lanthanides in organic synthesis - princeton university - home

12
He H Li Be B C N O F Ne Na K Mg Ca Al Si S P Cl Kr Sn Br I At Xe Rn Fr Rb Sr Cs Ba Ra Ar Sc Y Ti Zr Hf V Nb Ta Cr Mo W Mn Tc Ru Re Fe Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg Ga In Tl Ge Pb As Sb Bi Se Te Po La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Lanthanides in Organic Synthesis Heathcock / MacMillan Seminar Feb. 22, 2000 Tristan Lambert I. Properties of the lanthanides II. Lanthanide metals III. Divalent lanthanides IV. Trivalent lanthanides V. Tetravalent lanthanides VI. Enantioselective processes Reviews: Molander Chem. Rev. 1992, 92, 29 Imamoto, L a n t h a n i d e s i n O r g a n i c S y n t h e s i s, 1994. Oxidation States of the Lanthanides Most stable oxidation state of the lanthanides is +3 For dipositive lanthanides Sm 2+ (f 6 , nearly half - filled), Eu 2+ (f 7 , half-filled), and Yb 2+ (f 14 , filled) are known with relative stability in H 2 O being Ce 4+ (f 0 ) is the only tetrapositive lanthanide stable in water La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 5d 1 6s 2 4f 1 5d 1 6s 2 4f 3 6s 2 4f 4 6s 2 4f 6 6s 2 4f 5 6s 2 4f 7 6s 2 4f 9 6s 2 4f 10 6s 2 4f 11 6s 2 4f 12 6s 2 4f 13 6s 2 4f 14 6s 2 4f 7 5d 1 6s 2 4f 14 5d 1 6s 2 Ionization Energies for Lanthanides 0 1000 2000 3000 4000 5000 6000 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Th Yb Lu KJ/mol 4+ 3+ 2+ 1+ Ionization energies reflect relative energies of the 4f, 5d, 6s orbitals 6s electrons are removed first, hence first two ionization energies for all lanthanides are essentially the same Third ionization usually results from removal of an electron from the 5d orbital Fourth ionization energy reflects successive electron occupation of 4f orbitals Eu 2+ >> Yb 2+ >> Sm 2+ Rf Db Sg Bh Hs Mt

Upload: others

Post on 12-Sep-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lanthanides in Organic Synthesis - Princeton University - Home

HeH

Li Be B C N O F Ne

Na

K

Mg

Ca

Al Si SP Cl

Kr

Sn

Br

I

At

Xe

Rn

Fr

Rb Sr

Cs Ba

Ra

Ar

Sc

Y

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc Ru

Re

Fe

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

Ga

In

Tl

Ge

Pb

As

Sb

Bi

Se

Te

Po

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Lanthanides in Organic SynthesisHeathcock / MacMillan Seminar

Feb. 22, 2000

Tristan Lambert

I. Properties of the lanthanidesII. Lanthanide metalsIII. Divalent lanthanidesIV. Trivalent lanthanidesV. Tetravalent lanthanidesVI. Enantioselective processes

Reviews: Molander Chem. Rev. 1992, 92, 29

Imamoto, Lanthanides in Organic Synthesis, 1994.

Oxidation States of the Lanthanides

Most stable oxidation state of the lanthanides is +3

For dipositive lanthanides Sm2+ (f6, nearly half-filled), Eu2+ (f7, half-filled), and

Yb2+ (f14, filled) are known with relative stability in H2O being

Ce4+ (f0) is the only tetrapositive lanthanide stable in water

La

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

5d16s2

4f15d16s2

4f36s2

4f46s2

4f66s2

4f56s2

4f76s2

4f96s2

4f106s2

4f116s2

4f126s2

4f136s2

4f146s2

4f75d16s2

4f145d16s2

Ionization Energies for Lanthanides

0

1000

2000

3000

4000

5000

6000

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Th Yb Lu

KJ/

mol

4+

3+

2+

1+

Ionization energies reflect relative energies of the 4f, 5d, 6s

orbitals

6s electrons are removed first, hence first two ionization

energies for all lanthanides are essentially the same

Third ionization usually results from removal of an electron

from the 5d orbital

Fourth ionization energy reflects successive electron

occupation of 4f orbitals

Eu2+ >> Yb2+ >> Sm2+

Rf Db Sg Bh Hs Mt

Page 2: Lanthanides in Organic Synthesis - Princeton University - Home
Page 3: Lanthanides in Organic Synthesis - Princeton University - Home

OH Me OH

Sm(Hg), ICH2Cl

H

H

O

R

R1 R2

CH2

SmI

H

I

Me3C Me

OH

CH2I2

Sm

Me3C Me

OH

Me

OH

CH2I2

Sm

Me

OHMe3C Me3C

OH OHH

H

Me

Lanthanide Metals: Sm0

Cyclopropanation of Allylic Alcohols

THF, -78 oC to rt

98%

d.r. >200:1

d.r. >200:1

Exo: Endo

Sm / CH3CHI2

Et2Zn / CH3CHI2

5:1

1.6:1

Using samarium, only olefin with allylic hydroxyl group is cyclopropanated

Samarium offers enhanced diastereoselectivity over conventional reagents

99%

99%

EvansChem. Rev. 1993, 93, 1307.

Molander J. Org. Chem. 1989, 54, 3525.

Lanthanide Metals: Reductions

Dissolving Metal Reductions Using Yb

OMe

OMe

OMe

O1. Yb, NH3-THF-tBuOH

2. aq. NH4OH

80%

C3H7 C3H7

Yb, NH3-THF-tBuOH

85%

C3H7C3H7

Similar to Birch reduction with alkali metal, however avoids strongly basic hydroxide upon workup

White J. Org. Chem. 1978, 43, 4555.

Hydrogenation Using Lanthanide Alloys

S

CHOLaNi5H6

THF-MeOH

93%

S

OH

CHO LaNi5H6

THF-MeOH

95%

OH

Reduces alkynes, alkenes, aldehydes, ketones

nitriles, imines, and nitro compounds

Not poisoned by amino or halogen containing

compounds

Imamoto J. Org. Chem. 1987, 52, 5695.

Page 4: Lanthanides in Organic Synthesis - Princeton University - Home

O

MeO

MeO

OCH2OMe

H

SmI2

O

OCH2OMe

H

O

Me

OH

HMeMe

H

O

Me

H

HMeMe

HSmI2

C5H11 H

H COCH3O SmI2

HO

CH2COCH3

C5H11

H

Divalent Lanthanides: Samarium IodideReduction of !-Substituted Ketones and Esters

THF-MeOH, -78 oC

92%

THF-tBuOH, 25 oC

87%

Tetrahedron Lett. 1991,32, 6583

White J. Am. Chem. Soc. 1987,109, 4424

!-Halo, sulfoxides, sulfones, and !-oxygenated ketones are reduced

Primary iodides, esters, and ketones are unaffectedJ. Org. Chem. 1986,51, 1135

THF-MeOH, -90 oC

94% J. Org. Chem. 1986,51, 2596

Reduction of optically active epoxy ketones gives "-hydroxy ketones without loss of optical purity

Divalent Lanthanides: Samarium IodideIntramolecular Barbier Reactions

O

H

HO2 eq. SmI2, cat. Fe(DMB)3

THF / -78 oC to rt

80%

O

H

HO

2 eq. SmI2, cat. Fe(DMB)3

THF / -78 oC to rt

80%

IO

H

I

100:0 d.s.

1:1 d.s.

O

H

I

Method overcomes difficulties associated with using Mg, Li, Na

O

Me

I

2 eq. SmI2, cat. Fe(DMB)3

THF / -78 oC to rt

OH

Me

75%

Synthetically useful for substrates which allow for control of diastereoselectivity

Molander J. Org. Chem. 1991, 56, 4112.

I

Page 5: Lanthanides in Organic Synthesis - Princeton University - Home

O

R6O

O

Br

O

R1

R3 R2

R5

R4

O

R2

R3R4

R5

R1

O

R6

Sm(III)O

R2

R4

R5

R3

OHR1

R6

O

O

Me

O

Br

O

O

H

OHH

Me

O

Ph H Me H H H

tBu H Me H H H

Et H Me H H H

Divalent Lanthanides: Samarium IodideIntramolecular Reformatsky Reactions

-78 oC / THF

-78 oC / THF>200:1 d.r.

nn

n yield d.r.

0

1

73

68 29:1

yield d.r.

76 >200:1

85 >200:1

85 3:1

Large substituent in the R1 position usually results in high diastereoselectivity

Reactions to form bicyclic systems proceed with very high diastereoselectivities although yields are sometimes moderate to low

Molander J. Am. Chem. Soc. 1991, 113, 8036.

Divalent Lanthanides: Samarium IodideRadical Carbonyl-Alkene Couplings

R1 R2

OSmI2

R1 R2

OSmI2

EWG R1

R2 OSmI2

EWG SmI2, ROHR1

R2 OSmI2

EWG

Mechanism

EWG = CO2R, CN

Fukuzawa J. Chem. Soc., Chem. Comm. 1986, 624.

CHO

O

Me

OMeCO2Me

SmI2, iPrOH, THF71% >20:1

HMPA 96% 1:1

additive yield d.r.

none

time

4 h

1 min

O

Me

Me

CO2Me

SmI2, iPrOH, THF

O

MeMe

O

57% 1.3:1

HMPA 89% 4.9:1

additive yield d.r.

none

time

4 h

1 min

HMPA dramatically improves reaction rate and yield.

Diastereoselectivity is improved when !-disubstituted lactones are formed

Inanaga Tetrahedron Lett. 1986, 27, 5763.

2 SmI2

2 SmI2

R1 R2 R3 R4 R5 R6

ROSmI2

Page 6: Lanthanides in Organic Synthesis - Princeton University - Home

NaBH4

CeCl3

MeO- B- H C O H OR C OHH

ONaBH4

MeOH

OH OH

with CeCl3

O

Me

Me

H

Me Me

Me

Me

H

Me Me

NaBH4-CeCl3

MeOH

OHH

Trivalent Lanthanides: Luche ReductionSelective 1,2 Reduction of !-Enones

Mechanism

BH-4-n(OR)n

Ln3+

Sodium borohydride is rapidly converted to an alkoxide species

Carbonyl is activated through hydrogen bonding by a

lanthanide-bound molecule solvent

Hard borohydride preferentially attacks the hard carbonyl carbon

Luche J. Am. Chem. Soc. 1981, 103, 5454.

5 min.

without

97% 3%

0% 100% Luche J. Am. Chem. Soc. 1978, 100, 2226.

rt

97%

Paquette J. Am. Chem. Soc. 1987, 109, 3025.

Trivalent Lanthanides: Reduction of KetonesSelective Reduction of Ketones in the Presence of Aldehydes

O CHO OH CHO1.5 eq. NaBH4,CeCl3

1.5:1 EtOH:H2O

78%

Eliminates need for three step protection-reduction-deprotection scheme

Rationale

R

O

H R H

HO OHLnCl3

R

O

R R R

HO OH

LnCl3

In the presence of lanthanide (III) salts

aldehydes yield hydrates

Ketones remain unaffected

Hemiketal or Ketal formation is ruled out because similar results (within 5%) were obtained with MeOH and iPrOH

Luche J. Am. Chem. Soc. 1979, 101, 5848.

7H2O

ROH

6H2O

Page 7: Lanthanides in Organic Synthesis - Princeton University - Home

O

O

O

H

Me

HPMBO

Me

Me

TBDSO

H

Et

O

O

OH

H

Me

HPMBO

Me

Me

TBDSO

H

Et

H

O OH

La

Ce

Sm

Gd

Yb

Trivalent Lanthanides: Reduction of KetonesMeerwein-Ponndorf-Verley / Oppenauer Reactions

SmI2 (15 mol%), Me2CHOH (10 equiv.)

THF, 25 oC, 18 h

99%

97% de

Evans J. Org. Chem., 1990, 55, 6260

Ln(OiPr)3

iPrOH (4-20 eq)

Ln mol % h yield

5

10

10

2

5

80 oC

18

24

18

2

24

>98

95

>98

85

40

Gd(OiPr)3 is 103 times more reactive than Al(OiPr)3

Kagan, H. B. et al Tetrahedron Lett., 1991, 32, 2355.

Konishi, H. Chem. Lett., 1987, 181.

H

Trivalent Lanthanides: Reduction of KetonesEvans-Tischenko Reduction

R1

Me

Me

OOH

15% SmI2

HR1

O O

R2

Me2HC

SmR1

Me

Me

OHOR2

O

Evans J. Am. Chem. Soc., 1990, 112, 6447.

R1 = n-hexyl, iPr; R2 = Me, iPr, Ph anti:syn >99:1

Asymmetric induction by !-hydroxy stereocenter dominates "-methyl stereocenter

MeMe

Me

O

Me

OH

Me Me

OTBS

MeCHO

40% SmI2

1.5 h

MeMe

Me

O

Me

OH

Me Me

OTBS

89%

>99:1

O

CHO

Me

Me

Me

TBDMSO

OBn

O

Me

Me

Me

TBDMSO

OBn

Ocat. SmI2(OtBu)

THF, rt89%

Intramolecular Tischenko Reaction

Uenishi Tetrahedron Lett., 1991, 32, 5097.

R2CHO

Page 8: Lanthanides in Organic Synthesis - Princeton University - Home

OTMS

MeO

OMeH

O

Ph

O

O

MeO Ph

CH2Cl2, rt, 48 h

OMe

Me

TMSO

Me

Me

O

H

OMe

TMSO

H

H

H MeMe

OMe

TMSO

Me OMe

Me O

Me

H

Eu3+

R

HEtO O

H

H

OEt

R

O Me

O

Me MeF F

FF

F

F

F

O

Trivalent Lanthanides: Hetero-Diels-Alder

+Eu(fod)3, 1.7 mol %

84%

CastellinoTetrahedron Lett., 1984, 25, 4059.Exclusive carbonyl addition

+

Eu(fod)3 (0.5 mol %)

CDCl3, rt

66%

One isomer

Midland J. Am. Chem. Soc., 1984, 106, 4294.

R = Me, Ph

Yb(fod)3 (5 mol %)

neat, rt, 2h

60-80%

+

Reactions proceed with high endo selectivity

Bulky catalyst prefers to occupy exo position

fod = (6,6,7,7,8,8,8-heptafluoro-2,2-

dimethyl-3,5-octanedionato-

Inverse Demand

endo product

H

Trivalent Lanthanides: Reduction of KetonesEvans-Tischenko Reduction

R1

Me

Me

OOH

15% SmI2

HR1

O O

R2

Me2HC

SmR1

Me

Me

OHOR2

O

Evans J. Am. Chem. Soc., 1990, 112, 6447.

R1 = n-hexyl, iPr; R2 = Me, iPr, Ph anti:syn >99:1

Asymmetric induction by !-hydroxy stereocenter dominates "-methyl stereocenter

MeMe

Me

O

Me

OH

Me Me

OTBS

MeCHO

40% SmI2

1.5 h

MeMe

Me

O

Me

OH

Me Me

OTBS

89%

>99:1

O

CHO

Me

Me

Me

TBDMSO

OBn

O

Me

Me

Me

TBDMSO

OBn

Ocat. SmI2(OtBu)

THF, rt89%

Intramolecular Tischenko Reaction

Uenishi Tetrahedron Lett., 1991, 32, 5097.

R2CHO

Page 9: Lanthanides in Organic Synthesis - Princeton University - Home

OH

OH

O

OH

OMe

OMe

NH

OMe

OR

MeO

Me

MeO

Me Me

O

O

OMe

OR

MeO

Me

MeO

Me Me

OMe OMeCAN

MeCN-H2O

R1 R2

NO2

R1 R2

N+TMSO O-

R1 R2

OTMSCl, Li2S

CeO3N

O3N NO3

NO3

NH4

NH4

Tetravalent Lanthanides: Oxidations

Selective Secondary Alcohol Oxidation

CAN (10 mol %), NaBrO3

MeCN-H2O, 80 oC, 0.5 h

89%

Oshima Bull. Chem. Soc. Jpn., 1986, 59, 105

Oxidation of Phenol Ethers

R = TBS

71%

Evans J. Org. Chem, 1992, 57, 1067

Oxidation of Nitro Compounds to Ketones

25 oC, 6-8 h

CAN, 25 oC

5 min.

CAN =

Ceric Ammonium Nitrate

Olah Sythesis, 1980, 44

Enantioselective ReactionsEuropium(III) Hfc Promoted Hetero-Diels-Alder

OtBu

Me

TMSO

R

H Ph

O Eu(hfc)3, (1 mol %)

neat, -10 oC

O

TMSO

Me

R

Ph

OtBu

+

O

OMe OH

R

Ph

R = H 58% ee

R = Me 55% ee

4 steps

Danishefsky, Tetrahedron Lett. 1983, 24, 3451.

Danishefsky, J. Am. Chem. Soc. 1983, 105, 3716.

Me Me

Me

CF2CF2CF3

O

OEu *

*

Eu(hfc)3

OMe

H

O

CO2tBu

O

OMe

CO2tBu

Eu(hfc)3 (5 mol %)

rt

+

trans cis

yield

ee

79

19

39 %

64%

Jankowski, J. Chem. Soc. , Chem. Comm. 1987, 676.

Larger C1 alkoxy substituents gave increased ee

Page 10: Lanthanides in Organic Synthesis - Princeton University - Home

Me

O

N O

O

H

Me

OXn

Yb(OTf)3 NMe Me

Me

MS 4Å

CH2Cl2

O

O YbO

TfO O

OTf

N

O

R

HMe

Me Me

N

Me

Me

Me

H

+

Yb-BINOL-amine catalyst

CH2Cl2, -78 to 0 oC

20 mol %

94%

endo:exo 86:14

90% ee

Enantioselective ReactionsYb(III) BINOL Hetero-Diels-Alder

+ + (R)-BINOL

1 mmol

2.4 mmol

1.2 mmol0 oC, 30 min

Chiral Catalyst

Reaction proceeds only very slowly without BINOL

amine not interacting with metal

Larger amines typically give higher ee

Spectroscopic evidence for amine-BINOL H-bonding

Kobayashi J. Org. Chem. 1994, 59, 3758.

Kobayashi Tetrahedron Lett. 1993, 34, 4535.

Me

Me

N

Me H

Enantioselective ReactionsYb(III) BINOL Hetero-Diels-Alder: Reversal of Enantioselectivity

R

O

N O

O

+H

R

20 mol % catalyst

CH2Cl2, 0 oC

MS 4Å

20 mol % additive

R

H+

O Xn

O Xn

Me

O

N O

O

Me

O

Ph

O

Meadditive

Me

nPr

% yield endo:exo 2S, 3R 2R, 3S

2S, 3R 2R, 3S

77

81

89:11

80:20

98 2

93 8

% yield endo:exo 2S, 3R 2R, 3S

83

81

93:7

91:9

9 91

10 90

O

O YbO

TfO O

OTf

N

O

R

HMe

Me Me

N

Me

Me

Me

HO

OYb

O

OO

O

Me

Me

N

Me

Me

Me

H

N

O

R

O

ON

O

Me

Site A

Site B

Kobayashi Tetrahedron Lett., 1994, 35, 6325 Kobayashi J. Am. Chem. Soc, 1994, 116, 4083

R

Page 11: Lanthanides in Organic Synthesis - Princeton University - Home

O

Ln

O

O

O

O

O O M

M

M

R2NO2R1

R2

OH

NO2

R1

HR2

N+

HO

LiO

Ln

O

R1

HH

N+

R2

O

LiO

Ln

R1

H

OR2

N+

HO

LiO

Ln

R1

H

OH

N+

R2

O

LiO

Ln

OH

R1

HR2

NO2

H

R1R2

OH

NO2

Enantioselective ReactionsHeterobimetallic Catalysis

Ln = Lanthanide

M = Alkali Metal

Nitroaldol

1 equiv

+

10 equiv

3-10 mol % cat

THF, -40 oC

78-97 % yield

66-97 % ee

Shibasaki Tetrahedron Lett. 1993, 34, 2657.

Review: Shibasaki ACIE, 1997, 36, 1236.

Catalyst acts as Lewis acid and Lewis Base

74:27 to 93:7 syn:antiShibasaki J. Org. Chem. 1995, 60, 7388.

Explanation of syn selectivity

syn

anti

Shibasaki J. Org. Chem. 1995, 60, 7388.

Enantioselective ReactionsHeterobimetallic Catalysis

Michael Reaction

La

O

O

O

O

O O Na

Na

Na

La

O

O

O

O

O OH

Na

Na

La

O

O

O

O

O OH

M

M

Na

O

O

OMe

OMeO O

NaO

O

OMe

OMe

O

CO2Me

CO2Me

=

O O

O

Me CO2Bn

CO2Bn

Me

CO2Bn

CO2BnCO2Me

CO2Me

Ph

Ph

CO2Me

CO2Me

O O O

Yield

% ee

89

72

91

92

98

83

93

77

Li and K catalysts gave poor ee

OMeO

MeO

O

O

Metal free La-BINOL complex provides

almost no enantioselectivity

Shibasaki J. Am. Chem. Soc., 1995, 117, 6195

O O

R1CHO

Page 12: Lanthanides in Organic Synthesis - Princeton University - Home

Me

Ph

MeMe

Ph

Sm

Cl

Cl

(Et2O)2Sm Me

Me

MeMe

Si

Me

Me

R*

H2

O

O

SmI2OH

O

H

N

H

HO

MeO

Rh(PPh3)3Cl

Ru(H)(Cl)(PPh3)3

Enantioselective ReactionsMiscellaneous Reactions

Olefin Hydrogenation

96% ee

H2 (1 atm), catalyst

heptane, -78 oC

100% R* = (-)-menthyl

catalyst =

Marks, T. J. J. Am. Chem. Soc., 1992, 114, 2761.

Lanthanide hydrogenation catalysts are highly reactive

MLn

Ketone Reduction

THF-HMPA, rt, 30 min

56% ee

200 mol% quinidine

quinidine

MLn Nt (turnover number)

((C5Me5)2LuH)2

Ru(COD)(PPh3)2PF6

120,000 h-1

650 h-1

3,000 h-1

4,000 h-1

Takeuchi Chem. Lett. 1988, 403.

Marks, T. J. J. Am. Chem. Soc., 1985, 107, 8111.

=

Summary

Lanthanide metals are useful for reduction of functional groups and for carbon-carbon bond forming reactions

Europium, Samarium, and Ytterbium can form relatively stable divalent states. Europium is stable enough to exist in water.

SmI2 is the most widely employed Ln(II) and is used for one electron reductive reactions

Trivalent lanthanides are hard Lewis acids with high oxophilicity and as such are employed in several highly selective reactions

(Luche reduction, hetero-Diels-Alder)

f-orbital electrons are imperfect shielders and so Ln(III) have their f-orbitals greatly contracted towards the nucleus.

This effectively eliminates covalent bonding interactions with ligands and therefore lanthanide-ligand geometries

are largely determined by steric considerations. Asymmetric lanthanide promoted processes are therefore less straight-

forward than those using main group or d-block elements

Ce(IV) is the only tetrapositive lanthanide which is stable in water and to date is the only synthetically useful Ln(IV)

with applications in the oxidation of functional groups such as alcohols and phenol ethers.

Note: Scandium (3d1) and Yttrium (4d1) have similar properties to those of the lanthanides and are often treated as lanthanides