chong, Perry and Cantwell (90) and Cantwell (93)

λi = f(R,Q) ∈ C: Eigenvalues of A

• Second invariant: Q = − 12

Tr(A2) = 14

Enstrophy︷︸︸︷

|ω|2 − 12

Dissipation︷ ︸︸ ︷

Tr(S2)

• Third invariant: R = − 13

Tr(A3) = − 14

ωiSijωj︸ ︷︷ ︸

Enstrophy Production

− 13

Tr(S3)︸ ︷︷ ︸

Strain Skewness

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.11/30

Page 12: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Review of the Restricted Euler approximation (I)

ddtAij = −AiqAqj − ∂2p

∂xi∂xj+ ν

∂2Aij

∂xq∂xq

• Restricted Euler Dynamics (Léorat 75-Vieillefosse 84-Cantwell 92)∂2p

∂xi∂xj= −

δij3

Tr(A2) and ν = 0

d

dtA = −

(

A2 −δij

3Tr(A2)

)

→ Non stationary

• Evolution equations for Q and R:

dQ

dt= −3Rdhgghfgjh and dhgghfgjh

dR

dt=

2

3Q2

• 274R2(t) +Q3(t) is time invariant

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.12/30

Page 13: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Review of the Restricted Euler approximation (II)

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.13/30

Page 14: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Review of the Restricted Euler approximation (III)

ddtAij = −AiqAqj − ∂2p

∂xi∂xj+ ν

∂2Aij

∂xq∂xq

• Restricted Euler Dynamics (Léorat 75-Vieillefosse 84-Cantwell 92)∂2p

∂xi∂xj= −

δij3

Tr(A2) and ν = 0

d

dtA = −

(

A2 −δij

3Tr(A2)

)

→ Non stationary

• Finite time singularity (t∗) of A for any initial condition

• BUT, at t . t∗

• Second eigenvalue λ of S is positive→ Preferential axisymmetric expansion

• Vorticity gets aligned with the associated eigenvector uλ

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.14/30

Page 15: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Review of various models

ddtAij = −AiqAqj − ∂2p

∂xi∂xj+ ν

∂2Aij

∂xq∂xq

• Restricted Euler Dynamics (Vieillefosse 84-Cantwell 92)∂2p

∂xi∂xj= −

δij3

Tr(A2) and ν = 0 → Finite time singularity

• Lognormality of Pseudo-dissipation ϕ = Tr(AAT ) (Girimaji-Pope 90)→ Strong a-priori assumption

• Linear damping term (Martin et al. 98)∂2p

∂xi∂xj= −

δij3

Tr(A2) and ν ∂2A∂xq∂xq

= − 1τ

A → Finite time singularity

• Delta-vee system (Yi-Meneveau (05))Projection on Longitudinal δℓu and Transverse δℓv increments

Using the material Deformation (Cauchy-Green Tensor C)

• Tetrad’s model (Chertkov-Pumir-Shraiman 99)∂2p

∂xi∂xj= −

Tr(A2)

Tr(C−1)C−1

ij and ν = 0 → Non stationary

• Differential damping term (Jeong-Girimaji 03)∂2p

∂xi∂xj= −

δij3

Tr(A2) and ν ∂2A∂xq∂xq

= −Tr(C−1)

3τA

→ Non stationaryLaurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.15/30

Page 16: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Cauchy-Green Tensor: Tracking the volume deformation

dsfqds

x(t)X=x(t0)

dsfqds

Deformation gradient: Dij(t) =∂xi∂Xj

(t)

Dyn.: ddt

D = AD

↔ D(t) =

t∏

t0

eA(ξ)dξ

︸ ︷︷ ︸

Time ordered exponential

Cauchy-Green Tensor : C = DDT or C−1ij =

∂Xp

∂xi

∂Xp

∂xj

Non Stationary

• Monin-Yaglom 75

• Girimaji-Pope 90: DNS Rλ = 90

• Lüthi, Tsinober, Kinzelbach 05: Exp. Rλ = 50

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.16/30

Page 17: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Re-Interpretation of the Chertkov et al. Tetrad Model

lksdfqsg

Eulerian → Lagrangian

∂2p

∂xi∂xj≈

∂Xp

∂xi

∂Xq

∂xj

∂2p

∂Xp∂Xq

fq

hyp.:

Isotropic︷ ︸︸ ︷

∂2p

∂Xp∂Xq=

δpq3

∂2p∂Xm∂Xm

Poisson=

equation−δpq

Tr(A2)

Tr(C−1)

Chertkov, Pumir and Shraiman (99)

∂2p

∂xi∂xj= −

Tr(A2)

Tr(C−1)C−1

ij

Non Stationary

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.17/30

Page 18: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

The Jeong et al. Lagrangian Linear Diffusion Model

Eulerian → Lagrangian

∂2A∂xm∂xm

=∂Xp

∂xm

∂Xq

∂xm

∂2A∂Xp∂Xq

hyp.: Linear damping in the Lagrangian frame ν ∂2A∂Xp∂Xq

= −δpq3

ν∂2A

∂xm∂xm= −

Tr(C−1)

3ΘA → Θ ??

Jeong and Girimaji (03) Non Stationary

Chevillard-Meneveau (06)→Self-consistent time-scale estimation:

1

Θ∼ ν

δ2

δX2∼

ν

(distance traveled during τK)2∼

ν

λ2︸︷︷︸

Taylor

∼1

TIntegral time scale −1

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.18/30

Page 19: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Stationary Cauchy-Green Tensor

D(t) =∂x∂X

(t) =

t∏

t0

eA(ξ)dξ = dτ (t)︸ ︷︷ ︸

present

old history︷ ︸︸ ︷

D(t− τ)

Over a dissipative time scale τ =

τK Kolmogorov

1/√

Tr(2S2) Local

Eulerian frame

x(t)

Test Volume

C(t0)

x(

t0︷ ︸︸ ︷

t− τ)

C(t0 + τ)

= cτ (t)

with dτ (t) =

t∏

t−τ

eA(ξ)dξ ≈ e∫ tt−τ A(ξ)dξ

≈ eτA(t)

Recent deformation

Let cτ the stationary “Cauchy-Green" Tensor

cτ = dτdTτ

See Chevillard-Meneveau 06Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.19/30

Page 20: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

A Stochastic model for the velocity gradient tensor

Chevillard-Meneveau, Physical Review Letters 97, 174501 (2 006)

dA =

−A2

︸ ︷︷ ︸

Self-stretching

+

Pressure Hessian︷ ︸︸ ︷

c−1τ

Tr(c−1τ )

Tr(A2) −Tr(c−1

τ )

3TA

︸ ︷︷ ︸

Viscous

dt+

Forcing︷︸︸︷

dW

• Simplest white-in-time Gaussian forcing→ Tracefree-Isotropic-Homogeneous-Unit variance

• Explicit Reynolds number Re dependence when τ = τK

• Fluctuating (Local) dissipative time scale τ = Γ(Re)/√

Tr(2S2)

Re effects →

Isotropization of Pressure HessianWeakening Viscous term

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.20/30

Page 21: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Prediction of Intermittency (I): Deformation of PDFs

Chevillard & Meneveau, C.R. Mécanique 335, 187 (2007).

−5 0 5

−2

0

2

4

6

8

Re

A11

log

10P

Longitudinal

−5 0 5A

12

Transverseτ = τK

• Continuous deformation ↔Intermittency

• At high Re → Not realistic

−5 0 5

−2

0

2

4

6

8

Re

A11

log

10P

Longitudinal

−5 0 5A

12

Transverseτ = Γ(Re)/

Tr(2S2)

• Continuous deformation ↔Intermittency

• Very realistic but Γ > Γc forregularization

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.21/30

Page 22: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Prediction of Intermittency (II): Relative scalings

- - (K41 Monofractal ) and — Nelkin’s Multifractal predictions (Lognormal → c2)

0 1 2 3

0

2

4

6

8

10 (a)

p=3

p=4

p=5

p=6

S

ln<(A11

)2>

ln<

|A

11|

p>

1 2 3

2

4

6

8

10

12

14(b)

p=3

p=4

p=5

p=6

ln<(A12

)2>

ln<

|A

12|

p>

τ = τK

• c2Long ≈ 0.025 → µ ≈ 0.22

• c2Trans ≈ 0.040

• Skewness ≈ −0.35 → −0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0

−0.5

0

0.5

1

1.5

2

2.5

3 (a)

p=3

p=4

p=5

p=6

S

ln<(A11

)2>

ln<

|A

11|

p>

0.2 0.3 0.4 0.5 0.6 0.7

1

2

3

4

5

6

(b)

p=3

p=4

p=5

p=6

ln<(A12

)2>

ln<

|A

12|

p>

τ = Γ(Re)/√

Tr(2S2)

• c2Long ≈ 0.025

• c2Trans ≈ 0.045

• Skewness ≈ −0.35 → −0.5

⇒ Robustness (Universality)Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.22/30

Page 23: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Prediction of Intermittency (III): Relative scalings of Measures

- - (K41) and — Nelkin-Meneveau’s Multifractal predictions (Lognormal → µ)

A =

Deformation︷︸︸︷

S + Ω︸︷︷︸

Rotation

Dissipation ǫ = Tr(S2) → µǫ

Enstrophy ζ = −Tr(Ω2) → µζ

Pseudodissipation ϕ = Tr(AAT ) → µϕ

2 3 4

5

10

15

20

p=2

p=3

p=4

ln<E>

ln<

Ep>

Dissipation

2 3 4

p=2

p=3

p=4

ln<E>

Enstrophy

2 3 4

p=2

p=3

p=4

ln<E/2>

Pseudodissipation

Conclusions :

Same intermittency︷ ︸︸ ︷

µǫ = µζ = µϕ = µ ≈ 0.25 ≈ cLong2 × 9︸ ︷︷ ︸

Refined Similarity HypothesisLaurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.23/30

Page 24: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

DNS comparisons (I)

• DNS 2563: Rλ = 150

• Model : τK/T = 0.1 (Consistent with Yeung et al. JoT 06)

0 10

1

2

3

4

MinIntMax

cos(ω,λi)

P

DNS

0 1

cos(ω,λi)

Model sgfqdgfdgfdgdsgfqdgfdgfdgd

Alignment of vorticity with eigenvectors ofstrain S

→ Preferential alignment

−1 0 10

1

2

s*

P

DNS

−1 0 1

s*

Model sgfqdgfdgfdgdsgfqdgfdgfdgd

PDF of rate of Strain s∗:

s∗ = −3√

6αβγ

(α2+β2+γ2)3/2

→ Preferential axisymmetric expansion

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.24/30

Page 25: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

DNS comparisons (II)

Joint probability of R and Q

−1 0 1−1

0

1

R*

Q*

DNS

(a)

−1 0 1

R*

Model

(b)

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.25/30

Page 26: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

DNS comparisons (III)

Focussing on Enstrophy-Dissipation dominated regions (see Chertkov et al. 99):

Q = − 12

Tr(A2) = 14

Enstrophy︷︸︸︷

|ω|2 − 12

Dissipation︷ ︸︸ ︷

Tr(S2)

−1

0

1

Q*

DNS

(a)

Model

En

strop

hy

(b)

−1 0 1−1

0

1

R*

Q*

(c)

−1 0 1

R*

Dissip

atio

n(d)

Conditional average:

〈|ω|2|R,Q〉P(R,Q)

〈Tr(S2)|R,Q〉P(R,Q)

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.26/30

Page 27: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

DNS comparisons (IV)

R = − 13

Tr(A3) = − 14

Enstrophy Production︷ ︸︸ ︷

ωiSijωj − 13

Strain Skewness︷ ︸︸ ︷

Tr(S3)

−1

0

100.1

0.3

1

Q*

DNS

(a)

Model

Stra

in S

kew

ness

(b)

−1

0

100.3

0.6−0.02

Q*

(c)

En

strop

hy P

rod

uctio

n

(d)

−1 0 1−1

0

10

0.3

0.6

−0.02

R*

Q*

(e)

−1 0 1

R*

Tra

nsfe

r

(f)

Conditional average (Chertkov et al. 99):

〈−Tr(S3)|R,Q〉P(R,Q)

〈ωiSijωj |R,Q〉P(R,Q)

〈−Tr(AT A2)|R,Q〉P(R,Q)

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.27/30

Page 28: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

DNS comparisons (V): Focussing on Pressure Hessian and Viscous effects

−1

−0.5

0

0.5

1Q

*DNS

(a)

Model

Restricte

d E

ule

r

(b)

−1

−0.5

0

0.5

1

Q*

(c) Pre

ssure

Hessia

n

(d)

−1

−0.5

0

0.5

1

Q*

(e)

Visco

us

(f)

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

R*

Q*

(g)

−1 −0.5 0 0.5 1

↑ 0.2R*

Tota

l

(h)

Cond. average (van der Bos et al. 02):

⟨(

dR/dt

dQ/dt

)

RE

∣∣∣∣∣R,Q

P(R,Q)

⟨(

dR/dt

dQ/dt

)

PH

∣∣∣∣∣R,Q

P(R,Q)

⟨(

dR/dt

dQ/dt

)

Viscous

∣∣∣∣∣R,Q

P(R,Q)

⟨(

dR/dt

dQ/dt

)

Total

∣∣∣∣∣R,Q

P(R,Q)

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.28/30

Page 29: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Alignment of Vorticity with Pressure Hessian eigenvectors

Euler equations︷ ︸︸ ︷

Ohkitani (93), Gibbon et al. (97, 06, 07) ⇒

dωidt

= Sijωj Vorticity strechingd2ωidt2

= −P ijωj Ertel’s Theorem (42)

0 10

1

2

3

cos θ

PDNS

(a)

0 1

cos θ

Model

(b)

Alignments with "intermediate" eigenvector reproducedAlignments with "smallest" eigenvector NOT reproduced

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.29/30

Page 30: Lagrangian Dynamics and Statistical Geometry in Turbulencesimonm/lms-epsrc_short_course_2011/PresentEdinburgh.pdf · Lagrangian Dynamics and Statistical Geometry in Turbulence...and

Conclusions

• A

8 independent ODEs dA/dt=−A2−P+ν∆A︷ ︸︸ ︷

new stationary stochastic model for A including closures for• Pressure Hessian P• Velocity gradient Laplacian ν∆A

→ Physics of Recent deformation

• Well-known properties of turbulence (vorticity alignments, RQ-plane, skewness)well reproduced. Discrepancies in Enstrophy dominated regions.

• Prediction of Intermittency• quantitative agreement with

standard data• Transverse more intermittent

than Longitudinal• Dissipation and Enstrophy

scale the same0 2 4 6

0

0.5

1

1.5

2

Exp. Long.

Exp. Trans.

Mod. Pred. Long.

Mod. Pred. Trans.

She−Leveque

pζ p

Perspectives

Improving rotation -vorticity stretching dominated regionsReaching very high Re (see Biferale et al., PRL 98, 214501 (2007).)Modeling Subgrid -scale stress tensor (See Chevillard, Li, Eyink, Meneveau 07)

Laurent Chevillard, Laboratoire de Physique de l’ENS Lyon, France – p.30/30