le¸cons de math´ematiques jacques-louis lions effective

38
Le¸consdemath´ ematiques Jacques-Louis Lions Effective behavior of random media From an error analysis to regularity theory Julian Fischer*, Antoine Gloria, Stefan Neukamm, Felix Otto* * Max Planck Institute for Mathematics in the Sciences Leipzig, Germany

Upload: others

Post on 09-Apr-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Lecons de mathematiques Jacques-Louis Lions

Effective behavior of random media

From an error analysis to regularity theory

Julian Fischer*, Antoine Gloria, Stefan Neukamm, Felix

Otto*

* Max Planck Institute for Mathematics in the Sciences

Leipzig, Germany

Page 2: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Effective behavior of media

under statistical/incomplete information:

Early explicit approximate treatment,

recent numerical applications

Page 3: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Maxwell: Effective resistance of a composite

Page 4: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Einstein: Effective viscosity of a suspension

→ F → F

Page 5: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Recent: composite materials & porous media

Effective elasticity Effective permeability

Effective behavior by simulationof “Representative Volume”Rigorous mathematics/qualitative theory:Varadhan&Papanicolaou, Kozlov ’79, H-convergence by Murat&Tartar

Page 6: Le¸cons de math´ematiques Jacques-Louis Lions Effective

A crucial influence of J.-L. Lions’ school ...

source: Conference 60th birthday

source: Academie des Sciences,

Institut de France

... on “homogenization”

Page 7: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Quantitative homogenization theory

and connections to other fields

Motivation from numerical analysis:

Representative Volume method

Connections with elliptic regularity theory:

generic regularity theory on large scales

Page 8: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Stochastic homogenization:

The Representative Volume method

and its numerical analysis

Page 9: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Random media ...

λ-uniformly coefficient fields a = a(x) on d-dim. space Rd

∃ λ > 0 ∀x ∈ Rd ∀ ξ ∈ R

d ξ · a(x)ξ ≥ λ|ξ|2, |a(x)ξ| ≤ |ξ|

Elliptic operator −∇ · a∇u

Ensemble 〈·〉 of (=probability measure on)

λ-uniformly elliptic coefficient fields a

Example of ensemble 〈·〉points Poisson distributed with density 1,

union of balls of radius 14 around points,

a = 1id on union, a = λid on complement,

... = elliptic operators with random coefficient fields

Page 10: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Effective behavior of random medium

= homogenized coefficient

Eg conductive medium:

function u electric potential, −∇u electric field,

coefficient field a conductivity,

q := −a∇u electric current, ∇ · q = 0 stationary current

For a-harmonic function u = u(x), that is, −∇ · a∇u = 0

homogenized coefficient ahom provides linear relation between

average field − limR↑∞

−∫

BR∇u to average current − lim

R↑∞−∫

BRa∇u

How to get from 〈·〉 to ahom ?

Page 11: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Representative Volume Method

Introduce artificial period L

Example of periodized ensemble 〈·〉L

points Poisson distributed with density 1,

on torus [0, L)d

union of balls of radius 14 around points,

a = 1id on union, a = λid on complement,

Given coordinate direction i = 1, · · · , d seek L-periodic φi with

−∇ · a(ei +∇φi) = 0 on [0, L)d.

Note ei +∇φi = ∇(xi + φi) ; since −∫

[0,L)d(ei +∇φi) = ei take

−∫

[0,L)da(ei+∇φi) as approximation to ahomei for L ≫ 1

Page 12: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Solving d elliptic equations −∇ · a(∇φi + ei) = 0 ...

direction e1

potential

x1 + φ1

current

a(e1 +∇φ1)

average current

−∫

a(e1 +∇φ1)

=(

0.49641−0.02137

)

≈ ahome1

direction e2

potential

x2 + φ2

current

a(e2 +∇φ1)

average current

−∫

a(e2 +∇φ2)

=(

−0.021370.53240

)

≈ ahome2

simulations by R. Kriemann (MPI)

... gives approximation to ahom

Page 13: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Two types of errors: Random error

ahom,L(a)ei := −∫

[0,L)da(ei+∇φi) where −∇·a(ei+∇φi) = 0, φi per

φi and thus ahom,Ldepend on realization aahom,L still random

fluctuations of ahom,Las measured by variance

〈(aL,hom−〈aL,hom〉L)2〉L decrease

as L increases

Page 14: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Random error: approx. depends on realization ...

realization 1

potential

current

ahom ≈(

0.49641 −0.02137−0.02137 0.53240

)

realization 2

potential

current

ahom ≈(

0.45101 0.011040.01104 0.45682

)

realization 3

potential

current

ahom ≈(

0.56213 0.008570.00857 0.60043

)

... and thus fluctuates

Page 15: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Fluctuations decrease with increasing L

ahom ≈

(

0.49641 −0.02137−0.02137 0.53240

)

ahom ≈

(

0.51837 0.003830.00383 0.51154

)

ahom ≈

(

0.45101 0.011040.01104 0.45682

)

ahom ≈

(

0.53204 0.004850.00485 0.52289

)

ahom ≈

(

0.56213 0.008570.00857 0.60043

)

ahom ≈

(

0.51538 −0.00052−0.00052 0.52152

)

Page 16: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Two types of errors: systematic error

ahom,L(a)ei := −∫

[0,L)da(ei+∇φi) where −∇·a(ei+∇φi) = 0, φi per

Expectation 〈ahom,L〉Lstill depends on L

since from 〈·〉 to 〈·〉Lstatistics are altered

by artificial long-range correlations

Page 17: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Also systematic error decreases with increasing L

〈ahom,L〉L = λhom,L

(

1 00 1

)

because of symmetry of 〈·〉 under rotation

L = 2 L = 5 L = 10 L = 20 L = 50

0.551 0.524 0.520 0.522 0.522

Page 18: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Scaling of both errors in L ...

Pick a according to 〈·〉L, solve for φ (period L),

compute spatial average ahom,Lei := −∫

[0,L)da(ei +∇φi)

Take random variable ahom,L as approximation to ahom

〈error2〉L = random2 + systematic2:

〈|ahom,L−ahom|2〉L = var〈·〉L[ahom,L]+ |〈ahom,L〉L − ahom|2

Qualitative theory yields:

limL↑∞

var〈·〉L[ahom,L] = 0, limL↑∞

〈ahom,L〉L = ahom

... why of interest?

Page 19: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Number of samples N vs. artificial period L

Take N samples, i. e. N independent picks a1, · · · , aN from 〈·〉L.

Compute empirical mean1N

N∑

n=1−∫

[0,L)dan(∇φi,n + ei)

〈total error2〉L = 1N random error2 + systematic error2

L ↑ reduces

systematic error and

random error

N ↑ reduces only

effect of random error

Page 20: Le¸cons de math´ematiques Jacques-Louis Lions Effective

State of art in quantitative stochastic homogenization ...

Yurinskii ’86 : suboptimal rates in L for mixing 〈·〉

Naddaf & Spencer ’98, & Conlon ’00:optimal rates for small contrast 1− λ ≪ 1,for 〈·〉 with spectral gap

Gloria & Otto ’11, & Neukamm ’13, & Marahrens ’13:optimal rates for all λ > 0 for 〈·〉 with spectral gap,Logarithmic Sobolev (concentration of measure)

Armstrong & Smart ’14, & Mourrat ’14, & Kuusi ’15:towards optimal stochastic integrability (Gaussian),for mixing 〈·〉

... of linear equations in divergence form

Page 21: Le¸cons de math´ematiques Jacques-Louis Lions Effective

An optimal result

Let 〈·〉L be ensemble of a’s with period L,

with 〈·〉L suitably coupled to 〈·〉

For a with period L

solve −∇ · (ei +∇φi) = 0 for φi of period L.

Set ahom,Lei = −∫

[0,L)da(ei +∇φi).

Theorem [Gloria&O.’13, G.&Neukamm&O. Inventiones’15]

Random error2 = var〈·〉L

[

ahom,L

]

≤ C(d, λ)L−d

Systematic error =∣

∣〈ahom,L〉L − ahom∣

∣ ≤ C(d, λ)L−d lnd2 L

Gloria&Nolen ’14: (random) error approximately Gaussian

Page 22: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Stochastic homogenization:

A regularizing effect of randomness on large scales

captured by Liouville properties of all order

Page 23: Le¸cons de math´ematiques Jacques-Louis Lions Effective

a-harmonic functions of polynomial growth ...

Uniformly elliptic symm. coefficient field a = a(x) on Rd

λ|ξ|2 ≤ ξ · a(x)ξ ≤ |ξ|2 for some λ > 0

For any exponent α ≥ 0 consider

Xα :={

u a-harmonic∣

limR↑∞1Rα

(

−∫

BRu2

)12 = 0

}

.

Under which conditions dimXα = dimXEuclα ?

... Liouville properties of all order?

Page 24: Le¸cons de math´ematiques Jacques-Louis Lions Effective

For mere uniform ellipticity...

Always dimXα ≤ C(λ)αd−1 [Colding & Minicozzi, Li ’97]

(volume doubling, Poincare-Neumann inequality on all scales)

In general dimXα 6= dimXEuclα for any α > 0 and d > 1!

For (x1, x2) = (r cos θ, r sin θ)

consider metric cone

a = (dr)2 + r2

α2(dθ)2.

Then u = rα cos θ is a-harmonic,

hence u ∈ Xα+,

hence dimXα+ > 1.

Persist under smoothing out the vertex

... complete failure of Liouville

Page 25: Le¸cons de math´ematiques Jacques-Louis Lions Effective

More on uniform ellipticity

∀ α dimXα ≤ C(λ)αd−1 [Colding & Minicozzi, Li ’97]

∀ α ∈ (0,1) ∃ a dimXα > 1 (d ≥ 2)

∃ 0 < α0(d, λ) ≪ 1 ∀ α ≤ α0 dimXα = 1

[Nash, De Giorgi ’57]

Systems: ∃ a dimXα=0 > 1 (d ≥ 3)

[De Giorgi ’68]

In which sense does ahave to be flat at infinity

for dimXα = dimXEuclα ?

Page 26: Le¸cons de math´ematiques Jacques-Louis Lions Effective

A criterion for Liouville inspired by homogenization

In which sense does a have to be flat at infinity

for dimXα = dimXEuclα ?

Harmonic coordinates {ui}i=1,··· ,d : −∇ · a∇ui = 0

field ∇ui closed 1-form ↔ current a∇ui closed (d− 1)-form

“Flatness at infinity” means

∇ui − ei = dφi with 0-form φi of sublinear growth

a∇ui−ahomei = dσi with (d− 2)-form σi of sublinear growth

a∇ui − ahomei = ∇ · σi for σi = {σijk}jk=1,··· ,d skew

... scalar and vector potential of corrector

Page 27: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Liouville of order α < 2 ...

λ|ξ|2 ≤ ξ · aξ ≤ |ξ|2, Xα :={

u a-harm.∣

∣ limR↑∞1Rα

(

−∫

BRu2)12 = 0

}

.

Proposition 1[Gloria, Neukamm, & O. ’14]

For i = 1, · · · , d let φi scalar and σi skew be related to a via

a(ei +∇φi) = ahomei +∇ · σi for some matrix ahom.

Suppose sub-linear growth in sense of

limR↑∞1R

(

−∫

BR|(φ, σ)|2

)12 = 0.

Then Xα = [{1}] for α ∈ (0,1)

and Xα = [{1, x1+φ1, · · · , xd+φd}] for α ∈ [1,2).

In particular dimXα = dimXEuclα for all α < 2.

... from sublinear growth of scalar & vector potential

Page 28: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Tool: decay of an intrinsic excess

Exc(u,BR) :=

infξ∈Rd

(

−∫

BR|∇(u− ξi(xi+φi))|

2)12

energy distance to a-linear

Proposition 1’[Gloria, Neukamm, & O. ’14]

∀ α < 2 ∃ δ = δ(d, λ, α) > 0 such that provided

1R

(

−∫

BR|(φ, σ)|2

)12 ≤ δ for R ≥ r

for some r < ∞, then for any a-harmonic u

Exc(u,Br) ≤ C(d, λ)(r

R)α−1Exc(u,BR) for R ≥ r

Page 29: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Classical proof in a picture

ahom-harmonic uhom with same boundary data on ∂BR

Correct (1 + φi∂i)uhom so that ≈ a-harmonic

Cut-off (1 + ηφi∂i)uhom so that = u on ∂BR

Taylor on small ball Br uhom(0) + ξi(xi+φi) with ξ = ∇uhom(0)

Campanato’s approach to Schauder theory

Page 30: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Classical proof: Campanato’s approach to Schauder theory

Compare u to ahom-harmonic function uhom on every BR:

−∇ · ahom∇uhom = 0 in BR, uhom = u on ∂BR

Write u = (1+ ηφi∂i)uhom + w then w = 0 on ∂BR and

−∇·a∇w = ∇·((φia−σi)∇η∂iuhom)+∇ · ((1− η)(a− ahom)∇uhom),

∇(u− ξi(xi+φi)) = (∂iuhom− ξi)(ei+∇φi)+ φi∇∂iu

hom+∇w

Energy estimate for w, inner & bdry regularity for uhom:

Exc(u,Br) ≤(

−∫

Br |∇(u− ξi(xi+φi))|2)12

.(

rR + (Rr )

d2∆(Rρ )

d2+1 + ρ

R

)(

−∫

B2R|∇u|2

)12

where ∆ := 1R

(

−∫

BR|(φ, σ)|2

)12. Campanato iteration.

... merit of vector potential σ

Page 31: Le¸cons de math´ematiques Jacques-Louis Lions Effective

General form of randomness ...

Rd ∋ z acts on space of coefficient fields a via a(z + ·).

An ensemble 〈·〉 on space of coefficient fields a

1) is called stationary if for any measurable F = F(a),F(a(z + ·)) and F(a) have same expectation,

2) is called ergodic if for any measurable F = F(a),∀z F(a(z + ·)) = F(a) =⇒ ∀ 〈·〉-a.e. a F(a) = 〈F 〉

Theorem 1[Gloria, Neukamm, O’14]

Let 〈·〉 be stationary and ergodic ensemble

on space of λ-uniformly elliptic coefficient fields on Rd.

Then ∀ 〈·〉-a.e. a ∀ α < 2 dimXα = dimXEuclα .

... creates generic large-scale regularity

Page 32: Le¸cons de math´ematiques Jacques-Louis Lions Effective

A stochastic construction

Proposition 1”[Gloria, Neukamm, O ’14]

Let 〈·〉 be stationary and ergodic ensemble

on space of λ-uniformly elliptic coefficient fields on Rd.

Then for i = 1, · · · , d ∃ φi(a, x) scalar and σi(a, x) skew s.t.

∇(φ, σ) is shift-equivariant ∇(φ, σ)(a(z + ·), x) = ∇(φ, σ)(a, z + x),

of vanishing expectation 〈∇(φ, σ)〉 = 0,

of bounded second moment 〈|∇(φ, σ)|2〉 ≤ C(λ),

and a(ei +∇φi) = 〈a(ei +∇φi)〉+∇ · σi.

This yields ∀ 〈·〉-a.e. a limR↑∞1R

(

−∫

BR|(φ, σ)|2

)12 = 0.

Proof a la Papanicolaou & Varadhan

after natural gauge for σi:−△σijk = ∂jσik − ∂kqij where qi = a(ei +∇φi)

Page 33: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Credits

Avellaneda&Lin’87 for periodic adimXα = dimXEucl

α for all α > 0

Benjamini&Copin&Kozma&Yadin’11 stat. & ergod. 〈·〉dimXα = dimXEucl

α for all α ≤ 1

Marahrens&O. ’13 for stationary & mixing 〈·〉:C0,α-theory for all α < 1

Armstrong&Smart ’14 for stationary & mixing 〈·〉:C0,1-theory

Page 34: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Liouville for all α ...

λ|ξ|2 ≤ ξ · aξ ≤ |ξ|2, Xα :={

u a-harm.∣

∣ limR↑∞1Rα

(

−∫

BRu2)12 = 0

}

.

Proposition 2[Fischer & O. ’15]

For i = 1, · · · , d let φi scalar and σi skew be related to a via

a(ei +∇φi) = ahomei +∇ · σi for some matrix ahom.

Suppose∫ ∞

1

dRR

1R

(

−∫

BR|(φ, σ)|2

)12 < ∞.

Then dimXα = dimXEuclα for all α < ∞.

... under slightly quantified sublinear growth

Page 35: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Idea of proof: Xα large enough

Xhomk+

:={

u ahom-harmonic

lim supR↑∞

1Rk

(

−∫

BRu2

)12 < ∞

}

= XEuclk+

Step 1 Xhomk+

/Xhom(k−1)+ ⊂ Xk+/X(k−1)+

For k-homogeneous qhom ∈ Xhomk+

construct q ∈ Xk+ via

q = (1+φi∂i)qhom+

∑∞n=0(wn−p′n) where p′n ∈ X(k−1)+

−∇ · a∇wn = ∇ · (I(B2n/B2n−1)(φia− σi)∇∂iphom).

Goal:

sub-k-growth of w :=∑∞n=0(wn−p′n)

i.e. lim supR↑∞1

Rk−1

(

−∫

BR|∇w|2

)12 = 0

Page 36: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Idea of proof: Xα not too large

Step 2 Xk+/X(k−1)+ ⊂ Xhomk+

/Xhom(k−1)+

preliminary version of intrinsic excess of order k

Exck(u,BR) := infp′∈X(k−1)+,q

hom∈Xhomk+ ,k-hom

(

−∫

BR|∇(u−p′−q)|2

)12

Goal: Excess decay of order (k+1)−:

∀ α < k, a-harm. u Exck(u,Br) . ( rR)αExck(u,BR) for 1 ≪ r ≤ R

Step 3 Buckle under summability assumption:

Growth of w at order k− ↔ excess decay of order (k+1)−

Have canonical Xk+/X(k−1)+∼= Xhom

k+/Xhom

(k−1)+

but no canonical Xk+∼= Xhom

k+.

Page 37: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Slightly quantified sublinear growth ...

Proposition 2” [Fischer & O. ’15]

Let a be centered stationary Gaussian field s.t.

|〈a(x)⊗ a(0)〉| ≤ |x|−β for all x ∈ Rd for some 0 < β ≤ β0(d, λ).

Let Φ be 1-Lipschitz with image in λ-elliptic tensors;

set a(x) := Φ(a(x)).

Then ∃ r∗ = r∗(a) with 〈exp(rβ∗ )〉 ≤ C(d, λ, β) and

1R2−

BR|(φ, σ)|2 ≤ C(d, λ, β)(r∗R)βlog(e+ log R

r∗) for R ≥ r∗.

Proof: estimates on sensitivity ∂∇(φ,σ)(x)∂a(y)

, concentration of measure

cf Armstrong& Mourrat ’14

... under mild decorrelation

Page 38: Le¸cons de math´ematiques Jacques-Louis Lions Effective

Quantitative homogenization theory

from practitioner’s questions to geometric rigidity

Motivation from numerical analysis:

Representative Volume method

Connections with elliptic regularity theory:

generic large-scale regularity