landscape architecture and scale - kaswanto's...

11
5/15/2016 1 Dr. Kaswanto Senin 15 Mei 2016 References: 1. Principles and Methods in Landscape Ecology Almo Farina 2. Landscape ecology principles in Landscape Architecture and Land use Planning Wenche E. Dramstad, James D. Olson, Richard T.T. Forman 3. International Journals PPT would be uploaded to the BLOG SCALE Outline: 1.Introduction 2. Fractal Dimension 3. Geographic Information Systems (GIS) 4. Remote Sensing (RS) 5. Case Studies CAPAIAN PEMBELAJARAN Mahasiswa mampu menjelaskan skala manajemen lanskap, dimensi metriks lanskap, dan konsep GIS & RS untuk manajemen lanskap yang berkelanjutan. The study of the landscape requires metrics but also additional tools like Databases, Spatial Statistics, Geographic Information Systems, Remote Sensing Techniques and Global Positioning Systems, that are used in many other circumstances. These methodologies are applied in geology, geography, navigation, agronomy, climatic economics and social sciences, forecasting, etc. At least 4 methodological approaches to study landscape metrics: 1) numerical analysis, 2) spatial analysis, 3) multiscalar analysis and 4) spatial modeling analysis.

Upload: votram

Post on 27-Apr-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

5/15/2016

1

Dr. Kaswanto Senin 15 Mei 2016

References: 1. Principles and Methods in

Landscape Ecology Almo Farina

2. Landscape ecology principles in Landscape Architecture and Land use Planning Wenche E. Dramstad, James D. Olson, Richard T.T. Forman

3. International Journals PPT would be uploaded to the BLOG

SCALE

Outline: 1.Introduction 2. Fractal Dimension 3. Geographic Information Systems (GIS) 4. Remote Sensing (RS) 5. Case Studies

CAPAIAN PEMBELAJARAN

Mahasiswa mampu menjelaskan skala manajemen lanskap, dimensi metriks lanskap, dan konsep GIS & RS untuk

manajemen lanskap yang berkelanjutan.

The study of the landscape requires metrics but also additional tools like Databases, Spatial Statistics, Geographic Information Systems, Remote Sensing Techniques and Global Positioning Systems, that are used in many other circumstances.

These methodologies are applied in geology, geography, navigation, agronomy, climatic economics and social sciences, forecasting, etc.

At least 4 methodological approaches to study landscape metrics: 1) numerical analysis, 2) spatial analysis, 3) multiscalar analysis and 4) spatial modeling analysis.

5/15/2016

2

Landscape analysis can be performed on at least at four levels of spatial resolution: individual, patch, mosaic and landscape

The measurement of distances can be done according a selection of possibilities: 1. from each patch to all the

adjacent neighbors of each patch.

2. from a patch to all others of the same group,

3. from each patch to the single nearest patch of a different group,

4. from a patch of a specific group to another patch of a specific group (ex. 9-4-9)

5/15/2016

3

Example of different complexity of a vegetation border expressed by the fractal dimension D, note that the increase of edges is equivalent to the increase of fractal dimension.

The GIS appears indispensable for most landscape investigations like: Land use change Vegetation patterning Animal distribution across the landscape Linking remote sensing with topography Modeling processes across the landscape

5/15/2016

4

5/15/2016

5

Spectral and spatial resolution for the

commonest civilian satellites:

AVHRR, MSS, TM and SPOT, and the

electromagnetic spectral response

curve for green vegetation

(Iverson et al. 1989).

www.gpsireland.ie/

www.engadget.com

5/15/2016

6

http://archaeology.about.com/

http://electronics.howstuffworks.com

1. Bird community ecology 2. Rectify aerial photographs 3. Low-altitude oblique photographs 4. mapping vegetation patches on the ground with an

accuracy of 5m after differential correction. 5. Etc.

1. AEZ

2. UHI

3. LUCC

4. Carbon Stock

5. Water Quality

Distribusi Klas Elevasi (atas kiri), Klas Kemiringan Lereng (atas kanan)

Existing Tataguna Lahan (tengah kiri), Jenis Tanah (tengah-kanan)

Bahaya Erosi (bawah kiri), dan usulan tata guna lahan ekologis (bawah kanan)

DAS Cianjur – Sub-DAS Citarum ( Saroinsong, Arifin, Gandasasmita & Takeuchi, 2003)

CASE STUDY 1: AEZ - DAS CIANJUR

BACK

5/15/2016

7

(Wang et al, 2012)

(Wang et al, 2012) BACK

CILIWUNG WATERSHED

40

(PPLH IPB 2004)

CILIWUNG WATERSHED

41 (PPLH IPB 2004)

42

Land Use Change on Spatial Pattern

5/15/2016

8

43

LANDSAT Satellite Images (1989, 2001 and 2009)

Land Use and Cover Classification

1. Type of land use pattern change

2. Forest Annual Rate Change

3. The Driving Factors of Change

• Altitude • Slope • Population density • Distance to major road • Distance to river • Distance to urban area • Soil drainage

• Appearance • Disappearance • Expansion • Annexation • Reduction • Division • Remain

Calculated with the formula proposed Puyravaud (2003):

Impact of land use changes on spatial pattern of landscape

𝑃 % 𝑦𝑒𝑎𝑟 = 100

𝑡2 − 𝑡1

𝑙𝑛𝐴2

𝐴1

1. Type of change of land use pattern (1989 vs. 2009)

44

Source: Someya et al. (2009)

The annual rate of change for forest was calculated with the formula proposed by Puyravaud (2003):

A2 and A1 = the forest cover areas at the end and the beginning, respectively, of the period being evaluated.

t1 and t2 = the numbers of years spanning on that period.

𝑃 % 𝑦𝑒𝑎𝑟 = 100

𝑡2 − 𝑡1𝑙𝑛

𝐴2

𝐴1

2. The Annual Rate of Change

𝑙𝑜𝑔 𝑃𝑖

1 −𝑃𝑖 = β

0+ β

1𝑋1,𝑖 + β

2𝑋2,𝑖 + ⋯+ β

n𝑋𝑛 ,𝑖

Pi = the probability of a grid cell for the occurrence of land use type. X’s = the driving factors. Βi = the coefficient of each driving factor in the logistic model.

3. The Driving Factors of Change

45

0

5

10

15

20

25

30

AP DA EX AN RD DI RE

Are

a o

f C

han

ge

(ha)

Th

ou

san

ds

Type of Change

Cisadane Watershed

1989

2009

0

2

4

6

8

10

12

AP DA EX AN RD DI RE

Are

a o

f C

han

ge

(ha)

Th

ou

san

ds

Type of Change

Ciliwung Watershed

1989

2009

0

10

20

30

40

50

60

70

AP DA EX AN RD DI RE

Are

a o

f C

han

ge

(ha)

Th

ou

san

ds

Type of Change

Cimandiri Watershed

1989

2009

0

10

20

30

40

50

60

AP DA EX AN RD DI RE

Are

a o

f C

han

ge

(ha)

Th

ou

san

ds

Type of Change

Cibuni Watershed

1989

2009

Results

AP: Appearance, DA: Disappearance, EP: Expansion, AN: Annexation, RD: Reduction, DI: Division, RM: Remain

Changes in the areas of the various types of forests pattern Cisadane Watershed

The Land Use Changes in the Northern Areas

Variables Northern

F G A B Altitude 0.0012 0.0054 - 0.0089 - 0.0074 Slope 0.0302 0.0323 - 0.0002 0.0098 Population density - 0.0003 - 0.0001 - 0.0007 - 0.0002 Distance to major road 0.0261 0.0098 0.0021 - Distance to river 0.0043 0.0001 0.0001 - Distance to urban area - 0.0584 - 0.0691 0.0021 - 0.0012 Soil drainage 0.0745 0.0689 - 0.0891 0.0025

Variables Southern

F G A B Altitude 0.0032 0.0010 - 0.0198 - 0.0074 Slope 0.0502 0.0356 - 0.0112 0.0058 Population density - 0.0653 - 0.0001 - 0.0001 - 0.0001 Distance to major road 0.0037 0.0043 0.0163 - Distance to river 0.0083 0.0163 0.0653 - Distance to urban area - 0.9834 - 0.0451 0.0001 - 0.0002 Soil drainage 0.0519 0.0889 - 0.0341 0.0001

Ciliwung Watershed

0

20

40

60

80

100

1989 2001 2009

Are

a

(Th

ou

san

d h

a)

Year

Forest Grass land Agriculture land Built-up area

0

20

40

60

1989 2001 2009

Are

a

(Th

ou

san

d h

a)

Year

Forest Grass land Agriculture land Built-up area

47

Cimandiri Watershed

Variables Southern

F G A B Altitude 0.0010 0.0098 0.0001 - 0.0274 Slope - 0.0282 0.0093 - 0.0072 0.0738 Population density - 0.0001 - 0.0001 - 0.0001 0.0051 Distance to major road 0.0056 0.0043 0.0025 - Distance to river 0.0098 0.0001 0.0002 - Distance to urban area - 0.0025 - 0.0001 0.0001 - 0.0009 Soil drainage 0.2378 0.7629 - 0.0091 - 0.0001

Variables Southern

F G A B Altitude 0.0012 0.0014 0.0001 0.0024 Slope 0.0302 0.0413 - 0.0112 0.0138 Population density - 0.0003 - 0.0001 - 0.0001 0.0091 Distance to major road 0.0098 0.0014 0.0021 - Distance to river 0.0024 0.0084 0.0174 - Distance to urban area - 0.0064 0.0001 0.0001 - 0.0292 Soil drainage 0.0519 0.8689 - 0.0641 0.0009

Cibuni Watershed

The Land Use Changes in the Southern Areas

0

50

100

150

1989 2001 2009

Are

a

(Th

ou

san

d h

a)

Year

Forest Grass land Agriculture land Built-up area

0

20

40

60

80

100

1989 2001 2009

Are

a

(Th

ou

san

d h

a)

Year

Forest Grass land Agriculture land Built-up area

48

BACK

5/15/2016

9

Carbon Stock Estimation

Carbon at Agro-forestry Landscapes • Biomass • Necromass • Soil Organic Matter

Above Ground • Trees Biomass • Understorey plants • Necromass • Litter Below Ground • Soil Organic Matter

CASE STUDY 4: Carbon Stock Estimation

Carbon Stock Estimation

50

Cisadane Ciliwung

Cimandiri Cibuni

50

Carbon Stock Estimation

Plants Biomass

Sampling plot in each land use

•Trees •Root •Understorey

Necromass Soil Organic Matter

•Wooden •Non-wooden

• Depth 0 -5, 5-15, &15-30 cm

LANDSAT image

LULC classification

Calculating C stock in each land use

Methods

51

THE SCALING UP Short Explanation

1 • Tree scale

• Crops scale

2 • Plot scale

• Quadrant scale

3 • Landscape scale

• Land use scale

4 • Watershed Scale

• Regional Scale

C ~ Plant

C ~ Plot

C ~ Land use

C ~ Watershed

52

Sampling Plot Procedure

Land use

Big Plot 20 x 100 m

Small Plot 5 x 40 m

Sub Plot 2 * (0.5 x 0.5 m)

Tree with dbh > 30 cm Tree with dbh < 30 cm Understorey and Litter

1 land utilization type 3 sampling plots.

1 watershed 16 type of land utilizations.

1 watershed 48 plots, in total 192 plots were measured.

Note: 0.5 m

0.5 m

0.5 m

0.5 m

53

Main Land Use Type No Land Utilization Type Code Description

Forest 1 Primary Forest PF Natural forest

2 Secondary Forest SF Replanted forest

3 Rubber Forest RF Dominated by Hevea brasiliensis plants

4 Albizia Forest AF Dominated by Paraserianthes falcataria plants

Grassland/bareland 5 Imperata IC Bareland covered by Imperata cylindrica

6 Cassava CS Dominated by Manihot esculenta cultivation

7 Grassland 1 GS1 Grassland with herbaceous plants

8 Grassland 2 GS2 Grassland with mixed grass species

Agriculture land 9 Tea plantation TP Tea (Camellia sinensis) cultivation

10 Cacao plantation CP Cacao (Theobroma cacao) cultivation

11 Vegetable Dryfield VD Highland vegetables, dryfield

12 Strachy Crops dryfield SD Mixed strachy crops, dryfield

13 Agroforestry 1 AF1 Agroforestry system dominated by coconut and/or bamboo species

14 Agroforestry 2 AF2 Agroforestry system dominated by mahogany and/or fruit trees species

15 Paddyfield 1 PF1 Paddy field local rice cultivar

16 Paddyfield 2 PF2 Paddy field with cultivar R-64

Land Utilization Types

54

5/15/2016

10

55

0

5

10

15

20

25

30

0

100

200

300

400

500

600

PF SF RF AF IC CS GS1 GS2 PT1 PT2 VD SD AF1 AF2 PD1 PD2

Are

a (h

a)

Th

ou

san

ds

Am

ou

nt

of

C S

tock

(M

g/h

a )

Land Use Types

Cisadane Watershed

0

5

10

15

20

25

30

0

100

200

300

400

500

600

PF SF RF AF IC CS GS1 GS2 PT1 PT2 VD SD AF1 AF2 PF1 PF2

Are

a (h

a)

Th

ou

san

ds

Am

ou

nt

of

C S

tock

(M

g/h

a)

Land Use Types

Ciliwung Watershed

PF SF RF AF IC CS GS1 GS2 PT1 PT2 VD SD AF1 AF2 PF1 PF2

Trees Understorey Necromass Litter Soil 0-5 cm Soil 5-15 cm Soil 5-15 cm Area

Results

The NAs

PF SF RF AF IC CS GS1 GS2 PT1 PT2 VD SD AF1 AF2 PF1 PF2

Trees Understorey Necromass Litter Soil 0-5 cm Soil 5-15 cm Soil 5-15 cm Area

0

10

20

30

40

50

60

0

100

200

300

400

500

600

PF SF RF AF IC CS GS1 GS2 PT1 PT2 VD SD AF1 AF2 PF1 PF2

Are

a (h

a)

Th

ou

san

ds

Am

ou

nt

of

C S

tock

(M

g/h

a)

Land Use Types

Cimandiri Watershed

0

10

20

30

40

50

60

0

100

200

300

400

500

600

PF SF RF AF IC CS GS1 GS2 PT1 PT2 VD SD AF1 AF2 PF1 PF2

Are

a (h

a)

Th

ou

san

ds

Am

ou

nt

of

C S

tock

(M

g/h

a)

Land Use Types

Cibuni Watershed

The SAs

BACK

Water Resources Management

CASE STUDY 5: Water Quality

Based on result from preliminary research, the water quality was measured through 11 parameters.

Those are (1) Dissolved Oxygen: DO, (2) Biological Oxygen Demand: BOD, (3) Chemical Oxygen Demand: COD, (4) Ammonium: NH4, (5) Nitrate: NO3, (6) Nitrite: NO2, (7) Phosphate: PO4, (8) Acidity: pH, (9) Alkalinity: OH-, (10) Bacteria Escherichia coli, and (11) General Bacteria - others than E. coli.

57

Down Stream

Middle Stream

Upper Stream

700 m asl

300 m asl

Village Samples

Water Samples: • 4 watersheds • 6 villages in each watershed • 4 locations in each village • 3 repetitions in a location

Total: 4 x 6 x 4 x 3 = 288 samples

Water Quality Samples Locations

58

Water Resources Management

59

11 Parameters: • DO • COD • BOD • Nitrite

• Nitrate

• Ammonium

• Phosphate

• Alkalinity • Acidity • Escherichia coli • General Bacteria

Water Resources Management

Parameters Pi Normalization Factor (Ci)

100 90 80 70 60 50 40 30 20 10 0

DO 4.0 >7.5 >7 >6.5 >6 >5 >4 >3.5 >3 >2 1 <1

COD 3.0 <5 <10 <20 <30 <40 <50 <60 <80 <100 ≤150 >150

BOD 3.0 <0.5 <2 <3 <4 <5 <6 <8 <10 <12 ≤15 >15

NO2-N 2.0 <0.005 <0.008 <0.01 <0.04 <0.075 <0.1 <0.15 <0.2 <0.25 ≤0.5 >0.5

NO3-N 2.1 <0.5 <2 <4 <6 <8 <10 <15 <20 <40 ≤70 >70

NH4-N 3.0 <0.01 <0.05 0.1 <0.2 <0.3 <0.4 <0.5 <0.75 <1 ≤1.25 >1.25

PO4 1.1 <0.025 <0.05 <0.1 <0.2 <0.3 <0.5 <0.75 <1 <1.5 ≤2 >2

Alkalinity 1.7 <20 <40 <60 <80 <100 <120 <140 <160 <180 ≤200 >200

pH 1.9 7 6.9-7.5 6.7-7.8 6.5-8.3 6.2-8.7 5.8-9.0 5.5-9.5 5.0-10.0 4.5-10.5 4.0-11.5 <4.0;>11.5

Escherichia coli 3.0 <50 <500 <1000 <2000 <3000 <4000 <5000 <7000 <10000 ≤14000 >14000

Fecal Coliform 3.6 <50 <500 <1000 <2000 <3000 <4000 <5000 <7000 <10000 ≤14000 >14000

WQI formula proposed by Rodriguez de Bascaroan (Pesce & Wunderlin, 2000)

*All values are in mg/l, except for pH (pH unit) and bacteria (MPN/100ml).

5/15/2016

11

Water Resources Management

61

Excellent

Good

Medium

Bad

Very Bad

Results

Classification of WQI in stream level and water sample location. All WQI values are situated at “good” and “medium” levels. The different letter show the mean difference is significant at the 0.05 level.

a a a a b

c d

Water Resources Management

Among four locations, the highest to the lowest WQI values are springs, ponds, paddy fields and rivers, respectively.

Springs

Rivers

Ponds

Paddy Fields

1 Village

WQ Sample Location

BACK

63

Landscape Pattern Analysis

Pekarangan Management

Water Quality Analysis

Carbon in Pekarangan

LCS in Pekarangan

Carbon Stock Estimation

Carbon Stock at Macro Scale

The Driving Forces

Water Resources Management

Sustainable of Water Management

Land Cover Classification

Designing Agro-forestry Landscapes

Landscape Ecology •Structure •Function •Dynamics •Culture

Conservation Area

Carbon Stock in Watershed

Carbon Stock at Micro Scale