lbnl leo greiner , eric anderssen, howard matis,

of 15 /15
L. Greiner 1 SLAC Test Beam 03/17/2011 STAR STAR LBNL Leo Greiner , Eric Anderssen, Howard Matis, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak, Chinh Vu, Howard Wieman UTA Jo Schambach IPHC Strasburg Marc Winter CMOS group STAR Pixel Detector A MAPS based vertex detector for STAR Short description of the detector and why we need test beam

Upload: afric

Post on 30-Jan-2016

39 views

Category:

Documents


0 download

Embed Size (px)

DESCRIPTION

STAR Pixel Detector A MAPS based vertex detector for STAR Short description of the detector and why we need test beam. LBNL Leo Greiner , Eric Anderssen, Howard Matis, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak, Chinh Vu, Howard Wieman UTA Jo Schambach - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 1SLAC Test Beam 03/17/2011

STARSTAR

LBNLLeo Greiner, Eric Anderssen, Howard Matis,

Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak, Chinh Vu,

Howard Wieman

UTAJo Schambach

IPHC StrasburgMarc Winter CMOS group

STAR Pixel Detector

A MAPS based vertex detector for STAR

Short description of the detector and why we need test beam

Page 2: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 2SLAC Test Beam 03/17/2011

STARSTARVertex Detector Motivation

Direct Topological reconstruction of Charm

Detect charm decays with small c, including D0 K

Method: Resolve displaced vertices (100-150 microns)

Page 3: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 3SLAC Test Beam 03/17/2011

STARSTARInner Detector Upgrades

TPC – Time Projection Chamber(main tracking detector in STAR)

HFT – Heavy Flavor Tracker SSD – Silicon Strip Detector

r = 22 cm IST – Inner Silicon Tracker

r = 14 cm PXL – Pixel Detector

r = 2.5, 8 cm

We track inward from the TPC with graded resolution:

TPC SSD IST PXL~1mm ~300µm ~250µm vertex<30µm

Page 4: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 4SLAC Test Beam 03/17/2011

STARSTARPXL Detector Mechanical Design

Mechanical support with kinematic mounts (insertion side)

Cabling and cooling infrastructure

Insertion from one side2 layers5 sectors / half (10 sectors total)4 ladders/sector

MAPSRDObuffers/drivers

4-layer kapton cable with aluminium tracesAluminum conductor Ladder Flex Cable

Ladder with 10 MAPS sensors (~ 2×2 cm each)

carbon fiber sector tubes (~ 200um thick)

20 cm

Page 5: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 5SLAC Test Beam 03/17/2011

STARSTARDetector Characteristics

Pointing resolution (12 19GeV/pc) m

Layers Layer 1 at 2.5 cm radiusLayer 2 at 8 cm radius

Pixel size 20.7 m X 20.7 m

Hit resolution 6 m

Position stability 6 m rms (20 m envelope)

Radiation length per layer

X/X0 = 0.37%

Number of pixels 356 M

Integration time (affects pileup) 185.6 s

Radiation requirement 20 to 90 kRad 2*1011 to 1012 1MeV n eq/cm2

Rapid detector replacement

< 8 Hours

356 M pixels on ~0.16 m2 of Silicon

Page 6: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 6SLAC Test Beam 03/17/2011

STARSTARTest Beam use

2011• Characterize pre-production prototype sensors in a

beam telescope configuration to check efficiency and resolution as a function of bias and discriminator settings for MIPS.

2012 • Prototype sector and detector tests. Test tracking with

MIPs through 4 layers of detector. Track stability with cooling air flowing.

2013• Production sector and detector tests. As above.

MAPS sensor characteristics:Column parallel RDO with in-chip CDS, discriminators and zero-

suppression.

Page 7: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 7SLAC Test Beam 03/17/2011

STARSTARParameters required for Beam Tests

Beam parameters Value Comments

Particle Type MIP

Energy MIP

Rep Rate NA

Charge per pulse Low / diffuse 1k / spill

Energy Spread NA MIPs

Bunch length rms NA

Beam spot size, x-y Minimum 3cm x 3cm

Others (emittance, …)

Logistics Requirements

Space requirements (H x W x L) 2011 – 3’ x 3’ x 1’ for telescope2012/2013 – 2’ x 6’ x 2’ + blower

Duration of Test and Shift Utilization

1 shift – setup3 shifts data taking

Desired Calendar Dates Spring/summer 2011, 2012, 2013

Page 8: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 8SLAC Test Beam 03/17/2011

STARSTARBeam Test Packages

Beam Telescope

Sector and detector apparatus with air cooling housing and blower

Page 9: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 9SLAC Test Beam 03/17/2011

STARSTAR

backup

Page 10: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 10SLAC Test Beam 03/17/2011

STARSTAR

2 m (42 AWG TP)6 m (24 AWG TP)

100 m (fiber optic)

Highly parallel system

4 ladders per sector 1 Mass Termination Board (MTB) per sector 1 sector per RDO board 10 RDO boards in the PXL system

RDO motherboard w/ Xilinx Virtex-5 FPGA

RDO PC with DDL link to RDO board

Mass Termination Board + latch-up protected power daughter-card

PXL Detector Basic Unit (RDO)

Clk, config, data, powerClk, config, data

PXL built events

Page 11: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 11SLAC Test Beam 03/17/2011

STARSTARMonolithic Active Pixel Sensors

• Standard commercial CMOS technology • Room temperature operation• Sensor and signal processing are integrated in the same silicon wafer• Signal is created in the low-doped epitaxial layer (typically ~10-15 μm) → MIP

signal is limited to <1000 electrons• Charge collection is mainly through thermal diffusion (~100 ns), reflective

boundaries at p-well and substrate → cluster size is about ~10 pixels (20-30 μm pitch)

• 100% fill-factor • Fast readout• Proven thinning to 50 micron

MAPS pixel cross-section (not to scale)

Page 12: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 12SLAC Test Beam 03/17/2011

STARSTARMimosa-26 Efficiency vs. threshold

Page 13: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 13SLAC Test Beam 03/17/2011

STARSTARMimosa-26HR eff vs. fake hit rate

Page 14: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 14SLAC Test Beam 03/17/2011

STARSTARRDO System Design – Physical Layout

1-2 mLow mass twisted pair

6 m - twisted pair

Sensors / Ladders / Sectors(interaction point)

LU Protected Regulators,Mass cable termination

RDO Boards

DAQ PCs(Low Rad Area)

DAQ Room

PowerSupplies

Platform 30 m

100 m - Fiber optic30 mControl

PCs

30 m

Page 15: LBNL Leo Greiner , Eric Anderssen, Howard Matis,

L. Greiner 15SLAC Test Beam 03/17/2011

STARSTARPXL RDO Architecture (1 sector)

Ladder x 4

FPGA

LU p

rot.

pow

er

MTB x 1 PowerSupplies

ControlPCs

Trigger

DAQRDO PCsSIU

ADC

USB

i/o

RDO board x 1

Sensor testingProbe testingSRAM

Black – cfg, ctl, clk. pathBlue – data pathRed – power / gnd pathGreen – testing path

fiber

Unified Development Platform