last%time:%chapter4% today:%more%chapter4%people.physics.tamu.edu/tyana/phys218/files/lect... ·...

17
Last Time: Chapter 4 Today: More Chapter 4 Today More on free body diagrams Chapter 4 examples Monday Forces Newton’s 1 st Law Newton’s 2 nd Law Free body diagrams Examples (if we get that far) T. SCegler 09/24/2014 Texas A&M University

Upload: others

Post on 22-Aug-2020

83 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

Last  Time:  Chapter  4  Today:  More  Chapter  4  

Today  •  More  on  free  body  diagrams  •  Chapter  4  examples  

Monday  •  Forces  •  Newton’s  1st  Law  •  Newton’s  2nd  Law  •  Free  body  diagrams  •  Examples  (if  we  get  that  far)  

T.  SCegler                09/24/2014            Texas  A&M  University  

Page 2: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

Prelecture:  Ques3on  1  and  Clicker  Ques3on  

A  block  slides  down  a  fricConless  inclined  plane.  Which  of  the  following  diagrams  most  closely  resembles  the  free  body  diagram  of  this  block?  

T.  SCegler                09/24/2014            Texas  A&M  University  

Page 3: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

Checkpoint:  Ques3on  1  

A  box  of  mass  m  hangs  by  a  string  from  the  ceiling  of  an  elevator  that  is  acceleraCng  upward.    

Which  of  the  following  best  describes  the  tension  T  in  the  string?  a)  T  <  mg  b)  T  =  mg  c)  T  >  mg    

T.  SCegler                09/24/2014            Texas  A&M  University  

Page 4: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

Checkpoint:  Ques3on  2  

A  block  sits  at  rest  on  a  horizontal  fricConless  surface.  Which  of  the  follwoing  sketches  most  closely  resembles  the  correct  free  body  diagram  for  all  forces  acCng  on  the  block.  Each  red  arrow  represents  a  force.    

T.  SCegler                09/24/2014            Texas  A&M  University  

Page 5: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

T.  SCegler                09/24/2014            Texas  A&M  University  

Example    Constant  force  (eoc  4.7)  

A  68.5  kg  skater  moving  iniCally  2.40  m/s  on  rough  horizontal  ice  comes  to  rest  uniformly  in  3.52  s  due  to  fricCon.  What  force  does  fricCon  exert  on  the  skater?  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Page 6: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

You  are  standing  at  rest  and  begin  to  walk  forward.  What  force  pushes  you  forward?  

A.  the  force  of  your  feet  on  the  ground  

B.  the  force  of  your  acceleraCon  

C.  the  force  of  your  velocity  

D.  the  force  of  your  momentum  

E.  the  force  of  the  ground  on  your  feet  

Clicker  Ques3on  

T.  SCegler                07/24/2014            Texas  A&M  University  

Page 7: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

T.  SCegler                09/24/2014            Texas  A&M  University  

Example    Non-­‐constant  force  (eoc  4.60)  

An  object  with  mass  m  iniCally  at  rest  is  acted  on  by  a  force      where  k1    and  k2  are  constants.  Calculate  the  velocity  of  the  object  as  a  funcCon  of  Cme.    

!F = k1i + k2t

3 j

vx (t) = ax (t)dtt1

t2!x(t) = vx (t)dtt1

t2!

Remember            !F =m!a

Page 8: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

Clicker  Ques3on  

The  graph  to  the  right  shows  the  velocity  of  an  object  as  a  funcCon  of  Cme.  

Which  of  the  graphs  below  best  shows  the  net  force  versus  Cme  for  this  object?  

t  

vx  

0  

A.   B.   C.   D.   E.  

t  

ΣFx  

0   t  

ΣFx  

0   t  

ΣFx  

0   t  

ΣFx  

0   t  

ΣFx  

0  

T.  SCegler                09/24/2014            Texas  A&M  University  

Page 9: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

Example      eoc  4.31  

A  chair  of  mass  12.0  kg  is  si`ng    on  a  horizontal  floor  that  is  not  fricConless.  You  push  the  chair  with  a  force  40.0  N  that  is  directed  at  an  angle  of  37°  below  the  horizontal  and  the  chair  slides  along  the  floor.  a)  Draw  a  free  body  diagram  for  the  chair.  b)  Use  the  diagram  and  Newton’s  laws  to  calculate  the  normal  force  the  floor  exerts  on  the  chair.  

T.  SCegler                09/24/2014            Texas  A&M  University  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Page 10: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

Example      eoc  4.31  cont.  

A  chair  of  mass  12.0  kg  is  si`ng    on  a  horizontal  floor  that  is  not  fricConless.  You  push  the  chair  with  a  force  40.0  N  that  is  directed  at  an  angle  of  37°  below  the  horizontal  and  the  chair  slides  along  the  floor.  a)  Draw  a  free  body  diagram  for  the  chair.  b)  Use  the  diagram  and  Newton’s  laws  to  calculate  the  normal  force  the  floor  exerts  on  the  chair.  

T.  SCegler                09/24/2014            Texas  A&M  University  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Page 11: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

Example  -­‐  Person  in  an  elevator  

A  160  lbs  (72.6  kg)  person  is  on  a  scale  in  a  moving  elevator.  What  does  the  scale  read  in  each  of  the  following  scenarios?    a)  The  elevator  is  going  up  at  a  constant  velocity  of  3  m/s?  down  at  3  m/s?    

b)  The  elevator  is  acceleraCng  up  at  2  m/s2  ?  Down  at  2  m/s2  ?  

S=scale  P=person  E=elevator  

T.  SCegler                09/24/2014            Texas  A&M  University  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Page 12: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

Example  -­‐  Person  in  an  elevator  cont.  

b)  The  elevator  is  acceleraCng  up  at  2  m/s2  ?  Down  at  2  m/s2  ?   S=scale  P=person  E=elevator  

T.  SCegler                09/24/2014            Texas  A&M  University  

Page 13: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

You  are  traveling  on  an  elevator  up  the  Sears  tower,  and  you  are  standing  on  a  bathroom  scale.  

 

As  you  near  the  top  floor  and  are  slowing  down,  the  scale  reads  

 

A)  More  than  your  usual  weight  

B)  Less  than  your  usual  weight  

C)  Your  usual  weight  

 

Clicker  Ques3on  

T.  SCegler                09/24/2014            Texas  A&M  University  

Page 14: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

Example  –  Box  in  a  rocket    

A  6.50  kg  instrument  is  hanging  by  a  verCcal  wire  inside  a  space  ship  that  is  blasCng  off  the  at  the  surface  of  the  earth.    The  ship  starts  from  rest    and  reaches  an  alCtude  of  276  m  in  15.0  s  with  constant  acceleraCon.    a)  Draw  a  free  body  diagram  for  the  instrument  at  this  Cme.  b)  Find  the  force  that  the  wire  exerts  on  the  instrument.  

x = x0 + vx,0t +12axt

2Remember          

vx = v0 x + axt!F =m!aT.  SCegler                09/24/2014            Texas  A&M  University  

Page 15: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

A  cart  with  mass  m2  is  connected  to  a  mass  m1  using  a  string  that  passes  over  a  fricConless  pulley,  as  shown  below.    The  cart  is  held  moConless.    

The  tension  in  the  string  is  A)    m1g  B)    m2g  C)    0    

m2

m1

g  

a  

Clicker  Ques3on  

T.  SCegler                09/24/2014            Texas  A&M  University  

Page 16: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

Example  -­‐  mass  vs  weight  (eoc  4.19)  

At  the  surface  of  Jupiter's  moon  Io,  the  acceleraCon  due  to  gravity  is  g  =  1.81  m/s2.  A  watermelon  weighs  44.0  N  at  the  surface  of  the  earth.    a)  What  is  the  watermelon’s  mass  at  the  earth’s  surface?    b)  What  are  it’s  mass  and  weight  at  the  surface  of  Io?    

T.  SCegler                09/24/2014            Texas  A&M  University  

Page 17: Last%Time:%Chapter4% Today:%More%Chapter4%people.physics.tamu.edu/tyana/PHYS218/files/Lect... · Last%Time:%Chapter4% Today:%More%Chapter4% Today& • More%on%free%body%diagrams%

T.  SCegler                09/24/2014            Texas  A&M  University  

For  the  situaCon  depicted,  what  is  the  correct  free  body  diagram  for  Box  A?  

A  B  F  

(rough)  

(a)   (b)   (c)   (d)  

Clicker  Ques3on