laser diode thermal desorption ionization source for mass spectrometry

45
LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY Patrice Tremblay, Ph.D.

Upload: makani

Post on 08-Jan-2016

91 views

Category:

Documents


2 download

DESCRIPTION

LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY. Patrice Tremblay, Ph.D. Motivations. Pharmaceutical, CRO, environmental and food industries need to improve productivity of high throughput screening and analysis. Actual techniques are often limited by : - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

LASER DIODE THERMAL DESORPTION

IONIZATION SOURCE FOR MASS

SPECTROMETRY

Patrice Tremblay, Ph.D.

Page 2: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

• Pharmaceutical, CRO, environmental and food industries need to improve productivity of high throughput screening and analysis.

• Actual techniques are often limited by :

Extensive samples preparation;

Risk of cross contamination between samples;

Background noise induced by mobile phase or enhancement matrix;

Analysis time.

• In order to eliminate these problems, a new ionization source has been developed.

• The LDTD technology (Laser Diode Thermal Desorption) coupled to a mass spectrometer offers the same analytical performances as any LC- MS/MS system and is an alternative to the problems encountered with usual techniques.

MotivationsMotivations

Page 3: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

LDTD Ionization LDTD Ionization SourceSource

Page 4: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

IR Laser Beam

LazWell Sample Plate

Carrier Gas

Corona DischargeNeedle

Mass SpectrometerInlet

Piston

Transfer Tube

Piston head

LDTD Ionization SourceLDTD Ionization Source

• Sample is dried onto the bottom of a well from a standard 96-well plate with a metal sheet insertion.

• Thermal desorption induced by a laser at 980 nm (no photon-sample interactions).

• Gaseous neutral species transferred by a carrier gas.

• Ionization occurs into the corona discharge region.

Page 5: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

• The ionization process that occurs in the LDTD source is an Atmospheric pressure chemical (APC) type of ionization without the presence of solvent (no mobile phase or enhancement matrix.)

LC APCI

H2O

O2

N2

H2O+

H2OH3O+

N2

N2+

++++ ++++

e-

e-

e-e-

N4+

N2

H2O N2+

N2+

(H2O)nH+ + Solvent

(Solvent+H)+ transfers charge onto analyte (if

possible)

HVCorona discharge

Theoretical Aspects of the Ionization

Page 6: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Theoretical Aspects of the Ionization

• The ionization process that occurs in the LDTD source is an Atmospheric pressure chemical (APC) type of ionization without the presence of solvent (no mobile phase or enhancement matrix.)

H2O

O2

N2

H2O+

H2OH3O+

N2

N2+

++++ ++++

e-

e-

e-e-

N4+

N2

H2O N2+

N2+

(H2O)nH+ +

LDTD APCI

Analyte

Analyte is forced to react with the

cluster ion

HVCorona discharge

Page 7: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

• Low volume sample analysis (1 to 10 µL)

• 96-well plates are designed to be compatible with conventional sample preparation systems.

• No extra sample pre-treatment needed

• The absence of enhance matrix and mobile phase lower the noise signal.

• Elimination of cross contamination due to LC.

• Each well are individually isolated during the thermal desorption.

• The thermal desorption process takes seconds

Key Features

Page 8: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

• Plug-and-play device

Key Features

Sciex Source Housing for API 3000, 4000 and 5000

Also available on Thermo, Waters and Agilent systems

Page 9: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

• LazSoft and GLP environment :

• Thermo mass spectrometers (Xcalibur)

• LazSoft fully integrated into Xcalibur

• Operated under GLP

• Sciex mass spectrometers (Analyst)

• Actually in discussion with Sciex to have access to the programmation code for LazSoft integration

• Log Book created to trace the launch batch (LazSoft and Analyst)

Key Features

Page 10: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Application – Drugs Application – Drugs Analysis in PlasmaAnalysis in Plasma

ParacetamolParacetamolMifepristoneMifepristoneMidazolamMidazolam

Page 11: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

LDTD Method and Plasma Sample LDTD Method and Plasma Sample PreparationPreparation

(Paracetamol analysis)(Paracetamol analysis)

Sample Preparation (crashed plasma)• 100 µL of Human Plasma• Spike Paracetamol and Paracetamol-d4 (40 ng/mL)• 500 µL of acetonitrile (precipitation agent)• Vortex 4 min.• Centrifuge at 14000 RPM for 10 min. • Transfer Manually 4 µL onto LazWell to perform

LDTD-MS/MS analysis

LDTD Parameters• Carrier gas flow : 3 L/min• APCI (+)• Laser Pattern

• Increase laser power to 25 % in 1.0 s• Hold at 25 % for 0.5 sec.• Decrease laser power to 0 %

MS Parameters• MS/MS transition : 152.0 – 110.1 amu

156.0 – 114.1 amu• Collision gas pressure : 1.5 mTorr (Ar)• Collision energy : 16 eV• Scan time : 0.050 s• Q1 width : 0.30 amu• Q3 width : 0.70 amu

M.W. 151.17 g/mol

Page 12: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

High-Throughput LDTD-MS/MS High-Throughput LDTD-MS/MS Analysis of Paracetamol in Analysis of Paracetamol in

Human PlasmaHuman PlasmaRT: 0.00 - 7.74 SM: 7G

0 1 2 3 4 5 6 7Time (min)

0

10

20

30

40

50

60

70

80

90

1000

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

NL: 2.18E5TIC F: + c ESI SRM ms2 [email protected] [110.095-110.105] MS Plaquette5_080422103040

NL: 1.79E5TIC F: + c ESI SRM ms2 [email protected] [113.995-114.005] MS Plaquette5_080422103040

RT: 0.08 - 1.00 SM: 13G

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Time (min)

0

10

20

30

40

50

60

70

80

90

1000

10

20

30

40

50

60

70

80

90

100

Re

lativ

e A

bun

dan

ce

NL: 1.40E5TIC F: + c ESI SRM ms2 [email protected] [110.095-110.105] MS ICIS Batch12B3

NL: 1.38E5TIC F: + c ESI SRM ms2 [email protected] [113.995-114.005] MS ICIS Batch12B3

Analyte Desorption in 1.8 seconds

Paracetamol raw signal

ISTD signal

96-replicates

Page 13: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Robustness and Robustness and RepeatabilityRepeatability

(Paracetamol in Human Plasma)(Paracetamol in Human Plasma)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 98 196 294 392 490 588 686 784 882 980

Plate 1 Plate 2 Plate 3 Plate 4 Plate 5 Plate 6 Plate 7 Plate 8 Plate 9 Plate 10

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 98 196 294 392 490 588 686 784 882 980

Plate 1 Plate 2 Plate 3 Plate 4 Plate 5 Plate 6 Plate 7 Plate 8 Plate 9 Plate 10

CV of 2.4% over 1008 replicates

Run time of 75 minutes

Are

a R

ati

o

Page 14: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

LinearityLinearity(Paracetamol in Human Plasma)(Paracetamol in Human Plasma)

ParacetamolY = 0.131127+0.0212371*X R^2 = 0.9944 W: 1/X

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 55000

10

20

30

40

50

60

70

80

90

100

110

120

Are

a R

atio

ParacetamolY = 0.14042+0.019*X R^2 = 0.9984 W: 1/X

0 20 40 60 80 100 120 140 160 1800.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Are

a R

atio

0.6 to 160 ng/mL

Concentration (ng/mL)

0.6 to 5000 ng/mL

Page 15: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

LDTD Method and Plasma Sample LDTD Method and Plasma Sample PreparationPreparation

(Mifepristone analysis)(Mifepristone analysis)

Sample Preparation (liquid-liquid extraction)• 50 µL of Mouse Heparin Plasma • Spiked Mifepristone (10 to 2000 ng/mL)

• 20 µL IS(d4) + 50 µL NH4OH 4%

• 2 mL of each MTBE and Hexane• Vortex 15 min.• Centrifuge at 2500 RMP for 10 min.• Evaporate organic phase to dryness at 40oC• Reconstitute in 200 µL of Water:ACN:Formic acid (75:25:0.1 v/v/v)• Transfer Manually 2 µL onto LazWell to perform LDTD-MS/MS analysis

LDTD Parameters• Carrier gas flow : 2 L/min• APCI (+)• Laser Pattern

• Increase laser power to 60 % in 3 sec.• Hold at 60 % for 2 sec.• Decrease laser power to 0 %

MS Parameters• MS/MS transition : 430.14 – 372.25 amu• Collision gas pressure : 1.5 mTorr (Ar)• Collision energy : 18 eV• Scan time : 0.02 sec.• Q1 width : 0.70 amu• Q3 width : 0.70 amu

M.W. 429.59 g/mol

Page 16: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Calibration Curve Calibration Curve (Mifepristone (Mifepristone analysis)analysis)

Concentration (ng/mL)

Are

a ra

tio

y = 0,0015x - 0,0205

R2 = 0,9987

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 500 1000 1500 2000

w = 1/x

Calibration range : 10 to 2000 ng/mL

Sample-to-sample run time 9 sec.

Page 17: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Back-Calculation and QC’s Back-Calculation and QC’s (Mifepristone analysis)(Mifepristone analysis)

P1 P2 P3 P4 P5 P6 P7 P8 Nominal concentration (ng/mL)

10 20 50 100 200 500 100 2000 Back-calculated conc. 10.7 20.9 50.8 97.3 189.0 472.0 967.1 2072.0

% Nominal Conc. 107 104 102 97 94 94 97 104

• Standard concentrations back-calculated from calibration curve

• QC’s performance

QC 1 QC 2 QC 3 Nominal concentration (ng/mL) 30 300 1600 N 3 3 3 Mean (ng/mL) 30.6 288 1634 CV (%) 7.0 6.2 1.9 % Nominal conc. 102 96 121

Page 18: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

LDTD Method and Plasma Sample LDTD Method and Plasma Sample PreparationPreparation(Midazolam)(Midazolam)

Sample Preparation (liquid-liquid extraction)• 100 µL of Human Plasma • Spiked Midazolam (0.5 to 250 ng/mL)

• 10 µL IS(d4) + 50 µL NH4OH 4%

• 3 mL of MTBE and 1 mL of Hexane• Vortex 15 min.• Centrifuge at 2500 RMP for 10 min.• Evaporate organic phase to dryness at 40oC• Reconstitute in 500 µL of Water:ACN:Formic acid (75:25:0.1 v/v/v)• Transfer Manually 2 µL onto LazWell to perform LDTD-MS/MS analysis

LDTD Parameters• Carrier gas flow : 2 L/min• APCI (+)• Laser Pattern

• Increase laser power to 40 % in 2 sec.• Hold at 40 % for 2 sec.• Decrease laser power to 0 %

MS Parameters• MS/MS transition : 430.14 – 372.25 amu• Collision gas pressure : 1.5 mTorr (Ar)• Collision energy : 18 eV• Scan time : 0.02 sec.• Q1 width : 0.70 amu• Q3 width : 0.70 amu

M.W. 325.78 g/mol

Page 19: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Calibration Curve Calibration Curve (Midazolam (Midazolam analysis)analysis)midazolam

Y = 0.000762841+0.0110162*X R^2 = 0.9940 W: 1/X

0 20 40 60 80 100 120 140 160 180 200 220 240 2600.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Are

a R

atio

Concentration (ng/mL)

Calibration range : 0.5 to 250 ng/mL

Sample-to-sample run time 8 sec.

Page 20: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Back-Calculation, QC’s and Back-Calculation, QC’s and Unknown Unknown

(Midazolam analysis)(Midazolam analysis)• Standard concentration back-calculated from calibration curve

• QC’s performance

P1 P2 P3 P4 P5 P6 P7 P8 P9 Nominal concentration (ng/mL)

0.5 1.0 2.5 5.0 10.0 25.0 50.0 100.0 200.0 Back-calculated conc. 0.46 1.01 2.46 4.62 11.32 26.79 48.98 97.57 250.80

% Nominal Conc. 92 101 98 93 113 107 98 98 100

QC 1 QC 2 QC 3 Nominal concentration (ng/mL)

1.5 15 200 N 3 3 3 Mean (ng/mL) 1.42 14.3 190.0 CV (%) 10.9 5.9 1.3 % Nominal Conc. 95 95 95

• Unknown : LDTD-MS/MS vs LC-MS/MS

* Calculated as LC-MS/MS provides the true values

LC-MS/MS LDTD-MS/MS % Difference* ng/mL

2.54 2.14 -15.7 2.56 2.71 5.8 4.68 5.00 6.8 4.83 5.37 11.2 6.28 6.36 1.3 6.37 6.15 -3.5

* Calculated as if LC-MS/MS provides the true values…

Page 21: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Application – Drugs Application – Drugs Analysis in Dried Analysis in Dried

Blood SpotBlood Spot

ParacetamolParacetamol

Page 22: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

LDTD Method and Blood Spot Sample LDTD Method and Blood Spot Sample PreparationPreparation

(Paracetamol analysis)(Paracetamol analysis)

Sample Preparation• Dried blood spot (with Paracetamol)• Punch out a 3 mm disc

• 100 µL 50/50 Meoh/H2O + 250 ng/mL IS(D4)

• Vortex for 20 sec.• Allow to stand for 30 min.• Centrifuge at 14000 RPM for 1 min• Transfer Manually 2 µL onto LazWell to perform LDTD-MS/MS analysis

LDTD Parameters• Carrier gas flow : 2 L/min• APCI (+)• Laser Pattern

• Increase laser power to 25 % in 2.0 sec.• Hold at 25 % for 2 sec.• Decrease laser power to 0 %

MS Parameters• MS/MS transition : 152.0 – 110.15 amu• Collision gas pressure : 1.5 mTorr (Ar)• Collision energy : 16 eV• Scan time : 0.02 s• Q1 width : 0.70 amu• Q3 width : 0.70 amu

M.W. 151.17 g/mol

Page 23: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Calibration Curve : Paracetamol in Calibration Curve : Paracetamol in bloodblood

Concentration (ng/mL)

ParacetamolY = 0.0858798+0.0439791*X R^2 = 0.9980 W: 1/X

0 100 200 300 400 500 600 700 800 9000

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

Are

a R

atio

Calibration range : 3.6 to 909 ng/mL

4 replicates

CV lower then 4.6 %

Sample-to-sample run time 8 sec.

Page 24: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

LDTD-MS/MS SignalLDTD-MS/MS SignalParaCurve01 - TIC - SM: 3 RT: 0.01 - 0.25 NL: 2.57E4F: + c ESI SRM ms2 [email protected] [ 109.750-110.450]

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e In

ten

sity

AA: 26063

ParaCurve03 - TIC - SM: 3 RT: 0.00 - 0.25 NL: 6.04E4F: + c ESI SRM ms2 [email protected] [ 109.750-110.450]

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e In

ten

sity

AA: 93111

ParaCurve44 - TIC - SM: 3 RT: 0.00 - 0.25 NL: 1.99E7F: + c ESI SRM ms2 [email protected] [ 109.750-110.450]

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e In

ten

sity

AA: 25308818

Limit of detection : 2.6 ng/mL (3-times the blank value)

Blank

3.6 ng/mL 909 ng/mL

Page 25: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Application – Application – Sulfonamide Residues Sulfonamide Residues in Dairy Milk Analysisin Dairy Milk Analysis

How to obtain specificity How to obtain specificity without LCwithout LC

Page 26: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

SulfonamidesSulfonamidesIsomers and related structures• APCI(+), isomers show the same MRM transitions• APCI (-), specific MRM transitions• Specificity achieve by :

• Right APCI mode• MRM mode

Sulfacetamide

Sulfadiazine

Sulfathiazole

Sulfapyridine

Sulfamerazine

Sulfamethazine

Sulfamethizole

Sulfamethoxazole

Sulfachloropyridazine

Sulfachlorpyridazine

Sulfaquinoxaline

Sulfisoxazole

Sulfadimethoxine

Sulfadoxine

Sulfamethoxypyridazine

Sulfaethoxypyridazine

Page 27: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

LDTD-MS/MS SpecificityLDTD-MS/MS Specificity• No chromatographic separation to analyze 16 compounds in 10 seconds

• Specificity achieve using MRM in (-)APCI

Sulfadoxine

309 251

Sulfadimethoxine

309 131

C:\Xcalibur\data\03 avril 07\P990034 07 4/3/2007 10:02:58 AM sulfa 310 isomerems/ms negatifRT: 0.00 - 0.75 SM: 7G

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7Time (min)

0

10

20

30

40

50

60

70

80

90

100

Re

lativ

e A

bund

ance

NL:3.34E8TIC MS Genesis P990034 07

RT: 0.00 - 0.75 SM: 7G

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7Time (min)

0

10

20

30

40

50

60

70

80

90

100

Re

lativ

e A

bund

ance

NL:1.28E7m/z= 250.87-251.07 MS Genesis P990034 07

RT: 0.00 - 0.75 SM: 7G

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7Time (min)

0

10

20

30

40

50

60

70

80

90

100

Re

lativ

e A

bund

ance

NL:7.92E6m/z= 130.80-131.00 MS Genesis P990034 07

TIC• Isomer analysis without chromatographic separation

• 2 extracted samples with Sulfadoxine or Sulfadimethoxine (isomers)

• TIC signal and extract signal for 2 MS/MS transitions

• Excellent specificity

Page 28: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

LDTD Method and Dairy Milk LDTD Method and Dairy Milk Sample PreparationSample Preparation

Sample Preparation• 100 µL of Whole dairy milk• Spiked 16 sulfonamides (2 ng/mL to 1000 ng/mL)• Add Indapamide as internal standard• 500 µL of acetonitrile (precipitation agent)• Vortex 4 min.• Centrifuge at 14000 RPM for 10 min.• Filtrate supernatant on Nanosep 0.2 µm• Transfer 2 µL onto LazWell to perform

LDTD-MS/MS analysis

LDTD Parameters• Carrier gas flow : 2 L/min• APCI (-)• Laser Pattern

• Increase laser power to 25 % in 2 sec.• Hold at 25 % for 3 sec.• Decrease laser power to 0 %

MS Parameters• Collision gas pressure : 1.5 mTorr (Ar)• Scan time : 0.02 sec.• Q1 width : 0.70 amu• Q3 width : 0.70 amu• MS/MS transition and Collision energy :

Compound Q1 Q3 Collision Energy

(m/z) (V) Sulfacetamide 213 170 25 Sulfadiazine 249 185 25 Sulfathiazole 254 156 22 Sulfapyridine 248 184 25 Sulfamerazine 263 199 26 Sulfamethazine 277 122 28 Sulfamethizole 269 196 28 Sulfamethoxazole 252 156 28 Sulfachloropyridazine 283 128 34 Sulfachlorpyridazine 283 107 34 Sulfaquinoxaline 299 144 28 Sulfisoxazole 266 171 28 Sulfadimethoxine 309 131 34 Sulfadoxine 309 251 34 Sulfamethoxypyridazine 279 156 25 Sulfaethoxypyridazine 293 156 25 Indapamide (internal standard) 364 190 26

Page 29: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Analytical PerformanceAnalytical Performance

• Excellent linearity for all sulfonamides (> 0.99)

• Extraction recovery from 85 % to 100 %

• LOD of 2 ng/mL (4 pg loaded into well) from blank analysis

R T: 0 .0 0 - 2 .36 SM : 7 G

0 .0 0 .5 1.0 1.5 2 .0Tim e (m in)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 00

Rel

ativ

e A

bun

dan

ce

NL : 2 .14 E5T IC F : + c ES I SR M m s2 2 54 .0 04 @ c id -3 0.00 [9 1.65 0-92 .3 50 ] M S G e ne sis s ulfon am id e0 2

R2 = 0,9954

R2 = 0,9979

R2 = 0,9983

R2 = 0,9987

R2 = 0,9986

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200

Sulfamethoxine

Sulfamethozaxole

Sulfamerazine

Sulfapyridine

Sulfamethazine

Are

a r

ati

o

311 - 92

265 - 92

250 - 156

279 - 124

254 - 92

Concentration (ng/mL)

Blank

1000 ng/mL

Page 30: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Application – Phase I Application – Phase I and Phase II and Phase II

Metabolite Back Metabolite Back Conversion EvaluationConversion Evaluation

Page 31: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Back-ConversionBack-Conversion• LDTD-MS/MS does not have any chromatographic separation

• All sample constituent may thermally desorbed, ionized and be introduced into the MS

• Phase I and Phase II metabolites may back-convert (thermally or in the APCI region) into the corresponding drugs which may affect the quantification

• Experiment

• Sample containing high metabolite quantities

• LDTD setup at the drug operating conditions

• Monitoring the MS/MS transition of the drug and the metabolite

• Evaluation of the back-conversion of the metabolite

Page 32: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

OH-Midazolam Back-ConversionOH-Midazolam Back-ConversionRT: 0.99 - 1.41

1.0 1.1 1.2 1.3 1.4Time (min)

0

10

20

30

40

50

60

70

80

90

1000

10

20

30

40

50

60

70

80

90

100

Re

lativ

e A

bu

nd

an

ce

AA: 78882AA: 80390

AA: 44885137

AA: 44090203

NL: 3.54E4TIC F: + c ESI SRM ms2 [email protected] [290.690-291.390] MS Genesis BackconvertHydro

NL: 2.43E7TIC F: + c ESI SRM ms2 [email protected] [304.650-305.350] MS Genesis BackconvertHydro

MS/MS Midazolam signal

326.04 – 291.04 amu

MS/MS OH-Midazolam signal

2.5 µg/mL solution

340.0 – 305.0 amu

Observed back-conversion of 0.2 %

Page 33: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Testosterone and Testosterone Testosterone and Testosterone Glucuronide Glucuronide

• Experiment :

•100 µL Stripped Human EDTA Plasma

• 500 µL Ethyl Acetate

• Vortex agitation for 4 min.

• Spiked supernatant with Testosterone (3 ng/mL)

• Spiked supernatant with Testosterone glucuronide (200 ng/mL)

• Analyze 2 µL in LDTD-MS/MS, following Testosterone transition (289.26 – 109.19 uma, 21 eV)

• From Peng et al. Clinical Chemistry, 46:4, 515-522 (2000)

•Testosterone glucuronide in healthy Caucasian subject lower then 5 nM

•Testosterone oral dose of 120-mg

•1 hour after administration blood Testosterone glucuronide increase at 310 nM

Page 34: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Testosterone and Testosterone Testosterone and Testosterone GlucuronideGlucuronide

• Real-life (Peng et al.) [5 nM of Testosterone glucuronide in blood]

• Liquid-liquid extraction with organic hydrophobic solvent

• Testosterone extracted in organic phase

• Testosterone glucuronide stays in aqueous phase

• 0.25 % of back-conversion will be negligible on the Testosterone signal (less then 0.01 ng/mL)

• Results

• Extract with Testosterone and no Testosterone glucuronide : 23254 count

• Extract with Testosterone + Testosterone glucuronide : 27021 count

• Back-conversion : 0.25 %

Page 35: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Human Liver Human Liver MicrosomesMicrosomes

Page 36: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

CYP3A4 inhibition studyCYP3A4 inhibition study(Midazolam signal)(Midazolam signal)

Inhibition 1

Inhibition 2

Inhibition 3

T-30T-20 T-10 T-0T-30T-20 T-10 T-0 T-30T-20 T-10 T-0

Inhibition 1

Inhibition 2

Inhibition 3

T-30T-20 T-10 T-0T-30T-20 T-10 T-0T-30T-20 T-10 T-0T-30T-20 T-10 T-0 T-30T-20 T-10 T-0T-30T-20 T-10 T-0

• 3 Inhibition studies

• 4 replicates

• 2 µL directly spotted into well

• Sample-to-sample run time of 10 seconds

• No internal standard correction

Page 37: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

CYP3A4 inhibition studyCYP3A4 inhibition study(Midazolam signal)(Midazolam signal)

Are

a c

ou

nt

0

20000

40000

60000

80000

100000

120000

140000

160000

0 10 20 30 40

Inhibition 1

Inhibition 2

Inhibition 3

Inhibition time

Page 38: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

0

10000

20000

30000

40000

50000

60000

70000

80000

0 2 4 6 8 10 12 14Sample number

Are

a co

un

t

+NaDPH No NaDPH

0

10000

20000

30000

40000

50000

60000

70000

80000

0 2 4 6 8 10 12 14Sample number

Are

a co

un

t

+NaDPH No NaDPH

CYP3A4 inhibition studyCYP3A4 inhibition study(OH-Midazolam signal) (OH-Midazolam signal)

• No internal standard correction• CV lower then 15 %

Page 39: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

CYP3A4 : OH-MidazolamCYP3A4 : OH-Midazolam(with ISTD) (with ISTD)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 2 4 6 8 10 12Sample number

Sig

nal ra

tio (

Analy

te/IS

TD

)

Page 40: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

CYP2D6 : OH-BufurololCYP2D6 : OH-Bufurolol(with ISTD)(with ISTD)

Sig

nal ra

tio (

Analy

te/IS

TD

)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 2 4 6 8 10 12

Sample number

Page 41: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

CYP2C9 : OH-DiclofenacCYP2C9 : OH-Diclofenac(with ISTD)(with ISTD)

Sig

nal ra

tio (

Analy

te/IS

TD

)

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

Sample number

Page 42: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

Pooled-CYP and CYP-Cocktail SamplesPooled-CYP and CYP-Cocktail Samples

Isozyme Metabolite

CYP3A4 OH-Testosterone OH-Midazolam Oxidized Nifedine

CYP1A2 Acetaminophene

CYP2C9 OH-Diclofenac OH-Tolbutamide

CYP2C19 Mephynetoin CYP2E1 OH-Chloroxazone

CYP2D6 OH-Bufurolol Dextrophan

• LDTD allows to analyzed Pooled-CYP and CYP-cocktail samples

• Run-time of 9 seconds per samples• List of CYP studies available until now :

Page 43: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

• Thermal desorption in induced indirectly by laser diode.

• No photon-sample interactions

• There is no need for an enhancement matrix.

• There is no liquid mobile phase.

• Ionization is produced by corona discharge.

• Sample-to-sample run time as low as 4.5 seconds.

CONCLUSIONSCONCLUSIONS

Page 44: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

• Picogram sensitivity can be achieved using 2-5 μL of sample.

• No carryover or memory effect is observed during the process of 960 samples batch (and more).

• Excellent linearity and accuracy achieve with the LDTD-MS/MS system.

• Comparable performance to LC-MS/MS with higher throughput.

CONCLUSIONSCONCLUSIONS

Page 45: LASER DIODE THERMAL DESORPTION IONIZATION SOURCE FOR MASS SPECTROMETRY

QUESTIONSQUESTIONS