lecture 1 computational fluid dynamics (cfd) wb1428 ... · pdf filelecture 1 computational...

49
LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 Mathieu Pourquie [email protected] http://www.ahd.tudelft.nl/mathieu/CFD.html http://www.ahd.tudelft.nl info for students wb1428 Computational Fluid Dynamics Fluid dynamics group Stromingsleer building part 5B room 1-32 015-2782997

Upload: truongxuyen

Post on 10-Mar-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

LECTURE 1

Computational Fluid Dynamics (CFD) wb1428

Mathieu [email protected]://www.ahd.tudelft.nl/∼mathieu/CFD.html

http://www.ahd.tudelft.nlinfo for studentswb1428 Computational Fluid Dynamics

Fluid dynamics groupStromingsleerbuilding part 5Broom 1-32015-2782997

Page 2: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

• relevance CFD

• preview of CFD

• subject of lectures

• examination

• material

• questionnaire

Page 3: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

What is CFD about?

• Fluid dynamics

• Theoretical

• Experimental

• CFD: Computational

Page 4: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Why (Computational) Fluid Dynamics?

• flows in nature and technology

• flows combined with heat transfer

• flows combined with particle transfer

• flows with free surfaces (water waves)

• flows with free surfaces (oil-water droplet)

• flows with chemistry

• flows with moving boundaries

Page 5: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture
Page 6: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Near the surface: boundary layer flow.

Page 7: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture
Page 8: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Contours of X Velocity (m/s) Feb 07, 2007FLUENT 6.2 (2d, dp, segregated, ske)

1.97e+00

-1.13e+00

-9.21e-01

-7.14e-01

-5.07e-01

-3.01e-01

-9.42e-02

1.12e-01

3.19e-01

5.26e-01

7.32e-01

9.39e-01

1.15e+00

1.35e+00

1.56e+00

1.77e+00

Page 9: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Path Lines Colored by Particle ID (Time=1.0739e+02) Feb 08, 2005FLUENT 6.1 (2d, dp, segregated, lam, unsteady)

2.90e+01

0.00e+00

1.45e+00

2.90e+00

4.35e+00

5.80e+00

7.25e+00

8.70e+00

1.01e+01

1.16e+01

1.31e+01

1.45e+01

1.59e+01

1.74e+01

1.89e+01

2.03e+01

2.18e+01

2.32e+01

2.46e+01

2.61e+01

2.75e+01

Page 10: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Contours of Vorticity Magnitude (1/s) (Time=1.0739e+02) Feb 08, 2005FLUENT 6.1 (2d, dp, segregated, lam, unsteady)

4.37e+00

1.07e-04

2.18e-01

4.37e-01

6.55e-01

8.73e-01

1.09e+00

1.31e+00

1.53e+00

1.75e+00

1.96e+00

2.18e+00

2.40e+00

2.62e+00

2.84e+00

3.06e+00

3.27e+00

3.49e+00

3.71e+00

3.93e+00

4.15e+00

Contours of X Velocity (m/s) (Time=1.0739e+02) Feb 08, 2005FLUENT 6.1 (2d, dp, segregated, lam, unsteady)

1.74e+00

-3.63e-01

-2.58e-01

-1.53e-01

-4.75e-02

5.76e-02

1.63e-01

2.68e-01

3.73e-01

4.78e-01

5.83e-01

6.88e-01

7.93e-01

8.98e-01

1.00e+00

1.11e+00

1.21e+00

1.32e+00

1.42e+00

1.53e+00

1.63e+00

Page 11: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

A sphere

Contours of Axial Velocity (m/s)FLUENT 6.1 (axi, dp, segregated, RSM)

Apr 20, 2004

1.35e+00

1.28e+00

1.21e+00

1.13e+00

1.06e+00

9.88e-01

9.15e-01

8.42e-01

7.70e-01

6.97e-01

6.25e-01

5.52e-01

4.79e-01

4.07e-01

3.34e-01

2.62e-01

1.89e-01

1.16e-01

4.37e-02

-2.89e-02

-1.01e-01

Page 12: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Grid Apr 20, 2004FLUENT 6.1 (axi, dp, segregated, RSM)

Grid Apr 20, 200FLUENT 6.1 (axi, dp, segregated, RSM)

Page 13: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Contours of Static Pressure (pascal) Apr 20, 2004FLUENT 6.1 (axi, dp, segregated, RSM)

1.08e+03

7.00e+00

6.05e+01

1.14e+02

1.67e+02

2.21e+02

2.74e+02

3.28e+02

3.81e+02

4.35e+02

4.88e+02

5.42e+02

5.95e+02

6.49e+02

7.02e+02

7.56e+02

8.09e+02

8.63e+02

9.16e+02

9.70e+02

1.02e+03

Pressure Coefficient vs. Curve Length Apr 20, 2004FLUENT 6.1 (axi, dp, segregated, RSM)

Curve Length (m)

-1.25e+00

-1.00e+00

-7.50e-01

-5.00e-01

-2.50e-01

0.00e+00

2.50e-01

5.00e-01

7.50e-01

1.00e+00

0 0.5 1 1.5 2 2.5 3 3.5

PressureCoefficient

expsphere

Page 14: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Contours of X Velocity (m/s) (Time=1.5000e+01)FLUENT 6.1 (3d, dp, segregated, ske, unsteady)

Feb 09, 2005

6.26e-025.63e-025.01e-024.38e-023.75e-023.13e-022.50e-021.88e-021.25e-026.26e-03-3.47e-18-6.26e-03-1.25e-02-1.88e-02-2.50e-02-3.13e-02-3.75e-02-4.38e-02-5.01e-02-5.63e-02-6.26e-02

Z

YX

Contours of X Velocity (m/s) (Time=1.5000e+01)FLUENT 6.1 (3d, dp, segregated, ske, unsteady

Feb 09, 20

6.26e-02

5.63e-02

5.01e-02

4.38e-02

3.75e-02

3.13e-02

2.50e-02

1.88e-02

1.25e-02

6.26e-03

-3.47e-18

-6.26e-03

-1.25e-02

-1.88e-02

-2.50e-02

-3.13e-02

-3.75e-02

-4.38e-02

-5.01e-02

-5.63e-02

-6.26e-02

Z

YX

Page 15: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Contours of Volume fraction (water) (Time=1.8750e+00) Jan 06, 2005FLUENT 6.1 (2d, dp, segregated, vof, rngke, unsteady)

1.00e+00

0.00e+00

5.00e-01

Page 16: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture
Page 17: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Why Computational Fluid Dynamics?

• speed of computers

• price of computers

• speed of numerical algorithms

• data accessible

• change geometry at little cost

• try out ideal circumstances

Page 18: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Activities of a CFD modelerWriting a big code

• write code (10 %)

– paper work 8%

∗ writing out an integral balance

∗ interpolation

– implementation 2%

• find bugs (80 %)

• validate (10%)

Page 19: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Activities of a CFD modelerCalculating realistic cases

• Clean the geometry (80 %)

• Make a grid (15 %)

• Validate the code (3%)

• Run the problem (2%)

VALIDATION????

• codes contain bugs

• user chooses a method

• user determines flow regime (turbulent, laminar)

• grid quality

Page 20: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

What is this lecture about?

• Fluid Dynamics on computer

• Solve fluid flow equations on computer

• Write your own code or

• Use a commercial package: Fluent

Page 21: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Writing your own code:

• takes time

• takes experience

• spend time on non-essential subjects

BUT:

• you see the code

• you understand what the code does

• you can repair bugs

Page 22: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Using a commercial package:

• preprocessor

• postprocessor

• programming done for you

• manual

• help desk

• takes less time

• takes less experience

BUT:

• you do not see the code

• you do not always understand what the code does

• no bug repair

Page 23: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

IN PRACTICE:

• you will use a commercial code

• continuity, manual, helpdesk

Do commercial codes always work?NO.

• commercial codes have bugs

• numerical algorithms do not always work

• commercial code is collection of tools

• you still need to understand the tools

Page 24: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Commercial packages

• fluent http://www.fluent.com

• CFX http://www-waterloo.ansys.com/cfx/

• ansys http://www-waterloo.ansys.com/

• starcd http://www.cd-adapco.com note same as comet!

• comet http://www.cd-adapco.com note same as starcd!

• femlab http://www.comsol.com/

• flow3D http://www.flow3d.com

Page 25: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Objectives of lectures (in principle)

• background of the package

• simulate model problems

• some model problems in matlab

• simulate fluid flow using commercial CFD package

• use/choose numerical method

• make numerical grid

• use/choose physical model

• discuss and validate results

• why validation?

– rounding errors

– approximation errors

– modeling errors

– CFD package errors

( )

Page 26: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Objective: learn about flow solverWhat does a flow solver doDiscretization

T(x)

T1 T2 T3 T4 T5

T4 T5 T6

T6

T3T2T1 T7

Discretization → equationsSolution of equationsVisualization of solution

Page 27: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Why discretize?

• more equations

• profile assumption

• when profile: ”easy” equation/solution (computer is dumm!)

• x (space) or t (time)

Page 28: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

• linear profile assumption in t between points

• derivative dydt ∼ Δy

Δt

• derivative can be calculated (approximated) IF y known in points

• how about a profile assumption in a differential equation?

2

1

t1

y1

y2

t2

Page 29: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

dy

dt= −Ky

dC

dt= −KC

• radioactive decay

• chemical reaction species C with abundant other species

• solve with finite difference method

Page 30: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

2

1

t1

y1

y2

t2

dy

dt= −Ky

dy

dt∼ Δy

Δt= −Ky

y2 − y1

Δt= −Ky

y2 − y1

Δt= −Ky1

Page 31: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

y2 − y1

Δt= −Ky1

y2 = y1 − ΔtKy1

• if you know y1, you get y2

• we have assumed constant derivative, linear profile between points!

Observations:

• t1 and t2 closer → y1 and y2 closer and approximation derivative moreaccurate

• and vice versa

Page 32: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40

y

t

grafiek

numericalexact

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40

y

t

grafiek

numericalexact

Page 33: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40

y

t

grafiek

numericalexact

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40

y

t

grafiek

numericalexact

Page 34: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

-80

-60

-40

-20

0

20

40

60

80

100

120

0 50 100 150 200 250

y

t

grafiek

numericalexact

Page 35: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Observations:

• the smaller the timestep the more accurate

• the bigger the timestep the less accurate

• the interpolated exact solution also becomes less accurate

• the calculated solution becomes even less accurate and also becomesnon-physical

– errors accumulate

– errors can grow: instability

too big timestep, NO programming errors, still:

• non-physical values

• instability

y2 = y1 − ΔtKy1

y2 = (1 − ΔtK)y1

Page 36: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

y2 = y1 − ΔtKy1

y2 = (1 − ΔtK)y1

y2 = My1

For the physical solution

• y2 < y1

Solution decays.

• y > 0

Solution stays positive.

• y → 0

Solution goes to 0 for long times.

•M < 1

• Δt < 1/K

Page 37: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

THIS FORMULA WILL BE ENCOUNTERED MANY TIMESy2 = My1M < 1

Page 38: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

• problems in a simple model calculation

• commercial codes can suffer from similar problems

• this can happen in a (much) more complicated situation

• study numerical effects (errors) in simplified situations

• study numerical effects (errors) in building-block flows

• where does the error come from?

– physical model

– numerical error

– programming error

Page 39: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

The finite volume method, an integral balance

SOURCE

FLUX 1 FLUX 2

• volume ΔV

• side surface A

• length Δx

• Fouriers law: net flux q = −k∂T∂x

• Midpoint rule: source = ∫ sdV = Smp ∗ ΔV

Result: k ∗ T1−2∗T2+T3Δx2 = S2

Page 40: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Working with a package. Flow around buildings.

Page 41: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

OUTLINE

• Fluid flow: Navier-Stokes

• Model equations: diffusion, advection, advection-diffusion, wave equa-tion

• finite difference, finite volume (finite element)

• model eqns: Poisson, diffusion, advection, wave

• discretisation, numerical error, stability, explicit, implicit

• matrix equation solvers

• mass conservation (pressure correction)

• Navier-Stokes (incompressible, compressible), heat transfer

• fluent solver structure, boundary conditions, setting up a problem influent

• grid generation

• turbulence

Page 42: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

• building block flows

– boundary layer

– square cylinder

– round cylinder

– airfoil

Page 43: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Lecture form

• lectures

• exercises: matlab

• exercises: fluent

LOOK on the www for announcements!computer exercise PC room Pallas on Thu 21 Feb!

Page 44: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Examination

• assignment: fluid flow calculation with matlab/Fluent

• suggest your own flow

– (in practice) 2D, axi-symmetric

– you should have some qualitative and quantitative info

• suggest your own assignment

• assignment: exercise by hand and with matlab (optional)

• discussion of report (2 page, pointwise, plus figures/results)

Page 45: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Examination

• assignment plus disscussion 60%

• some exercises 40%

– determine order of method by taylor series

– write out a discretisation/interpolation (equation, BC)

– evaluate grids

– make a stability analysis

– interpret numerical errors in a simulation

• three credit points

• you want more? Come up with a more realistic (matlab/Fluent) prob-lem (1 point)

Page 46: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

Material

• sheets on www

• background material:

– Ferziger & Peric, Computational methods for fluid dynamics, Springer

– J. van Kan, Numerieke wiskunde voor technici, DUP

– Delft Fluent User Grouphttp://www.ahd.tudelft.nl/∼mathieu/fluent group/index.html

– Pre-requisites:

∗ Heat transfer: Winterton, ”Heat transfer”, OUP (90 pages)

∗ Advanced Fluid dynamics

· Lecture notes FREE notes,http://www.ahd.tudelft.nl, education

· Batchelor ”Fluid Dynamics”

· Kundu and Cohen, ”Fluid Dynamics”

· Tritton, ”Physical fluid dynamics”.

Page 47: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

limitations of lectures (in principle)

• incompressible (density = constant)

• low Ma compressible (density NOT constant), perhaps some compress-ible

• Flow, plus possibly

– physical models for turbulence

– heat transfer, mass transfer

Page 48: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

• CFD

• Fluid Dynamics

• Computer

• you

Page 49: LECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... · PDF fileLECTURE 1 Computational Fluid Dynamics (CFD) wb1428 ... •Fouriers law: net flux q = −k∂T ∂x ... Lecture

questionnaire

• did you do advanced fluid dynamics?

• did you do anything numerical before (v Kan, numerical analysis)

• what programming languages do you know (Fortran, C, C++, Pascal,matlab)