lagrangian statistics of 3d mhd convection - ens-lyon.fr filelagrangian statistics of 3d mhd...

14
Lagrangian Statistics of 3D MHD Convection J. Pratt, W.-C. M¨ uller Boussinesq Simulation Lagrangian simulation Lagrangian Statistics of 3D MHD Convection J. Pratt, W.-C. M¨ uller March 1, 2011

Upload: vonhan

Post on 12-Aug-2019

220 views

Category:

Documents


0 download

TRANSCRIPT

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Lagrangian Statisticsof 3D MHD Convection

J. Pratt, W.-C. Muller

March 1, 2011

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Our approach to the Dynamo Problem

dynamo action: amplification of magnetic fields byturbulent flows, generation of large scale structures

collaboration with the group of Schussler et al. whosimulate solar convection (MURaM)

detailed treatment of turbulence: simulation of Boussinesqmagnetoconvection

flows not dominated by boundary conditions:pseudo-Rayleigh-Benard, fully periodic, no kz = 0 modes

Lagrangian particle simulation

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Boussinesq MHD Convection Equations

In Fourier space the non-dimensionalized Boussinesq MHDconvection equations, solved by pseudo-spectral calculation:(d

dt+ νk2

)ωk = ik × [v × ω + (∇× b)× b]

k+ ikθk × g(

d

dt+ ηk2

)bk = ik × [v × b]

k(d

dt+ κk2

)θk = − [v × ikθ]

k+ (vz)k

vk =ik

k2× ωk , ∇ · v = 0 , ∇ · b = 0

Convective motion defines the characteristic length and timescales: L = T∗/∇T0, tb = 1√

αg|∇T0|

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Physically realistic parameters

Re is limited by grid size.

Resolving the different numerical scales remains achallenge for the field of magnetoconvection simulation.

in convection zone MHD conv. sim.

Re ∼(Llarge

Lsmall

)4/31013 2 · 103 - 9 · 103

Rem = Re ν/η 1011 3 · 103 - 1.8 · 104

Pe = Re ν/κ 1013- 1014 2 · 103 - 9 · 103

Pr = ν/κ 10−5-10−7 1

PrM = ν/η 10−1-10−7 0.5 -2

Ra = αg∆TL30/νκ 1023 2.5 · 105 - 5.0 · 105

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Steady-state MHD convectionsustained by dynamo at resolution 5123

Lagrangian particle simulation during steady-state plasma convection

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Lagrangian statistics

Sawmill and Yeung (1994) hydrodynamic turbulence,Schumacher (2008) hydrodynamic convection,Busse-Muller (2007) MHD turbulence

Lagrangian studies follow single particles (or pairs ofparticles) and examine how they diffuse (or separate).

tetrads: anchor particle + three particles separated fromthe anchor in each of the three directions.

anchor particles distributed on deformed cubic grid,665500 particles total

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Lagrangian statistics

t/tb

95 100 105 110 115

24

68

12

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Ev

EB

ET

Particles are launched and followed during steady-stateplasma convection.

The highly variable nature of the convection drive causes afluctuation in global energy.

Extensive averaging of internal data blocks is necessary toreduce statistical noise.

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Order-n method for averaging overinternal data blocks

Dubbeldam et al. A new perspective on the order-nalgorithm for computing correlation functions. MolecularSimulation, Vol. 35, No. 12. (2009), pp. 1084-1097.

Several hundred ‘windows’ are necessary to get reasonablestatistical convergence.

Averaging over internal data blocks is only possible forsingle-particle Lagrangian statistics.

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Lagrangian Velocity Autocorrelations

We look at the VACF for clarification of diffusion/dispersionbehaviors, particularly to describe ballistic and diffusive regimes.The VACF 〈v(0)v(t)〉 has a differential relation to the diffusion:

d

dt〈dr(0)dr(t)〉 = 2

∫ t

0〈v(0)v(τ)〉dτ (1)

the visualization of relaxation of fluctuations over longtimes and distances.

for Brownian motion 〈v(t)v(0)〉 ∼ 〈v(0)2〉e−t/τc .

a single exponential is a good fit for hydrodynamicturbulence, for example: Yeung and Pope (1989), Satoand Yamamoto (1987)

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Lagrangian Velocity Autocorrelation

t/τη

ln <

v(t)

⋅v(0

)>/<

v2 >

vx

vy

vz

v

0 20 40 60 80

−3.

0−

2.5

−2.

0−

1.5

−1.

0−

0.5

0.0

1024 internal data blocks averaged

no change in sign in the VACF

for MHD convection, one exponential → poor fit

nonlinear least-squares-fit:〈v(t)v(0)〉 = a1 exp(−t/τ1) + a2 exp(−t/τ2)

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Lagrangian Diffusion

t/τη

(x[i]

−x[

0])^

2/N

(le

ngth

2 /η2 )

diff 1 diff 2tb~2

~1

xyz

1e−01 1e+00 1e+01 1e+02 1e+03

1e−

031e

+01

1e+

05

256 internal data blocks displayed

clear ballistic phase (slope 2), diffusive phase

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Lagrangian Acceleration Autocorrelation

t/τη

<a(

t)⋅a

(0)>

/<a2 >

ax

ay

az

a

0 2 4 6 8

0.0

0.4

0.8

classic recognizable shape1 2

1Figure 2 of R Kubo Rep. Prog. Phys. 29 255 1966.2Figure 8 of Yeung and Pope 1989, Fig 8 of Sawford 1990

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Lagrangian PDFs reflect intermittent behavior

vi

ln P

(vi)

sim. with rare events

averaged over 52 runs

−2 −1 0 1 2

−4

−3

−2

−1

0 vxvy

vz

vi

ln P

(vi)

sim. with rare events

averaged over 110 runs

−4 −2 0 2 4

−4

−3

−2

−1

0 vxvy

vz

Asymmetrical PDFs obtained when the averaging includes onlya small number of intermittent events associated with formationof large-scale magnetic structuresshape in extreme wings is typical; see isotropic turbulenceMordant et al. Phys. Rev. Lett. 2002 and hydrodynamicconvection Schumacher 2009

LagrangianStatistics

of 3D MHDConvection

J. Pratt,W.-C. Muller

BoussinesqSimulation

Lagrangiansimulation

Results and Summary

in diffusion: clear ballistic regime with length dependenton the system parameters (kinetic, magnetic, andtemperature dissipation)

two correlation times τ1 ∼ τη and τ2 ∼ tbacceleration autocorrelation functions that on average looksimilar to hydrodynamic turbulence.

Asymmetrical PDFs, obtained from averaging over only afew intermittant events, indicate formation of large-scalemagnetic structures in the flow