lecture 13 photodetectors and experimental verification of quantum nature of light

25
Purdue University Spring 2014 Prof. Yong P. Chen ([email protected] ) Lecture 13 (3/10/2014) Slide 1 Introduction to Quantum Optics & Quantum Photonics PHYS522 ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light Reminder: •Lecture notes taker •HWK3 due in Wednesday

Upload: ashtyn

Post on 05-Feb-2016

30 views

Category:

Documents


0 download

DESCRIPTION

Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light. Reminder: Lecture notes taker HWK3 due in Wednesday. Course Outline. Part 1: basic review: Optics+Quantum; Part 2: Basic Light-matter interaction; laser; Part 3: Quantum Optics of photons - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 1

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Lecture 13Photodetectors and Experimental Verification of

Quantum Nature of Light

Reminder: •Lecture notes taker•HWK3 due in Wednesday

Page 2: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 2

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Lectures Topics Lecture 1 (1/13) Overview (FQ1+) Lecture 2 (1/15) Review Classical Optics (FQ2; FS1-2) No Class on 1/20 Monday (MLK day) Lecture 3 (1/22) Review Quantum Mechanics, birth of photons (FQ3+) Lecture 4 (1/27) Quantum Information, cryptography & communication (FQ12) Lecture 5 (1/29) Radiative Transitions in Atoms & Molecules (FQ4; FS8.2) Lecture 6 (2/03) Radiative/Inter-band transition in solids (FS3, FS7.3.2) Lecture 7 (2/05) Masers & Lasers: CW, pulsed, frequency comb, Xasers Lecture 8 (2/10) Photon Statistics (FQ5) Lecture 9 (2/12) Photon Correlation (FQ6), extension to other (quasi)particles Lecture 10 (2/17) Coherent, Squeezed & Number states (FQ7,8) Lecture 11 (2/19) Resonant Light-atom interaction, density matrices, Rabi oscillation (FQ9) Lecture 12 (2/24) Solid state quantum structures: wells, wires and dots (FS6) Lecture 13 (2/26) Laser cooling of atoms & solids (FQ11+) Lecture 14 (3/03) Cold atoms & atom optics, atom lasers (given by TA R. Niffenegger) Lecture 15 (3/05) TBD (Special topics/APS/coherent control) Lecture 16 (3/10) Excitons and Polaritons (FS4+) Lecture 17 (3/12) Luminescence, Luminescence/NV centers & quantum emitters (FS5,9+) No classes on 3/17 & 3/19 (Spring Break) Lecture 18 (3/24) EIT, slow light (Agarwal) & coherent control Lecture 19 (3/26) Quantum entanglement, memory & teleportation (FQ14) Lecture 20 (3/31) Atoms in cavities, Jaynes-Cummings model (FQ10) Lecture 21 (4/02) Cavity QED/circuit QED, optomechanics Lecture 22 (4/07) Quantum Computing, photon based QC (FQ13+) Lecture 23 (4/09) Quantum Computing systems: ions, Rydberg atoms, molecules Lecture 24 (4/14) Quantum Computing systems: superconductor/cQED, quantum dots, NMR Lecture 25 (4/16) Photonics with nanomaterials: CNT, graphene & 2D materials (FS8+) Lecture 26 (4/21) Phonons/Vibrons and Raman spectroscopy, CARS (FS10) Lecture 27 (4/23) Special topics: Quantum Sensing & Photodetectors, applications Lecture 28 (4/28) Special topics: Optically synthetic gauge fields/topological/quantum

matter, quantum emulation, student presentations Lecture 29 (4/30) Special topics: Casimir, (quantum) plasmonics etc. student presentations Final Exam on (TBD)

Course OutlinePart 1: basic review:Optics+Quantum;

Part 2: Basic Light-matter interaction; laser;

Part 3: Quantum Optics of photons

Part 4: More advanced light-matter interaction

Part 5: Quantum information/photonics/applications

Subject to change;Check updates on course web/wiki

Page 3: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 3

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Quantum Optics of PhotonsFQ’Chap5

Chap 7-8: coherent, squeezed, & number states

FQ’Chap6

Page 4: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 4

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Photon StatisticsFQ’Chap5

Single photon detector:•PMT (photomultiplier tube)•APD (avalanche photodiode)

Page 5: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 5

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Classification of Light by Photon Statistics

(Nonclassical light)

Poisson Statistics

Page 6: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 6

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Subpoissonian Light

But: any (random) loss willrandomize the photons(det. Subpoissonian challenging)

Page 7: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 7

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Photodetectors (experimental & theory)

• Critical for quantum optics/photonics• Understand photodetection process: Quantum

light or quantum response of photodetectors?• Types of common photodetectors

– Photoconductor & photodiode– Single photon/counting detector: PMT & APD

• Theory of photodetectors– Semiclassical theory (Poisson)– Quantum theory– Shot/quantum noise, fano factor

FO’Chap 3.7; FQ Chap 5.8-5.10

Page 8: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 8

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Some Reviews on Photodetectors• Yotter, R.A.; Wilson, D.M. “A Review of Photodetectors for Sensing

Light-Emitting Reporters in Biological Systems”, IEEE SENSORS JOURNAL, 3,288, (2003)

• Peter Krizan and Samo Korpar, “Photodetectors in Particle Physics Experiments”, Annu. Rev. Nucl. Part. Sci. 2013. 63:329–49

• Sochi et al. “Nanowire Photodetectors”, J Nanosci Nanotechnol. 2010 Mar;10(3):1430-49

Books:• G.H.Rieke, Detection of Light (2ed. 2003) --- astro appl.• G. Knoll, ‘Radiation detection and measurements’ • Nicholas Tsoulfanidis, ‘MEASUREMENT AND DETECTION OF

RADIATION’, 3-ed 2010 [online]

– esp. higher energy radiation/photons

Page 9: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 9

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Yotter, R.A.; Wilson, D.M. “A Review of Photodetectors for Sensing Light-Emitting Reporters in Biological Systems”, IEEE SENSORS JOURNAL, 3,288, (2003)

Page 10: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 10

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Photodetector: photoconductor

• Dark current (I0)

• Photocurrent I=I-I0

• Responsitivity= photocurrent/power

Photoelectric or photothermoelectric?

Page 11: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 11

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

photodiode

Page 12: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 12

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap21/F21-04%20Semiconduct%20converter.jpg

Page 13: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 13

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Page 14: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 14

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Build-in electric field at the interface between QD layer and graphene due to the balance in Fermi level.

PbS: Electron dopant

G.Konstantatos et al. ‘12

Page 15: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Graphene Photodetectors and Phototransistors

Graphene Photodetectors• Fast photoresponse• Lower photoresponsivity • Due to “Intrinsic” properties of Graphene(carriers generated and transported in graphene) • Photoelectric vs photothermoelectric?

Hybrid Graphene-QD Phototransistors• High photoresponsivity • Slow photoresponse• Carriers generated external to graphene but transferred to /transported by graphene

Advantage of Graphene Phtotodetectors• Room temperature and broadband operation . • High speed • Graphene is flexible, light, and visually transparent. • Operational wavelength can be tuned.

Potential Applications • High-speed optical communications• Terahertz detection• Remote sensing and Spectroscopy

Nature Nano. 7, 363, (2012)

Nature Photonics. 4, 297, (2010)

15

Page 16: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 16

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

(single photon) photodetector

PMT APD

(eg. MgO)

Page 17: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 17

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Theory of Photodetection (semiclasical)

If I(t)=I constant

If I(t) fluctuating, superpoissonian

Page 18: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 18

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Theory of Photodetection (quantum)

But: any (random) loss willrandomize the photons(det. Subpoissonian challenging)

Key: high Q.E.

Page 19: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 19

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Noise in Photodiodes

Page 20: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 20

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Shot Noise (“quantum noise”)

Page 21: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 21

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Page 22: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 22

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

(classical) Noise Reduction

Also: feed-forward

Page 23: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 23

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Experimental Observation of quantum nature of light: sub-poissonian light

Use sub-poissonian electrons to gernerate SubP-light

Sub-poissoniancounting statistics

Page 24: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 24

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Sub-shot noise photocurrent

Page 25: Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 25

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Next Lecture (10): quantum optics of photons

• FQ Chap 5.