landscape degradation and restoration an animal’s...

97
Landscape degradation and restoration an animal’s perspective Hans Esselink Peter Beusink Arnold van den Burg Gert-Jan van Duinen Hein van Kleef Marijn Nijssen Toos van Noordwijk Wilco Verberk Department of Animal Ecology and Ecophysiology

Upload: phamkhue

Post on 26-Aug-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Landscape degradation and restoration an animal’s perspective

Hans EsselinkPeter BeusinkArnold van den BurgGert-Jan van DuinenHein van KleefMarijn NijssenToos van NoordwijkWilco Verberk

Department of Animal Ecology and Ecophysiology

Overview

Degradation

Fauna

Bottlenecks

Restoration

Conclusions

Degradation

Fauna

Bottlenecks

Restoration

Conclusions

EstoniaThe Netherlands

Degradation

Degradation

AcidificationEutrophicationDesiccation

Degradation

Degradation of Site conditions

Local conditions(microscale ~m2)

Degradation

Landscape conditions(mesoscale: ~ha macroscale: ~km2)

HomogenisationFragmentation

Chronic

Large scale

AcidificationEutrophicationDesiccation

Degradation of site conditions

Site conditions(microscale ~m2)

Degradation

Skagen, DenmarkAmeland, The Netherlands

DegradationNitrogen deposition along the coast

Keibu bay, NW Estonia Korshage, NE Denmark

DegradationNitrogen deposition along the coast

Hanstolm, Denmark

Hanstholm, Denmark

1991

2001

Degradation

Landscape conditions(mesoscale: ~ha macroscale: ~km2)

HomogenisationFragmentation

Chronic

Large scale

AcidificationEutrophicationDesiccation

Degradation of site conditions

Site conditions(microscale ~m2)

Degradation of landscape

Degradation

Fauna

Degradation

Fauna

Bottlenecks

Restoration

Conclusions

Doel:Doel:behoud/herstel van ecosysteembehoud/herstel van ecosysteem

Biogeochemistry

&Hydrology

VegetationVegetation

FaunaFauna

High biodiversity – many different relationships with the environment

heterogeneous landscape

Importance of heterogeneity and connectivity

1. additive

2. synergistic2a gradients

2b multihabitat use

homogenous landscape

Multihabitat use

Alpine newt (Mesotriton alpestris)

heterogeneous landscape

Importance of heterogeneity and connectivity

1. additive

2. synergistic2a gradients

2b multihabitat use

homogenous landscape

2c spreading of risk

Spreading of risk

Optimal: shallow waterDrought: survival in suboptimalRecolonisation of optimal

- reproduce- pupate

- food- shelter

Importance of landscape connectivity and heterogeneit y!

Fauna

Ready flyerGood swimmerLongevity >1 yearSelective oviposition

# watertypes# configuration

‘match’ between fauna and landscape

Species use landscape specifically

Fauna

Degradation

Landscape conditions(mesoscale: ~ha macroscale: ~km2)

HomogenisationFragmentation

Chronic

Large scale

AcidificationEutrophicationDesiccation

Degradation of site conditions

Site conditions(microscale ~m2)

Degradation of landscape

Bottlenecks: Decline of

fauna diversity

Fauna

Bottlenecks

Degradation

Fauna

Bottlenecks

Restoration

Conclusions

Red-backed shrike

Sparrowhawk

Ants in chalk grasslands

Example: Red backed Shrike •• seasonalseasonal migratingmigrating•• single single preyprey

Red backed Shrike •• seasonalseasonal migratingmigrating•• single single preyprey•• largelarge insectsinsects & & smallsmall vertebratesvertebrates

hymenoptera

odonata

lepidoptera

orthopteradiptera

larvae

coleopteraunknown

other

vertebrata

araneae

DietDiet compositioncomposition of the of the RedRed--backedbacked ShrikeShrike

Status of Red-Backed Shrike in Europe Tucker & Heath (1994)

The Red-backed Shrike ( Lanius collurio)

Population changes in the Netherlands

0

5000

10000

15000

1850 1900 1950 2000

(source: Hustings & Bekhuis 1993)

1965 1998

Decline of Red-Backed Shrike

in Dutch coastal dunes

stable

decreasing

almost disappeared

disappeared

Hanstolm

Skagen

The Netherlands

Belgium

France

Germany

Denmark

UK

Foodweb Hypothesis

timepr

ey a

vaila

bilit

y

time

prey

ava

ilab

ility

Species ASpecies BSpecies CCumulativeMinimum

DegradedDegraded

Last Last DutchDutch pairs in pairs in 1998/1999 1998/1999 onon Ameland, Ameland,

NetherlandsNetherlands

IntactIntact

VitalVital populationpopulation

in Skagen, Denmarkin Skagen, Denmark

0

1000

2000

3000

4000

5000

0 2 4 6 8 10 12 14

age of nestlings (days)

cons

umpt

ion

per n

estli

ng p

er

day

(mg

DW

)Ameland nestlings'97 (3)'98 (3 > 1)SkagenSK1 (5)SK12 (6)SK16 (4)

††

CONSUMPTION BY NESTLINGS

0

1000

2000

3000

4000

5000

0 2 4 6 8 10 12 14

age of nestlings (days)

cons

umpt

ion

per n

estli

ng p

er

day

(mg

DW

)Ameland nestlings'97 (3)'98 (3 > 1)SkagenSK1 (5)SK12 (6)SK16 (4)

††

CONSUMPTION BY NESTLINGS

0

25

50

75

0-5 5-10 10-15 15-20 > 20

prey length [classes in mm]

% o

f die

t

Ameland '97-'98Ameland '89Terschelling '94-'95Skagen '01Skagen '02

PREY LENGHT IN ADULT DIET

% o

f die

t

0

25

50

75

0-5 5-10 10-15 15-20 > 20

prey length [classes in mm]

% o

f die

t

Ameland '97-'98Ameland '89Terschelling '94-'95Skagen '01Skagen '02

PREY LENGHT IN ADULT DIET

% o

f die

t

Ameland1989Ameland

1997

Skagen2002

Ameland ‘89 Ameland‘97-‘98

Terschelling‘94-‘95

Skagen ‘02

Beetles 79,0 34,5 25,7 56,1Scarabids 49,5 3,9 7,0 46,5Carabids 5,5 7,9 2,6 3,3Weevils 6,9 8,3 9,2 1,7Other 17.1 12.5 6.9 4.6

Hymenoptera 17,1 55,9 62,6 30,8Bumblebees 11,9 4,0 33,4 14,4Ants 2,0 44,9 19,3 7,0Other 3,2 7,1 10,0 9,4

Other 3,9 9,5 11,7 13,1

n. pellets 115 35 63 52n. ind. prey 1381 864 629 458

Diet composition

-- ChaferChafer ((AnomalaAnomala dubiadubia))-- SandSand LizzardLizzard ((LacertaLacerta agilisagilis))-- WarthbiterWarthbiter ((DecticusDecticus verrucivorisverrucivoris))

Important prey species

Life cycle Anomala dubia

Anomala 2 years

augseptoct

nov

dec

jan

feb

mar apr

jul

jun

may egg

L1

L2

L3

pupal

adult

(Rittershaus 1927)

July - May

May - June

June - July

2 years

Density of larvae: intact Danish dunes

0

2

4

6

8

10

Dynamic Lessdynamic

Stable

# la

rvae

/m3

L2

L3

September 2003n=1

0

50

100

150

200

250

300

350

Dynamic Less dynamic StableR

oot

bio

mas

s (g

ram

/m3

)

n=5

0

2

4

6

8

10

Dynamic Lessdynamic

Stable#

larv

ae/m

3

L2

L3

Pupae

June/July 2004n=5

emerged

Highest density of larvae in dynamic dunesHigh vital root biomass in dynamic dunes

Density of larvae & Marram grass

Marram stage

0

1

2

3

4

5

pioneer relict large vital

# la

rvae

/m3

n= 6 3 6 17Root biomass

0

1

2

3

4

5

no-old little vital#

larv

ae/m

3

n= 7 17 11

Highest density of larvae if Marram shows vital growth

* *

- increased vegetation succession

- sand, organic layer (detrivores)

- changes in microclimate (soil fauna)

- changes in plants (herbivores & nectivores)

- lower heterogeneity and prey availability (carnivores)

Degradation causes ‘mismatch’ at different scales

Bottlenecks

Example:

Micronutriënts shortage in Sparrow Hawk (Accipiter nisus)

* Aminoacids

* Minerals

* Vitamins

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 20020,0

0,2

0,4

0,6

0,8

1,0

Rijk, 5 km2

/ Rich

2 / Rich

2 / Poor

2 / Poor

Rijk, 18 km

Arm, 18.5 km

Arm, 21 km

Tijd (jaren) / Time (years)

Example: micronutrient deficiency

Time

number of days

(range)

Body weight

+/- SD

(N)

Muscle size

+/- SD

(N)

before laying -24.4 (-8 - -45) 274.9 +/- 21.7

(14)

7.64 +/- 1.55

(11)

after laying 22.3 (10-37) 304.6 +/- 18.5

(40)

5.11 +/- 1.54

(30)

Wilcoxon p<0.0002 p<0.0002

Change in mass and breast musclesize in breeding females

Example: micronutrient deficiency

year

2000 2001 2002 2003 2004

N 10 6 14 14 14

breast muscle (mm) average 13.9 10.1 7.6 7.5 7.0

SD 1.4 1.2 1.3 1.1 0.9

body weight (g) average 308 311 300 309 307

SD 19.8 19.2 16.7 18.4 18.4

Example: micronutrient deficiency

Deficiencies in micronutrients decreases reproductive output.

Deficiency in vitamin B2 and carrier protein

Nitrogen & acid

deposition

Below ground

Low mineral availability

High nitrogen availability

Uptake inbalance

minerals and nitrogen

Disturbedproduction of micronutrients

(aminoacids)

Above ground

Example: micronutrient deficiency

Example: Ants in chalk grasslands

Identifing the main bottlenecks Field survey chalk grasslands(’05-’06)

Hypotheses

• Fragmentation?• Microclimate?• Disturbance through

management?

Ants as indicators

• 38 species grouped in 7 life history tactics

• Temperature (time constrainted development)

• Fragmentation (limited dispersal)

GE+BE NL

Fragmentation

Microclimate

• Enhance microclimatic conditions:

Grazing and repeated mowing (not too late)

• Counter fragmentation:

stepping stones and expansion of current reserves

Restoration

Degradation

Fauna

Bottlenecks

Restoration

Recommendations

Effects

Bogs

Softwater pools

moorland

Restoration

AcidificationEutrophicationDesiccation

Degradation of site conditions

Site conditions(microscale ~m2)

Bottlenecks: Decline of

fauna diversity

MowingSod-cuttingRewetting…

Restoration

Restoration

AcidificationEutrophicationDesiccation

Site conditions(microscale ~m2)

MowingSod-cuttingRewetting…

Restoration of site conditions

Restoration

Restoration

LargescaledFast

Intensive

AcidificationEutrophicationDesiccation

Restoration of site conditions

Site conditions(microscale ~m2)

IntenseLarge scale

Landscape conditions(mesoscale: ~ha macroscale: ~km2)

HomogenisationFragmentation

Restoration

HomogenisationFragmentation

Restoration

AcidificationEutrophicationDesiccation

Restoration of site conditions

Site conditions(microscale ~m2)

IntenseLarge scale

Landscape conditions(mesoscale: ~ha macroscale: ~km2)

HomogenisationFragmentation

furtherdegradation of Landscape?

Bottlenecks: Decline of

fauna diversity

Restoration

Restoration

Example: rewetting of bog landscapes

Männikjärve, Estonia

Bargerveen, The Netherlands

Large variationFine scale mozaicGradual transitions

Relation between landscape heterogeneity and fauna diversity

Case study Korenburgerveen

How does rewetting affect heterogeneity?

Heterogeneous landscape

After restoration

Less variation in watertypesLess transitions between habitats

Cumulatieve species richness

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

number of samples

cum

ula

tive

spec

ies

num

ber

Compartment 1 (before)Compartment 1 (after)Compartment 2 (before)Compartment 2 (after)

WHAT ARE THE EFFECTS OF (LARGE SCALE) RESTORATION?

ON MACROFAUNA ASSEMBLAGES IN RAISED BOGSON MACROFAUNA ASSEMBLAGES IN RAISED BOGS

Macro Macro invertebrateinvertebrate samples samples fromfrom::

1. Intact 1. Intact raisedraised bogsbogs in in EstoniaEstonia2. 2. RewettedRewetted sites in the sites in the NetherlandsNetherlands

3. 3. NonNon--rewettedrewetted ((remnantremnant) sites in the ) sites in the NetherlandsNetherlands

RewettedRewetted vsvs RemnantRemnantResultsResults in more of the in more of the samesame

Correspondence analysis

Ca

pH

PO4

restoration

floating vegetation

EC

depth

Fe

turbidity

-2.5

0

2.5

-2.5 0 2.5

no measures takenrewetting mesures taken

0

20

40

60

80

100

120

140

0 10 20 30

number of samples

restoration

remnantCum

ula

tive

num

bero

f spe

cies

RewettedRewetted vsvs RemnantRemnantSpecies Species richnessrichness

rewetted

remnant

0

2

4

6

8

10

12

14

16

0 10 20 30

Number of samples

restoration

remnant

Cum

. No

. Rar

e ch

arac

teris

ticsp

ecie

s

RewettedRewetted vsvs RemnantRemnantRare, Rare, characteristiccharacteristic speciesspecies

rewetted

remnant

-3

0

3

-4 0 4

remnantrestorationintact

remnantrestoredintact

Remnant sites still contain communities from intact bogs

RewettedRewetted,, RemnantRemnant && IntactIntact

-3

0

3

-4 0 4

remnantrestorationintact

remnantrestoredintact

Restoration does not lead to communities of intact bogs

RewettedRewetted,, RemnantRemnant && IntactIntact

-3

0

3

-4 0 4

remnantrestorationintact

remnantrestoredintact

As a result of restoration part of the remaining intact bog communities disappears

RewettedRewetted,, RemnantRemnant && IntactIntact

-3

0

3

-4 0 4

remnantrestorationintact

remnantrestoredintact

Species from the most ombrotrophic parts of intact bogsare still missing in the Netherlands

RewettedRewetted,, RemnantRemnant && IntactIntact

Example: Restoration measures in shallow soft water lakes

• increase CO2• toxicity

• accumulation of organic sludge

• anaërobic conditions

• increase N, P

• turbidity algae

• accumulation of organic sludge

• anaërobic conditions

• anaërobie => aërobie

• increased decomposition

• increased nutrientavailability, acidity

• decrease groundwater

Change in

characteristic

conditions

+

Special

adaptations

superfluous

}

Consequences

Populations decrease and extirpate Fot

o: M

. Dor

enbo

sch

Removal of organic sludge and recolonisation

2 options:

Present & persist

or

recolonise

Execution phase (1 week)

Recovery phase (1 year)

Execution phase

0

20

40

60

80

100O

ligo

chae

ta

Chi

rono

mid

ae

Gas

tropo

da

Biv

alvi

a

Co

leo

pte

ra

Odo

nata

Eph

em

ero

pte

ra

He

tero

pte

ra

Hyd

raca

rnia

Cru

sta

cea

Cha

obo

ridae

De

nsity

decl

ine

(%)

Mobility

0.00

0.02

0.04

0.06

0.08

0.10

0.12

sprawler digger climber crawler swimmer

Type of locomotion

-Lo

g (

dens

ityde

clin

e)

a a aa

b

Execution phase

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Denisty before

Per

cent

age

reco

vere

d

Effect of density

0-2 2-5 5-10 10-25 25-50 50-100 >100

P = 0.013

Execution phase

Recovery-phase

Correspondence analysis on species traits

Accounting for effects of execution phase

Biological species traits

F3

F2

F1

F4E3

E1

E2A1

A2

K3

K4

K2

K5

K6

K1H3

H1

H4

H5

H6

H2

B1

B2

B3

G1

G2

J4J8

J3

J1

J2

J7

I4

I5

I6

I7

I1

I3

I2 New

Disappeared

Relatively stable

Decreased

Increased

Dissapeared Decreased Stabile Increased NewDiet

Animal X XPlants XDetritus X X

HabitatVegetation XBare sand XAnaerobic sediment XHost XAerobic organic matter XIndifferent X

Parental careEggs fixed terrestrial XEggs in/on vegetation XEggs on adult XEggs on surface XOvovivipary XEggs on solid substraat X

Prefered life historySemivoltine XUnivoltine XMultivoltine X

ReproductionSexually XAsexually X

Combined effects

Multiple filters

Abundant no Vulnerable yes Habitat:

vegetationno SAFE!

yes no yes yes no

Mobileyes

Carnivourno Ovipositionering in

vegetatie

Large changes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

IJsbaan Verwolde Grenspoel Wijnjeterperschar

Rel

atie

ve a

anta

l so

orte

n

Toename >= 1000%

Toename [100, 1000%>

Toename [0, 100%>

Afname <0,50%]

Afname <50,95%]

Afname <95,100%]

Gecombined effecten

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Het

ero

pter

a

Cru

stac

ea

Mol

lusc

a

Col

eopt

era

Hir

udi

nea

Odo

nat

a

Eph

em

ero

pter

a

Ara

chni

dae

Cha

obo

rida

e

Tric

hopt

era

Dix

idae

Meg

alo

pter

a

Hyd

raca

rin

a

Chi

rono

mid

ae

Olig

ocha

eta

Mobiliteit

Carnivorie

Ovipositionering

Habitat

Niet beïnvloed

26 40 6 16 4 1 4 8 2 1 20 24 691

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Verdwenen Gebleven

Non characteristic

Characteristic

Re

latie

ve a

anta

l soo

rte

n

Persistence of characteristic species

Or…

Recolonisation

fragmentation

< 1950 1983-89

Gradients are refugia for characteristic species

Somatochlora flavomaculata

Ixobrychus minutus

Utricularia intermedia

ExampleExample: : sodsod--cuttingcutting in moorlandin moorland

Alcon blue (Maculinea alcon)

ExampleExample: : smallsmall scalescalesodsodcuttingcutting

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1995 1996 1997 1998 1999 2000 2001 2002 2003

ExampleExample: : smallsmall scalescalesodsodcuttingcutting

Conclusions

Degradation

Fauna

Bottlenecks

Restoration

Conclusions

Conclusions

Species

Species traits: Capabilities and dependanciesMultiple Spatial scales

Landscapes

Configuration and habitat diversity:Possibilities and problemsSpatial and temporal heterogeneity

} Problem analysis:

Match & mismatch?Adress bottlenecks

Management recommendations

Ensure survival of relic populations (source for colonisation)- gradual transition from current situation to future situation

Ensure survival of relic populations (source for colonisation)- gradual transition from current situation to future situation

Conserve heterogeneity- internally and externally, relations at landscape level

(including all habitattypes and their transitions)- small scaled intensive (phased)- large scaled slow (reversible)

Management recommendations

Create heterogeneity- differential management- strengthen key processes

Ensure survival of relic populations (source for colonisation)- gradual transition from current situation to future situation

Conserve heterogeneity- internally and externally, relations at landscape level

(including all habitattypes and their transitions)- small scaled intensive (phased)- large scaled slow (reversible)

Management recommendations

Restoring faunal communitiesMatching species to changing landscapes

Thank you for your attention!

Questions?