lec 04 linear algebra

23
Linear Algebra topics L. Lanari Control Systems Wednesday, October 8, 2014

Upload: matteo

Post on 18-Nov-2015

224 views

Category:

Documents


0 download

DESCRIPTION

Control Systems

TRANSCRIPT

  • Linear Algebra topicsL. Lanari

    Control Systems

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 2

    Matrices

    M =

    m11 m12 m1qm21 m22 m2q...

    ... ...

    mp1 mp,q1 mpq

    M = {mij : i = 1, . . . , p & j = 1, . . . , q}

    MT =mij : m

    ij = mji

    1 1

    v : n 1vT : 1 n

    M : p p

    M : p q (p = q)

    transpose

    vector (column)

    row vector

    scalar

    square matrix

    rectangular matrix

    Terminologyand notation

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 3

    Matrices

    m11 m12 m1n0 m22

    . . . m2n

    0. . .

    . . ....

    0 0 mnn

    M1 0 00 M2 00 0 M3

    M11 M120 M22

    M = diag{Mi}, i = 1, . . . , k

    m1 0 0

    0 m2. . . 0

    0. . .

    . . . 00 0 mn

    M = diag{mi}, i = 1, . . . , pdiagonal matrix

    block diagonal matrix

    upper triangular matrix

    upper block triangular matrix

    lower triangular matrix

    strictly lower triangular matrix

    lower block triangular matrix

    strictly lower block triangular matrix

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 4

    Matrices

    determinant of a diagonal matrix = product of the diagonal terms

    det

    M11 M120 M22

    = det(M11) det(M22)

    det

    M1 00 M2

    = det(M1) det(M2) special case

    special case

    useful for the eigenvalue computation

    a11 a1n...

    . . ....

    an1 ann

    1 0...

    . . ....

    0 n

    =

    1 0...

    . . ....

    0 n

    a11 a1n...

    . . ....

    an1 ann

    a111 a1nn

    .... . .

    ...an11 annn

    =

    a111 a1n1

    .... . .

    ...an1n annn

    gives

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 5

    Matrices

    det(M) = 0

    A1

    1= A

    (AB)1 = B1A1

    M = diag{mi} = M1 = diag{1

    mi}

    non-singular(invertible)square matrix

    A1A = AA1 = I

    A0 = I

    detA= det

    AT

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 6

    generic transformationu

    AuA

    u

    u

    Au

    Auor

    particular directionssuch that Au is parallel to u

    Au = u

    scalar(scaling factor)

    Eigenvalues & Eigenvectors

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 7

    Aui = iui (iI A)ui = 0

    det(iI A) = 0

    pA() = det(I A) = n + an1n1 + an2n2 + + a1+ a0

    i

    pA() = det(I A) = 0

    eigenvalue

    for non-trivial solution

    characteristic polynomial (order n = dim(A))

    eigenvalue solution of

    Eigenvalues & Eigenvectors

    (scaling)

    i

    eigenvector ui

    ui = 0

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 8

    pA() = det(I A) = n + an1n1 + an2n2 + + a1+ a0

    ii R

    i C i

    ma(i)

    (i,i )

    generic eigenvalue

    polynomial with real coefficients.

    algebraicmultiplicity

    Eigenvalues & Eigenvectors

    i Ri C

    ui

    uii

    real components

    ui complex components

    pA() = 0

    also is a solution pairs

    therefore

    if then

    ieigenvalue pA() = 0solution of with multiplicity

    The set of the n solutions of is defined as the spectrum of A: (A)

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 9

    Eigenvalues & Eigenvectors

    special cases

    m11 m12 m1n0 m22

    . . . m2n

    0. . .

    . . ....

    0 0 mnn

    m1 0 0

    0 m2. . . 0

    0. . .

    . . . 00 0 mn

    diagonalmatrix

    triangularmatrix

    eigenvalues = {mi}

    eigenvalues = {mii}

    elements on themain diagonal

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 10

    A TAT1

    Aui = iui uivTi A = v

    Ti i = iv

    Ti vTi

    A(ui) = Aui = iui = i(ui)

    Eigenvalues & Eigenvectors

    det(T ) = 0

    Tsame eigenvalues as A

    right eigenvector

    left eigenvector

    eigenvalues are invariant under similarity transformations

    eigenvector associated to i is not unique

    all belong to the same linear subspace

    (proof)

    vTi uj = ijwith

    similarity transformations

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 11

    Eigenvalues & Eigenvectors

    i eigenvalue one or more linearly independent eigenvectors

    A1 =

    1 00 1

    , u11 =

    10

    , u12 =

    01

    A2 =

    1 0 1

    , with = 0, only u1 =

    10

    ma(i) > 1

    pA() = ( 1)2

    Vi = {u Rn|Au = iu}

    Linear subspace (eigenspace) associated to an eigenvalue i

    dim(Vi) = mg(i)

    mg(i) = dim [Ker(A iI)] = n rank(A iI)

    geometric multiplicity

    with

    A1 and A2 same eigenvalues with same m.a.

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 12

    1 mg(i) ma(i) n

    Eigenvalues & Eigenvectors

    A1 =

    1 00 1

    , (A1 1I) =

    0 00 0

    mg(1) = 2 = ma(1)

    A2 =

    1 0 1

    , (A2 1I) =

    0 0 0

    mg(1) = 1 < ma(1)

    useful property

    45

    u1

    u2

    u3

    P =

    0.5 0 0.50 1 00.5 0 0.5

    u1 =

    010

    u2 =

    101

    u3 =

    101

    1 = 2 = 1

    3 = 0

    projection matrix

    ma(1) = 2 = mg(1)

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 13

    Diagonalization

    Def. An (n x n) matrix A is said to be diagonalizable if there exists an invertible (n x n) matrix T such that TAT -1 is a diagonal matrix

    Th. An (n x n) matrix A is diagonalizable if and only if it has n independent eigenvectors

    Since the eigenvalues are invariant under similarity transformations

    if A diagonalizable

    TAT1 = = diag{i}, i = 1, . . . , n

    eigenvalues of A

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 14

    Diagonalization

    Aui = iui, i = 1, . . . , n

    Au1 u2 un

    =u1 u2 un

    1 0 00 2 0

    . . .0 0 n

    We need to find T

    i ui n linearly independent(by hyp.)

    non-singular

    in matrix form

    AU = U

    U =u1 u2 un

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 15

    AU = U

    AT1 = T1 A = T1T = TAT1

    Diagonalization

    Distinct eigenvalues (real and/or complex) A diagonalizable==

    T1 = Ubeing non-singular, we can define T such thatU

    therefore the diagonalizing similarity transformation is T s.t.

    T1 = U =u1 u2 un

    A: (n x n) is diagonalizable if and only if

    mg(i) = ma(i) for every i

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 16

    Diagonalization

    Complex eigenvalues?i = i + ji

    ui = uai + jubi

    eigenvalue

    eigenvector

    diagonalization

    or real block 2 x 2

    complexelements

    realelements

    (i,i )

    T1 =ui ui

    Di = TAT1 =

    i 00 i

    T1 =uai ubi

    Mi = TAT1 =

    i ii i

    2 choices

    real system representation for complex eigenvalues

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 17

    r = diag{1, . . . ,r}

    Diagonalization

    Simultaneous presence of real and complex eigenvalues

    If A diagonalizable, there exists a non-singular matrix R such that

    real eigenvalues

    complex eigenvalues

    RAR1 = diag {r,Mr+1,Mr+3, . . . ,Mq1}

    Mi = TAT1 =

    i ii i

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 18

    Spectral decomposition or Eigendecomposition

    A = U U1

    U1 =

    vT1vT2...vTn

    U1U = I vTi uj = ij , i, j = 1, . . . , n

    A =n

    i=1

    i ui vTi

    Hyp: A diagonalizable

    U =u1 u2 un

    columns (linearly independent)

    rows

    A = U U1 =1u1 2u2 nun

    vT1vT2...vTn

    spectral form of A

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 19

    A =n

    i=1

    i ui vTi

    Spectral decomposition

    columnrow

    is the projection matrix on the invariant subspace generated by ui

    (n x n) Pi = uivTi

    A =

    2 10 1

    u1 =

    10

    u2 =

    11

    vT1 =1 1

    vT2 =

    0 1

    P1 =

    1 10 0

    P2 =

    0 10 1

    1 = 2

    2 = 1

    u1

    u2

    P1 v

    P2 v

    v

    v =

    21

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 20

    Not diagonalizable case

    mg(i) < ma(i)

    mg(i) nki

    Jk =

    i 1 0 00 i 1 0...

    . . .. . .

    . . ....

    0 0 i 10 0 i

    Rnknk

    blocks of dimension

    Jordanblock

    of dimension nk

    Null space has dimension 1Jk iI

    1 mg(i) ma(i) nSince in general

    if A not diagonalizable then

    the knowledge of this dimension is out of scope

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 21

    Not diagonalizable case

    Generalized eigenvector chain of nk generalized eigenvectors

    Jordan canonical form (block diagonal)

    ma(i) = n =p

    i=1

    nk

    mg(i) = p

    example: unique eigenvalue i of matrix A (n x n)

    TAT1 = J =

    J1

    . . .Jp

    Jk Rnknk

    T :

    Jordan block of dim nkwith

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 22

    Special cases

    if ma(i) = 1 then mg(i) = 1

    if mg(i) = 1 then only one Jordan block of dimension ma(i)

    then only one Jordan block of dimension ma(i)

    1 10 1

    1 = 1 ma(1) = 2 mg(1) = 1

    From the rank-nullity theorem

    rank(A - iI)nullity(A - iI)n

    if i unique eigenvalue of matrix A and if rank(iI - A) = ma(i) - 1

    dim (Rn) = dim (Ker(A iI)) + dim (Im(A iI))

    A iI : Rn Rn

    Wednesday, October 8, 2014

  • Lanari: CS - Linear Algebra 23

    Summary

    A diagonalizable

    A not diagonalizable

    = diag{i} T s.t. TAT1 =

    mg(i) = ma(i) for all i

    T s.t.TAT1 = diag{Jk}

    A =n

    i=1

    i ui vTi

    r = diag{1, . . . ,r}

    Mi =

    i ii i

    for real & complex i

    alternative choice for complex i

    Jk =

    i 1 0...

    . . .. . .

    ...0 i 10 0 i

    Rnknk

    Jordan blocks

    mg(i) < ma(i)

    spectral form

    block diagonal

    Wednesday, October 8, 2014