laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_laplace_transform.pdfnote –fonts...

21
Laplace transform EO2 – Lecture 3 Pavel Máša XE31EO2 - Pavel Máša - Lecture 3 XE31EO2 - Pavel Máša

Upload: others

Post on 17-Jan-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

Laplace transform

EO2 – Lecture 3

Pavel Máša

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 2: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

• We know, the Fourier transform due to strict conditions of existence does not exists for number of very common waveforms – even sin function have to be dumped

How to ensure, the transform will exist for many waveforms (almost all physically feasible waveforms)?

We dump it ourselves – we will multiply the waveform byfunction 

INTRODUCTION

e¡¾te¡¾t

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 3: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

• We know the Fourier transform

• To extend the set of integrable functions, we dump f (t) function by – But dumping has effect just when t ≥ 0,

negative time „amplifies“ the function,we have to introduce condition t ≥ 0

– In circuit analysis we study tasks „what happens after...“, so this condition is not limiting– The history of the circuit is described by initial conditions (voltage across capacitor,

current passing inductor at t = 0).

• Direct Laplace transform

• When σ = 0 the Laplace transform come into Fourier transform

FROM FOURIER TRANSFORM TO LAPLACE TRANSFORM

F(¾; j!) =

Z +1

0

f (t)e¡¾te¡j!t dt =

Z +1

0

f (t)e¡(¾+j!)t dt =

Z +1

0

f (t)e¡pt dtF(¾; j!) =

Z +1

0

f (t)e¡¾te¡j!t dt =

Z +1

0

f (t)e¡(¾+j!)t dt =

Z +1

0

f (t)e¡pt dt

e¡¾t

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 4: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

Note – fonts

Two different fonts are used for typesetting of Fourier and Laplace transform

• Consequently, we can meet with two different symbols for typing of

– Fourier transform

– Laplace transform

Note

• Instead of p operator s is sometimes used

• p / s is sometimes called complex frequency

Lff (t)g

F ff (t)g

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 5: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

• For dumping function          we defined necessary condition t ≥ 0• But this condition is not sufficient to ensure the (Fourier) integral of the function                 converges

– When σ < 0 (or certain number), it does not dump, but „amplifies“, depending up to properties of f(t) function

The Laplace transform of the function f(t) exists for all complex numbers such that

The part of p plane satisfying this condition is called region of convergence (don’t confuse with region of stability, with lays in left part of p plane, left from the region of convergence (and left from imaginary axis)!!! – poles diverge)

REGION OF CONVERGENCE

e¡¾t

f(t)e¡¾t

¾ > ¾min

(BIBO) stability• BIBO – Bounded‐Input Bounded‐Output – If a 

system is BIBO stable, then the output will be bounded for every input to the system that is bounded.

• Passive circuit is always stable, if it contains non zero resistivity, zero resistivity – limit of stability

• Active circuit (containing some amplifier) need to have feedback

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 6: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

Fourier transform (frequency characteristic)

pole (tends to ∞)

P (p) =1

1 + pRCP (p) =

1

1 + pRC

EXAMPLE– 1 POLE IN P‐PLANE

R = 100 ÐR = 100 Ð

C = 1 mFC = 1 mF

pp = ¡10pp = ¡10pole

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 7: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

200160-200 120-150 80

sigma

-100 40-50 00-200

200

600

1 000

1 400

1 800

50

2 200

-40

2 600

3 000

3 400

3 800

4 200

4 600

5 000

100-80

omega

-120-160-200

zeroes

poles

poles

3‐D view of p‐plane, side view

the upper view of the same p‐plane

P (p) =pC(pL + R)

p2LC + pRC + 1P (p) =

pC(pL + R)

p2LC + pRC + 1

Zeroes: p01 = 0; p02 = ¡100p01 = 0; p02 = ¡100

Poles: pp1;2 = ¡50 § 86:6jpp1;2 = ¡50 § 86:6j

R = 10 ÐR = 10 Ð

L = 0:1 HL = 0:1 H

C = 1 mFC = 1 mF

EXAMPLE – ZEROES AND POLES IN P‐PLANE

Fourier transform – imaginary axis XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 8: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

property time domain Laplace transform(frequency domain)

Linearity

Time shifting

Differentiation

integration

convolution

SELECTED PROPERTIES OF LAPLACE TRANSFORM

df (t)

dtpF (p)¡f (0+)Z t

0

f (¿ ) d¿1

pF (p)

f(t) ¤ g(t) =

Z t

0

f (¿ )g(t¡ ¿ ) d¿

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 9: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

Time domain Frequency domainRegion of 

convergence

Dirac delta function  1

Unit step function(DC voltage connected at 

time t = 0)

Exponential decay

TABLE OF SELECTED LAPLACE TRANSFORMS

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 10: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

Time domain Frequency domainRegion of 

convergence

Exponentially‐decayingsine wave

Exponentially‐decayingcosine wave

Phase‐shifted sine wave

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 11: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

• We start from inverse Fourier transform

• Using inverse Fourier transform we will evaluate dumped function

• Moving dumping on right side of equation

• By substitution of variables and integral limits we got Laplace transform

So far as it is possible, we don’t use the inverse Laplace transform integral directly, but we try to use transform properties and known transforms from the Table

INVERSE LAPLACE TRANSFORM

f(t) =1

Z +1

¡1F(j!)ej!td!f(t) =

1

Z +1

¡1F(j!)ej!td!

f (t)e¡¾t =1

Z +1

¡1F(p)ej!t d!f (t)e¡¾t =

1

Z +1

¡1F(p)ej!t d!

f (t) =1

Z +1

¡1F(p)e¾tej!t d! =

Z +1

¡1F(p)ept d!f (t) =

1

Z +1

¡1F(p)e¾tej!t d! =

Z +1

¡1F(p)ept d!

¡1 fF (p)g = f (t) =1

2¼j

Z ¾+1

¾¡1F(p)ept dp¡1 fF (p)g = f (t) =

1

2¼j

Z ¾+1

¾¡1F(p)ept dp

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 12: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

• The resulting network function (e.g. transfer function P(p)) / variable (voltage transform U(p), current transform I(p), …) will be rational function, ratio of two polynomial functions

• First, by possible polynomial division we have to ensure, the degree of polynomial P(p) in nominator  is smaller than degree of polynomial Q(p) in denominator; at once we can factor out the highest order polynomial coefficient in denominator

• We will compute both polynomial roots in nominator (zeros) and denominator (poles) of the function 

• Now, the partial fraction decomposition procedure depends on pole type

1. Simple real roots

THE PROCEDURE OF INVERSE LAPLACE TRANSFORM EVALUATION

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 13: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

2. Repeated real roots with root multiplicity α, β, γ

3. The pair of complex conjugate roots 

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 14: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

• Now we have left to find coefficients A, B, …1. General method (compare coefficients at same powers)

1. Function F’(p) (after partial fraction decomposition) multiply by initial denominator

2. Compare coefficients with the same power of p in nominator of original function 

1.

2.

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 15: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

2. Single pole method

it is not universal tool, when the polynomial has roots with multiplicity, it can be used only with root of highest power, other coefficients must be calculated using other methods

In the function F’(p) we will replace variable p by value of the root pi.• Bracket, containing root pi must be removed (it is zero). 

Mathematical description:

Example:

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 16: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

If  (σ = 0) and without initial conditions  Fourier, if moreover sine waveform source sinusoidal steady state

OPERATIONAL CHARACTERISTICS OF TWO PORTS

Transform of derivative – multiplication by p (and initial condition)

Transform of an integral – division by p

Kirchhoff's laws in operational form

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 17: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

INDUCTOR AND CAPACITOR EQUIVALENT CIRCUIT DIAGRAMS

initial conditionvoltage source

operationalimpedance

initial conditioncurrent source

operationaladmittance

initial conditioncurrent source

operationaladmittance

operationalimpedance

initial conditionvoltage source

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 18: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

EQUIVALENT CIRCUIT AND TERMINALS OF REAL CIRCUIT ELEMENT

The capacitor was charged at 10 V. Find the current passing the capacitor.

parallel equivalent circuit

series equivalent circuit

• Ohm’s law

• current divider

??? But the current passing capacitor should be the same???

This is actual capacitor!!!

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 19: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

In time t = 0 an inductor was passed by the current iL(0) = 2 A. Find the Laplace transform of current passing the inductor when t > 0 and voltage transform at t > 0.

parallel equivalent circuit

series equivalent circuit

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 20: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

When the initial conditions are zero, the operational characteristics will be analogical to those in Fourier transform or sinusoidal steady state

• Impedance and admittance, including the input one of two ports 

• Transfer function (voltage, current, …)

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a

Page 21: Laplace transform - cvut.czamber.feld.cvut.cz/.../english/files/3_Laplace_transform.pdfNote –fonts Two different fonts are used for typesetting of Fourier and Laplace transform •

The integrating network in the figure is excited by rectangular pulse in second figure. Compute the waveform of output voltage. The capacitor has zero voltage at the time of connection of source (zero initial condition).

• To find the solution we will use table of Laplace transforms• rectangular pulse is superposition of two unit step functions multiplied by Um

1.

2.

3.

Statement in the square bracket will be temporary omitted (it is information about time delay, transformed later)

The transform of the square bracket are two unit step functions, the second is time shifted by t0

t0

0

Um

t

EXAMPLE – THE SAME AS IN THE LAST LECTURE

P (p) =1

1 + pRCP (p) =

1

1 + pRC

U2(p) = U1(p) ¢ P (p) =Um

p

1

1 + pRC

£1¡ e¡pt0

¤U2(p) = U1(p) ¢ P (p) =

Um

p

1

1 + pRC

£1¡ e¡pt0

¤

XE31EO2 - Pavel Máša - Lecture 3

XE31EO2 -

Pav

el Máš

a