lec01-part a-in class solutions

Upload: jeff-wu

Post on 08-Jul-2018

271 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Lec01-Part a-In Class Solutions

    1/13

    1©Moein Mehrtash

     R E  C  T  I  L  I   NE 

     A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 1

    Tests reveal that a normal driver takes about 0.75s  before he or she can

    react to a situation to avoid a collision. It takes about 3s for a driver having

    0.1% alcohol in his system to do the same. If such drivers are traveling on a

    straight road at 30 mph (44 ft/s) and their cars can decelerate at 2ft/s2  ,

    determine the shortest stopping distance d  for each from the moment they

    see the pedestrians.

    Moral: If you must drink, please don’t drive! 

  • 8/19/2019 Lec01-Part a-In Class Solutions

    2/13

    2©Moein Mehrtash

     R E  C  T  I  L  I   NE 

     A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 1

    s0(reaction) 

    d (braking)

    Plan:

    Use rectilinear Kinematics of particle

    =  , =  → =

      =

      →  = → 

    =

     Solution:

    Normal driver:

    1. Reaction travel distance (s0)

      ft  s s ft vt  s   3375.0/440 2. Braking distance d(constant deceleration) final velocity will be zero 

    0

    2

    0

    2tan

    200

     s savvadsvdv s

     s

    t consa

    v

    v

             

          ft d  ft d  s ft  s ft    51733/22/440   2

    22

  • 8/19/2019 Lec01-Part a-In Class Solutions

    3/13

    3©Moein Mehrtash

     R E  C  T  I  L  I   NE 

     A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 1

    s0(reaction) 

    d (braking)

    Solution:

    Drunk driver:

    1. Reaction travel distance (s0)

      ft  s s ft vt  s   1323/440

    2. Braking distance d(constant deceleration) final velocity will be zero 

        ft d  ft d  s ft  s ft    616132/22/440  2

    22

  • 8/19/2019 Lec01-Part a-In Class Solutions

    4/13

    4©Moein Mehrtash

     R E  C  T  I  L  I   NE 

     A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 2

    The v –s graph describing the motion of a motorcycle is shown. Construct

    the a –s graph of the motion and determine the time needed for the

    motorcycle to reach the position s=400ft

  • 8/19/2019 Lec01-Part a-In Class Solutions

    5/13

    5©Moein Mehrtash

     R E  C  T  I  L  I   NE 

     A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 2

    Solution:

    For each distance range the a-s graph can be found

    1. Distance range : 0

  • 8/19/2019 Lec01-Part a-In Class Solutions

    6/13

    6©Moein Mehrtash

     R E  C  T  I  L  I   NE 

     A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 2

    Solution:

    For each distance range the a-s graph can be found

    1. Distance range : 0

  • 8/19/2019 Lec01-Part a-In Class Solutions

    7/13

    7©Moein Mehrtash

     R E  C  T  I  L  I   NE  A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 2

      sec05.4505050

    /50  20005.8  

      

           st dsdt ds

    vdsdt  s ft v   s  ft 

    2. Distance range : 200

  • 8/19/2019 Lec01-Part a-In Class Solutions

    8/13

    8©Moein Mehrtash

     C  U R  V  I  L  I   NE  A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 3

    In a handling test, a car is driven through the slalom course shown. It is

    assumed that the car path is sinusoidal and that the maximum lateral

    acceleration is 0.7g. If the testers wish to design a slalom through which the

    maximum speed is 80 km/h, what cone spacing L should be used?

  • 8/19/2019 Lec01-Part a-In Class Solutions

    9/13

    9©Moein Mehrtash

     C  U R  V  I  L  I   NE  A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 3

    Solution:

    1. The car sinusoidal motion can be

    defined as

    Plan:

    The maximum of the normal acceleration is provided, using normal-tangent

    kinematic to find a curvature that cause this acceleration at the maxvelocity. Based on the obtained curvature, the cone spacing can be arranged

    2. Lateral (normal) acceleration:

      

    2va

    n

    T=2L

    LA

    x

    y

     x A y    sin

     LT 

         

     2

    an

    at

    To reach max lateral acceleration the radius

    of the curvature must be minimized

  • 8/19/2019 Lec01-Part a-In Class Solutions

    10/13

    10©Moein Mehrtash

     C  U R  V  I  L  I   NE  A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 3

    3. The minimum of the curvature radius locates at T=π/4 and this radius can

    be found from

    at T=π /4

    Maximum lateral acceleration is 0.7g

     

     x Adx yd 

     x Adxdy

     x A

     x A

     xd  yd 

    dxdy

      

      

      

        

    sin/

    cos/

    sin

    cos1

    /

    /1

    222

    2

    2/3222

    22

    2/32

     A

     AT 

    T  A

    T  A

    2

    2

    2

    2

    2/3

    222

    min

    4

    1

    4

    2sin

    4

    2cos1

        

      

      

     

      

     

     

      

     

     

    mT 

     LmT 

    mT 

    kmhv sm g a

    n

    1.4623.92

    34/

    6.3/80/81.97.07.0

    22

    2

    min

    2

    2

    max

       

  • 8/19/2019 Lec01-Part a-In Class Solutions

    11/13

    11©Moein Mehrtash

     C  U R  V  I  L  I   NE  A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 4

    A tracking radar lies in the vertical plane of the

    path of a rocket which is coasting in unpowered

    flight above the atmosphere. For the instant

    when θ = 30°, the tracking data give r = 25(104)

    ft, ṙ  = 4000 ft/sec, and     ̇ = 0.80 deg/sec. Theacceleration of the rocket is due only to

    gravitational attraction and for its particular

    altitude is 31.4 ft/sec2 vertically down. For these

    conditions determine the velocity v of the rocket

    and the values of r   ̈and    .

  • 8/19/2019 Lec01-Part a-In Class Solutions

    12/13

    12©Moein Mehrtash

     C  U R  V  I  L  I   NE  A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 4

    Solution:

    1. The component of velocity in cylindrical sys

    Plan:

    • Unpowered (no thrust) and above

    atmosphere (no aerodynamic drag)• Gravity is the only source of kinematic

    changes

    • Use cylindrical (polar) coordinate system

      s ft  s ft  ft vvv

     s ft r v

     s ft vr v

    r r 

    /5310/3490/4000

    /3490180

    8.01025

    /4000

    2222

    4

      

      

     

       

  • 8/19/2019 Lec01-Part a-In Class Solutions

    13/13

    13©Moein Mehrtash

     C  U R  V  I  L  I   NE  A  R  K  I   NE  M A  T  I   C  S 

    LEC01-Kinematics of Particles Solutions: Example 4

    Solution:

    2. The rocket acceleration is due to gravity

    2

    2

    /7.1530sin4.31

    /2.2730cos4.31

     s ft a

     s ft ar 

     

    Acceleration in polar coordinate sys

      24

    24

    22

    2

    42

    /1084.3

    /7.15/180

    8.04000210252

    /5.21/2.27/180

    8.01025

     srad 

     s ft  srad mmr r a

     s ft r  s ft  srad mr r r ar