laser induced fluorescence transient (lift): remote measurement of light use efficiency

21
Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency in ecosystems Roland Pieruschka, Uwe Rascher, Denis Klimov, Zbigniew S. Kolber, Joseph A. Berry February, 08. 2007

Upload: dustin

Post on 12-Jan-2016

39 views

Category:

Documents


1 download

DESCRIPTION

Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency in ecosystems. Roland Pieruschka, Uwe Rascher, Denis Klimov, Zbigniew S. Kolber, Joseph A. Berry. February, 08. 2007. Objectives. Inaccessible outer canopies - need for remote - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Laser Induced Fluorescence Transient (LIFT):

remote measurement of light use efficiency

in ecosystems

Roland Pieruschka, Uwe Rascher, Denis Klimov, Zbigniew S. Kolber, Joseph A. Berry

February, 08. 2007

Page 2: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Objectives

• Inaccessible outer canopies - need for remote

measurement of light use efficiency

• Evaluation of the LIFT approach by PAM

fluorometry and gas exchange

• Measurement of cold/light stress of outer canopies

in the field

• Implementation of the data into canopy models

to reduce their uncertainty

Page 3: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

LIFT – Fluorometer• remote measurement: from a distance up to 50 m • excitation signal: 665 nm laser diode

• fluorescence emission at 690 nm: collected

by Cassegrian telescope and detected

by avelange photodiode

Page 4: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Fast Repetition Rate Fluormetry

ETRCSA RRt

Q

][

AQ

AAPSIIPSIIA

QQnIQ

t

][])[(**][

Cn

Qwith

PSII

A ][

(Kolber et al. 1998; Kolber et al. 2005. Ananyev et al. 2005)

AQPSII

C

pC

CIC

t

1

1**

CFFmFtf *)'()( time [ms]

0.0 0.5 1.0 1.5 2.0 2.5

fluor

esce

nce

yiel

d [a

.u.]

0

1

2

3

4

5

Page 5: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

What are we measuring?single vs. multiple turnover (Govindjee, 1995)

FRR: sequence of single turnover fleshlets:

• corresponds to O-J phase

(photochemical phase)

• kinetics of QA- accumulation/re-oxidation

with minimal effect on PQ pool

PAM: multiple photochemical turnover:

• corresponds to O-J-I-P phase (photochemical and thermal phase)

• well defined final state with fully reduced PQ pool

Page 6: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Laboratory experiments: bench top FRR vs. PAM

Combined measurements of:

• gas exchange (LI-6400)

• chlorophyll fluorescence

using PAM and a bench top FRR

• measurements under non-

photorespiratory conditions

Page 7: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

PAR [µmol photons m-2 s-1]

0 200 400 600 800 1000 1200 1400

Fs

& F

m' (

no

rmal

ize

d)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fm'Fs

PAR [µmol photons m-2 s-1]

0 200 400 600 800 1000 1200 1400

Fs

& F

m' (

norm

aliz

ed)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fm'Fs

Laboratory experiments: bench top FRR vs. PAM

FRR

PAM

Page 8: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

PAR [µmol photons m-2 s-1]

0 200 400 600 800 1000 1200

Fv

Fm

-1'

0.0

0.2

0.4

0.6

0.8

PAMFRR

Laboratory experiments: bench top FRR vs. PAM

Page 9: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

PAR [µmol photons m-2 s-1]

0 200 400 600 800 1000 1200

ET

R [µ

mol

m-2

s-1

]

0

20

40

60

80

100

APAM

PAR [µmol photons m-2 s-1]

0 200 400 600 800 1000 1200

ET

R [µ

mol

m-2

s-1

]

0

20

40

60

80

100

AFRR

Electron Transport Ratesgas exchange vs. fluorescence

PAM FRR

5.0*'*/ PARaFmFvETR (Genty et al. 1989)

Page 10: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

ETR (A) [µmol m-2 s-1]

0 20 40 60 80 100 120 140 160 180

ET

R (

FR

R)

[µm

ol m

-2 s

-1]

0

20

40

60

80

100

120

140

Electron Transport Ratesfrom FRR fluorescence and gas exchange

ETR (A) [µmol m-2 s-1]

0 20 40 60 80 100 120 140 160 180

ET

R (

FR

R)

[µm

ol m

-2 s

-1]

0

20

40

60

80

100

120

140

250 µmol CO2 mol-1

400 µmol CO2 mol-1

Page 11: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

PSII quantum efficiency vs. quantum yieldof CO2 assimilation

Fv Fm'-10.1 0.2 0.3 0.4 0.5 0.6

C

O2

0.02

0.03

0.04

0.05

0.06

250 µmol CO2 mol;

y=0.08*x+0.02; r ²=0.94400 µmol CO2 mol;y=0.09*x+0.01; r ²=0.93

Page 12: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Estimate of underestimationof ETR by FRR

Fv Fm'-10.1 0.2 0.3 0.4 0.5 0.6

C

O2 )

*

0.05

0.10

0.15

0.20

0.25 250 µmol CO2 mol:y=0.29*x+0.07; r ²=0.94400 µmol CO2 mol:y=0.37*x+0.03; r ²=0.95

4*(A+Rd) /PAR vs. Fv/Fm

ETR(A) [µmmol m-2 s-1]

0 20 40 60 80 100 120 140 160 180E

TR

(FR

R) C

mm

ol m

-2 s

-1]

0

20

40

60

80

100

120

140

160

180

250 µmol CO2 mol:

y=0.77*x-2.37; r ²=0.98400 µmol CO2 mol:

y=0.77*x-3.47; r ²=0.99

Corrected ETR

Page 13: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Summary I

• The LIFT/FRR is working with low excitation intensities

resulting in lower maximum fluorescence then

the PAM approach in particular under high light intensities

• However, the LIFT approach provides an advantage of remote

measurement of Fv Fm-1’ as an index of stress correlated

to ETR within undisturbed microenvironment of leaves

Page 14: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Field experiments

Impact of cold stress on photosynthesis- Capsicum annuum- Ficus spec.- Lycopersicon esculentum- Persea americana- grass community dominated by Lolium spec.

Page 15: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Predawn measurements on Lycopersicon esculentum

time

11/6

/200

6

11/1

3/20

06

11/2

0/20

06

11/2

7/20

06

12/4

/200

6

12/1

1/20

06

Fv

Fm

-1

0.0

0.2

0.4

0.6

0.8

1.0

FRR (Plant 1)FRR (Plant 2)PAM (Plant 1)PAM (Plant 2)

TM

IN [°

C]

0

5

10

15

PA

RM

AX

[µm

ol photons m-2 s

-1]

0

200

400

600

800

1000

1200

Page 16: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Diurnal course: Lycopersicon esculentum

time

11/2

6/ 1

2:00

AM

11/2

7/ 1

2:00

AM

11/2

8/ 1

2:00

AM

11/2

9/ 1

2:00

AM

11/3

0/ 1

2:00

AM

12/1

/ 12:

00 A

M

12/2

/ 12:

00 A

M

Fv

Fm

`-1

0.0

0.2

0.4

0.6

T [

°C]

0

5

10

15

20

25 PA

R [µ

mo

l ph

oto

ns m

-2 s-1]

200

400

600

800

1000

1200

T

PAR

Page 17: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

1

2

43

Predawn measurements on Persea americana

time

11/6

/200

6

11/1

3/20

06

11/2

0/20

06

11/2

7/20

06

12/4

/200

6

12/1

1/20

06

Fv

Fm

-1

0.0

0.2

0.4

0.6

0.8

TM

IN [

°C]

0

2

4

6

8

10

12

14

16

18

PA

RM

AX

[µm

ol p

ho

ton

s m-2 s

-1]

0

200

400

600

800

1000

1200

Page 18: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

time

11/2

7/ 1

2:00

AM

11/2

8/ 1

2:00

AM

11/2

9/ 1

2:00

AM

11/3

0/ 1

2:00

AM

12/1

/ 12:

00 A

M

12/2

/ 12:

00 A

M

12/3

/ 12:

00 A

M

Fv

Fm

`-1

0.0

0.2

0.4

0.6

2D Graph 2

Fv

Fm

`-1

0.0

0.2

0.4

0.6

T [°

C]

0

5

10

15

20

25

PA

R [µ

mol

pho

tons

m-2

s-1

]

200

400

600

800

1000

1200

T

PAR

target 1

target 3

Diurnal cours: Persea americana

Page 19: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Steady state fluorescence

TM

IN [

°C]

0

2

4

6

8

10

12

14

16

18

PA

RM

AX

[µm

ol ph

oto

ns m

-2 s-1]

0

200

400

600

800

1000

1200

Fs

(me

an

12

-13

:00

)

0

2

4

6

8

10

12 Capsicum annuum

time

11/1

5/-4

607

11/1

9/-4

607

11/2

3/-4

607

11/2

7/-4

607

12/1

/-460

7

12/5

/-460

7

12/9

/-460

7

Fs

(me

an

12

-13

:00

)

0

2

4

6

8

10

12 Lycopersicon esculentum

time

11/2

6/ 1

2:00

AM

11/2

7/ 1

2:00

AM

11/2

8/ 1

2:00

AM

11/2

9/ 1

2:00

AM

11/3

0/ 1

2:00

AM

12/1

/ 12:

00 A

M

12/2

/ 12:

00 A

M

Fs

0

2

4

6

8

10

Fs/

PA

R

0.00

0.02

0.04

0.06

Capsicum annuum

Lycopersicon esculentum

T [°

C]

0

5

10

15

20

25

PA

R[µ

mol photons m

-2 s-1]200

400

600

800

1000

1200TPAR

Fs

0

2

4

6

8

10

Fs/

PA

R

0.00

0.02

0.04

FsFs/PAR

Page 20: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Summary II

• The LIFT system can sensitively detect stress

correlated to ETR

• In order to quantify photosynthetic CO2 uptake

the LIFT system has to be extended by measurements of:

- light

- stomatal conductance

- temperature

Page 21: Laser Induced Fluorescence Transient (LIFT): remote measurement of light use efficiency

Acknowledgement

Marie Curie Outgoing International Fellowships(Nr: 041060 – LIFT)

Joe Berry

Zbigniew Kolber

Uwe Rascher

Denis Klimov

Larry Giles

Bob Haxo