lecture 15 - section 9.7 tangents to curves given ...jiwenhe/math1432/lectures/lecture15.pdf ·...

92
Tangents Locus Lecture 15 Section 9.7 Tangents to Curves Given Parametrically Jiwen He Department of Mathematics, University of Houston [email protected] http://math.uh.edu/jiwenhe/Math1432 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 1 / 14

Upload: others

Post on 24-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus

Lecture 15Section 9.7 Tangents to Curves Given Parametrically

Jiwen He

Department of Mathematics, University of Houston

[email protected]://math.uh.edu/∼jiwenhe/Math1432

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 1 / 14

Page 2: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Proof.

m(t0) = limh→0

y(t0 + h)− y(t0)

x(t0 + h)− x(t0)=

limh→0

y(t0 + h)− y(t0)

h

limh→0

x(t0 + h)− x(t0)

h

=y ′(t0)

x ′(t0)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 3: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Proof.

m(t0) = limh→0

y(t0 + h)− y(t0)

x(t0 + h)− x(t0)=

limh→0

y(t0 + h)− y(t0)

h

limh→0

x(t0 + h)− x(t0)

h

=y ′(t0)

x ′(t0)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 4: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Proof.

m(t0) = limh→0

y(t0 + h)− y(t0)

x(t0 + h)− x(t0)=

limh→0

y(t0 + h)− y(t0)

h

limh→0

x(t0 + h)− x(t0)

h

=y ′(t0)

x ′(t0)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 5: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Proof.

m(t0) = limh→0

y(t0 + h)− y(t0)

x(t0 + h)− x(t0)=

limh→0

y(t0 + h)− y(t0)

h

limh→0

x(t0 + h)− x(t0)

h

=y ′(t0)

x ′(t0)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 6: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Proof.

m(t0) = limh→0

y(t0 + h)− y(t0)

x(t0 + h)− x(t0)=

limh→0

y(t0 + h)− y(t0)

h

limh→0

x(t0 + h)− x(t0)

h

=y ′(t0)

x ′(t0)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 7: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Proof.

m(t0) = limh→0

y(t0 + h)− y(t0)

x(t0 + h)− x(t0)=

limh→0

y(t0 + h)− y(t0)

h

limh→0

x(t0 + h)− x(t0)

h

=y ′(t0)

x ′(t0)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 8: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Proof.

(y − y0

)=

y ′(t0)

x ′(t0)

(x − x0

)⇒ x ′(t0)

(y − y0

)= y ′(t0)

(x − x0

)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 9: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Proof.

(y − y0

)=

y ′(t0)

x ′(t0)

(x − x0

)⇒ x ′(t0)

(y − y0

)= y ′(t0)

(x − x0

)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 10: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Proof.

(y − y0

)=

y ′(t0)

x ′(t0)

(x − x0

)⇒ x ′(t0)

(y − y0

)= y ′(t0)

(x − x0

)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 11: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Definition

The curve has a vertical tangent if x ′(t0) = 0

The curve has a horizontal tangent if y ′(t0) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 12: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Definition

The curve has a vertical tangent if x ′(t0) = 0

The curve has a horizontal tangent if y ′(t0) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 13: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Example

The graph of a function y = f (x), x ∈ I , is a curve C that isparametrized by x(t) = t, y(t) = f (t), t ∈ I .

The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)=

dy

dx(x0) = f ′(x0), x0 = t0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 14: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Tangents to Parametrized curves

Tangent line

Let C ={(x(t), y(t)) : t ∈ I

}.

For a time t0 ∈ I , assume x ′(t0) 6= 0.The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)

The equation of the tangent line is

x ′(t0)(y − y0

)− y ′(t0)

(x − x0

)= 0

Example

The graph of a function y = f (x), x ∈ I , is a curve C that isparametrized by x(t) = t, y(t) = f (t), t ∈ I .

The slope of the curve at time t0 is

m(t0) =y ′(t0)

x ′(t0)=

dy

dx(x0) = f ′(x0), x0 = t0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 2 / 14

Page 15: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Velocity and Speed Along a Plane Curve

Parametrization by the Motion

Imaging an object moving alongthe curve C .

Let r(t) =(x(t), y(t)

)the

position of the object at time t.

Velocity and Speed Along a Plane Curve

The velocity of the object at time t isv(t) = r′(t) =

(x ′(t), y ′(t)

).

The speed of the object at time t is

v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2.

The instanteneous direction of motion gives the unit tangentvector T:

T(t) =v(t)

v(t).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 3 / 14

Page 16: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Velocity and Speed Along a Plane Curve

Parametrization by the Motion

Imaging an object moving alongthe curve C .

Let r(t) =(x(t), y(t)

)the

position of the object at time t.

Velocity and Speed Along a Plane Curve

The velocity of the object at time t isv(t) = r′(t) =

(x ′(t), y ′(t)

).

The speed of the object at time t is

v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2.

The instanteneous direction of motion gives the unit tangentvector T:

T(t) =v(t)

v(t).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 3 / 14

Page 17: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Velocity and Speed Along a Plane Curve

Parametrization by the Motion

Imaging an object moving alongthe curve C .

Let r(t) =(x(t), y(t)

)the

position of the object at time t.

Velocity and Speed Along a Plane Curve

The velocity of the object at time t isv(t) = r′(t) =

(x ′(t), y ′(t)

).

The speed of the object at time t is

v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2.

The instanteneous direction of motion gives the unit tangentvector T:

T(t) =v(t)

v(t).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 3 / 14

Page 18: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Velocity and Speed Along a Plane Curve

Parametrization by the Motion

Imaging an object moving alongthe curve C .

Let r(t) =(x(t), y(t)

)the

position of the object at time t.

Velocity and Speed Along a Plane Curve

The velocity of the object at time t isv(t) = r′(t) =

(x ′(t), y ′(t)

).

The speed of the object at time t is

v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2.

The instanteneous direction of motion gives the unit tangentvector T:

T(t) =v(t)

v(t).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 3 / 14

Page 19: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Velocity and Speed Along a Plane Curve

Parametrization by the Motion

Imaging an object moving alongthe curve C .

Let r(t) =(x(t), y(t)

)the

position of the object at time t.

Velocity and Speed Along a Plane Curve

The velocity of the object at time t isv(t) = r′(t) =

(x ′(t), y ′(t)

).

The speed of the object at time t is

v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2.

The instanteneous direction of motion gives the unit tangentvector T:

T(t) =v(t)

v(t).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 3 / 14

Page 20: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Velocity and Speed Along a Plane Curve

Parametrization by the Motion

Imaging an object moving alongthe curve C .

Let r(t) =(x(t), y(t)

)the

position of the object at time t.

Velocity and Speed Along a Plane Curve

The velocity of the object at time t isv(t) = r′(t) =

(x ′(t), y ′(t)

).

The speed of the object at time t is

v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2.

The instanteneous direction of motion gives the unit tangentvector T:

T(t) =v(t)

v(t).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 3 / 14

Page 21: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [1, 3]:

The position r(t) =(x(t), y(t)

)=

(t, 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(1, 2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 22: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [1, 3]:

The position r(t) =(x(t), y(t)

)=

(t, 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(1, 2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 23: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [1, 3]:

The position r(t) =(x(t), y(t)

)=

(t, 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(1, 2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 24: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [1, 3]:

The position r(t) =(x(t), y(t)

)=

(t, 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(1, 2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 25: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [1, 3]:

The position r(t) =(x(t), y(t)

)=

(t, 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(1, 2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 26: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [1, 3]:

The position r(t) =(x(t), y(t)

)=

(t, 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(1, 2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 27: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [1, 3]:

The position r(t) =(x(t), y(t)

)=

(t, 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(1, 2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 28: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [1, 3]:

The position r(t) =(x(t), y(t)

)=

(t, 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(1, 2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 29: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 2]:

The position r(t) =(x(t), y(t)

)=

(3− t, 6− 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(−1,−2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(−1,−2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 30: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 2]:

The position r(t) =(x(t), y(t)

)=

(3− t, 6− 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(−1,−2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(−1,−2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 31: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 2]:

The position r(t) =(x(t), y(t)

)=

(3− t, 6− 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(−1,−2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(−1,−2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 32: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 2]:

The position r(t) =(x(t), y(t)

)=

(3− t, 6− 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(−1,−2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(−1,−2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 33: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 2]:

The position r(t) =(x(t), y(t)

)=

(3− t, 6− 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(−1,−2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(−1,−2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 34: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 2]:

The position r(t) =(x(t), y(t)

)=

(3− t, 6− 2t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(−1,−2

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(−1,−2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 35: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 4π]:

The position r(t) =(x(t), y(t)

)=

(2− cos t, 4− 2 cos t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(sin t, 2 sin t

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5 sin t.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 36: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 4π]:

The position r(t) =(x(t), y(t)

)=

(2− cos t, 4− 2 cos t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(sin t, 2 sin t

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5 sin t.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 37: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 4π]:

The position r(t) =(x(t), y(t)

)=

(2− cos t, 4− 2 cos t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(sin t, 2 sin t

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5 sin t.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 38: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 4π]:

The position r(t) =(x(t), y(t)

)=

(2− cos t, 4− 2 cos t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(sin t, 2 sin t

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5 sin t.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 39: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 4π]:

The position r(t) =(x(t), y(t)

)=

(2− cos t, 4− 2 cos t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(sin t, 2 sin t

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5 sin t.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 40: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = 3− t, then y(t) = 6− 2t, t ∈ [0, 2]

Set x(t) = 2− cos t, then y(t) = 4− 2 cos t,t ∈ [0, 4π].

At time t ∈ [0, 4π]:

The position r(t) =(x(t), y(t)

)=

(2− cos t, 4− 2 cos t

).

The velocity v(t) =(x ′(t), y ′(t)

)=

(sin t, 2 sin t

).

The speed v(t) = ‖v(t)‖ =√[

x ′(t)]2

+[y ′(t)

]2=√

5 sin t.

The unit tangent vector T(t) = v(t)v(t) = 1√

5

(1, 2

)The slope m(t) = y ′(t)

x ′(t) = 2.

The tangent line y = 2x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 4 / 14

Page 41: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− t2, y(t) = t, t ∈ [−1, 1].

r(t0) =(x(t0), y(t0)

)=

(1− t2

0 , t0)

= (1, 0) ⇒ t0 = 0.

Velocity v(t0) =(x ′(t0), y

′(t0))

=(−2t0, 1

)= (0, 1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0, 1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 42: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− t2, y(t) = t, t ∈ [−1, 1].

r(t0) =(x(t0), y(t0)

)=

(1− t2

0 , t0)

= (1, 0) ⇒ t0 = 0.

Velocity v(t0) =(x ′(t0), y

′(t0))

=(−2t0, 1

)= (0, 1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0, 1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 43: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− t2, y(t) = t, t ∈ [−1, 1].

r(t0) =(x(t0), y(t0)

)=

(1− t2

0 , t0)

= (1, 0) ⇒ t0 = 0.

Velocity v(t0) =(x ′(t0), y

′(t0))

=(−2t0, 1

)= (0, 1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0, 1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 44: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− t2, y(t) = t, t ∈ [−1, 1].

r(t0) =(x(t0), y(t0)

)=

(1− t2

0 , t0)

= (1, 0) ⇒ t0 = 0.

Velocity v(t0) =(x ′(t0), y

′(t0))

=(−2t0, 1

)= (0, 1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0, 1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 45: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− t2, y(t) = t, t ∈ [−1, 1].

r(t0) =(x(t0), y(t0)

)=

(1− t2

0 , t0)

= (1, 0) ⇒ t0 = 0.

Velocity v(t0) =(x ′(t0), y

′(t0))

=(−2t0, 1

)= (0, 1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0, 1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 46: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− t2, y(t) = t, t ∈ [−1, 1].

r(t0) =(x(t0), y(t0)

)=

(1− t2

0 , t0)

= (1, 0) ⇒ t0 = 0.

Velocity v(t0) =(x ′(t0), y

′(t0))

=(−2t0, 1

)= (0, 1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0, 1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 47: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− t2, y(t) = t, t ∈ [−1, 1].

r(t0) =(x(t0), y(t0)

)=

(1− t2

0 , t0)

= (1, 0) ⇒ t0 = 0.

Velocity v(t0) =(x ′(t0), y

′(t0))

=(−2t0, 1

)= (0, 1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0, 1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 48: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− cos2 t, y(t) = cos t, t ∈ [0, π]

r(t0) =(1− cos2 t0, cos t0

)= (1, 0) ⇒ t0 = π

2 .

v(t0) =(x ′(t0), y

′(t0))

=(sin 2t0,− sin t0

)= (0,−1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0,−1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 49: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− cos2 t, y(t) = cos t, t ∈ [0, π]

r(t0) =(1− cos2 t0, cos t0

)= (1, 0) ⇒ t0 = π

2 .

v(t0) =(x ′(t0), y

′(t0))

=(sin 2t0,− sin t0

)= (0,−1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0,−1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 50: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− cos2 t, y(t) = cos t, t ∈ [0, π]

r(t0) =(1− cos2 t0, cos t0

)= (1, 0) ⇒ t0 = π

2 .

v(t0) =(x ′(t0), y

′(t0))

=(sin 2t0,− sin t0

)= (0,−1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0,−1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 51: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− cos2 t, y(t) = cos t, t ∈ [0, π]

r(t0) =(1− cos2 t0, cos t0

)= (1, 0) ⇒ t0 = π

2 .

v(t0) =(x ′(t0), y

′(t0))

=(sin 2t0,− sin t0

)= (0,−1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0,−1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 52: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− cos2 t, y(t) = cos t, t ∈ [0, π]

r(t0) =(1− cos2 t0, cos t0

)= (1, 0) ⇒ t0 = π

2 .

v(t0) =(x ′(t0), y

′(t0))

=(sin 2t0,− sin t0

)= (0,−1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0,−1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 53: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Parabola Arc x = 1− y 2, −1 ≤ y ≤ 1

Point of the Vertical Tangent: r(t0) = (1, 0)

Curve: x(t) = 1− cos2 t, y(t) = cos t, t ∈ [0, π]

r(t0) =(1− cos2 t0, cos t0

)= (1, 0) ⇒ t0 = π

2 .

v(t0) =(x ′(t0), y

′(t0))

=(sin 2t0,− sin t0

)= (0,−1).

Speed v(t0) = ‖v(t0)‖ =√[

x ′(t0)]2

+[y ′(t0)

]2= 1.

Unit tangent vector T(t0) = v(t0)v(t0)

=(0,−1

)Tangent line x = 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 5 / 14

Page 54: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Spiral of Archimedes

Slope of the Spiral of Archimedes r = θ at θ0 = π2

r(θ0) =(x(θ0), y(θ0)

)=

(θ0 cos θ0, θ0 sin θ0

)= (0, π

2 ).

v(θ0) = r′(θ0) =(cos θ0−θ0 sin θ0, sin θ0+θ0 cos θ0

)= (−π

2 , 1).

Slope m(θ0) = y ′(θ0)x ′(θ0)

= − 2π .

Tangent line at θ0 y = π2 −

2πx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 6 / 14

Page 55: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Spiral of Archimedes

Slope of the Spiral of Archimedes r = θ at θ0 = π2

r(θ0) =(x(θ0), y(θ0)

)=

(θ0 cos θ0, θ0 sin θ0

)= (0, π

2 ).

v(θ0) = r′(θ0) =(cos θ0−θ0 sin θ0, sin θ0+θ0 cos θ0

)= (−π

2 , 1).

Slope m(θ0) = y ′(θ0)x ′(θ0)

= − 2π .

Tangent line at θ0 y = π2 −

2πx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 6 / 14

Page 56: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Spiral of Archimedes

Slope of the Spiral of Archimedes r = θ at θ0 = π2

r(θ0) =(x(θ0), y(θ0)

)=

(θ0 cos θ0, θ0 sin θ0

)= (0, π

2 ).

v(θ0) = r′(θ0) =(cos θ0−θ0 sin θ0, sin θ0+θ0 cos θ0

)= (−π

2 , 1).

Slope m(θ0) = y ′(θ0)x ′(θ0)

= − 2π .

Tangent line at θ0 y = π2 −

2πx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 6 / 14

Page 57: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Spiral of Archimedes

Slope of the Spiral of Archimedes r = θ at θ0 = π2

r(θ0) =(x(θ0), y(θ0)

)=

(θ0 cos θ0, θ0 sin θ0

)= (0, π

2 ).

v(θ0) = r′(θ0) =(cos θ0−θ0 sin θ0, sin θ0+θ0 cos θ0

)= (−π

2 , 1).

Slope m(θ0) = y ′(θ0)x ′(θ0)

= − 2π .

Tangent line at θ0 y = π2 −

2πx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 6 / 14

Page 58: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Spiral of Archimedes

Slope of the Spiral of Archimedes r = θ at θ0 = π2

r(θ0) =(x(θ0), y(θ0)

)=

(θ0 cos θ0, θ0 sin θ0

)= (0, π

2 ).

v(θ0) = r′(θ0) =(cos θ0−θ0 sin θ0, sin θ0+θ0 cos θ0

)= (−π

2 , 1).

Slope m(θ0) = y ′(θ0)x ′(θ0)

= − 2π .

Tangent line at θ0 y = π2 −

2πx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 6 / 14

Page 59: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Quiz

Quiz

1. r = 3 + 3 cos θ is a

(a) cardioid, (b) circle, (c) limacon with an inner loop.

2. r = 2 sin θ is a

(a) cardioid, (b) circle, (c) limacon with an inner loop.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 7 / 14

Page 60: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Limacon

Point of Vertical Tangent for Limacon (Snail): r = 1− cos θ

r(t) =(x(t), y(t)

)=

((1−cos t) cos t, (1−cos t) sin t

).

v(t) = r′(t) =((2 cos t−1) sin t, (1−cos t)(1+2 cos t)

).

Set x ′(t) = 0, cos t = 12 or sin t = 0, then t = π

3 , π, 5π3 .

Tangent line is vertical at r(t) = (14 ,√

34 ), (−2, 0), (1

4 ,−√

34 ).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 8 / 14

Page 61: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Limacon

Point of Vertical Tangent for Limacon (Snail): r = 1− cos θ

r(t) =(x(t), y(t)

)=

((1−cos t) cos t, (1−cos t) sin t

).

v(t) = r′(t) =((2 cos t−1) sin t, (1−cos t)(1+2 cos t)

).

Set x ′(t) = 0, cos t = 12 or sin t = 0, then t = π

3 , π, 5π3 .

Tangent line is vertical at r(t) = (14 ,√

34 ), (−2, 0), (1

4 ,−√

34 ).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 8 / 14

Page 62: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Limacon

Point of Vertical Tangent for Limacon (Snail): r = 1− cos θ

r(t) =(x(t), y(t)

)=

((1−cos t) cos t, (1−cos t) sin t

).

v(t) = r′(t) =((2 cos t−1) sin t, (1−cos t)(1+2 cos t)

).

Set x ′(t) = 0, cos t = 12 or sin t = 0, then t = π

3 , π, 5π3 .

Tangent line is vertical at r(t) = (14 ,√

34 ), (−2, 0), (1

4 ,−√

34 ).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 8 / 14

Page 63: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Limacon

Point of Vertical Tangent for Limacon (Snail): r = 1− cos θ

r(t) =(x(t), y(t)

)=

((1−cos t) cos t, (1−cos t) sin t

).

v(t) = r′(t) =((2 cos t−1) sin t, (1−cos t)(1+2 cos t)

).

Set x ′(t) = 0, cos t = 12 or sin t = 0, then t = π

3 , π, 5π3 .

Tangent line is vertical at r(t) = (14 ,√

34 ), (−2, 0), (1

4 ,−√

34 ).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 8 / 14

Page 64: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Limacon

Point of Vertical Tangent for Limacon (Snail): r = 1− cos θ

r(t) =(x(t), y(t)

)=

((1−cos t) cos t, (1−cos t) sin t

).

v(t) = r′(t) =((2 cos t−1) sin t, (1−cos t)(1+2 cos t)

).

Set x ′(t) = 0, cos t = 12 or sin t = 0, then t = π

3 , π, 5π3 .

Tangent line is vertical at r(t) = (14 ,√

34 ), (−2, 0), (1

4 ,−√

34 ).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 8 / 14

Page 65: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Petal Curves (Flowers)

Tangent Lines at the Origin: r = sin 3θ

The curve passes through the origin when r = sin 3θ = 0, i.e,at θ = 0, π

3 , 2π3 .

r(t) =(x(t), y(t)

)=

(sin 3t cos t, sin 3t sin t

)= (0, 0).

v(t) = r′(t) =(3 cos 3t cos t−sin 3t sin t, 3 cos 3t sin t+

sin 3t cos t)

=(3, 0

),(−3

2 ,−3√

32

),(

32 ,−3

√3

2

).

Slope m(t) = y ′(t)x ′(t) = 0,

√3,−

√3.

Tangent line at the origin y = 0, y =√

3x , y = −√

3x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 9 / 14

Page 66: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Petal Curves (Flowers)

Tangent Lines at the Origin: r = sin 3θ

The curve passes through the origin when r = sin 3θ = 0, i.e,at θ = 0, π

3 , 2π3 .

r(t) =(x(t), y(t)

)=

(sin 3t cos t, sin 3t sin t

)= (0, 0).

v(t) = r′(t) =(3 cos 3t cos t−sin 3t sin t, 3 cos 3t sin t+

sin 3t cos t)

=(3, 0

),(−3

2 ,−3√

32

),(

32 ,−3

√3

2

).

Slope m(t) = y ′(t)x ′(t) = 0,

√3,−

√3.

Tangent line at the origin y = 0, y =√

3x , y = −√

3x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 9 / 14

Page 67: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Petal Curves (Flowers)

Tangent Lines at the Origin: r = sin 3θ

The curve passes through the origin when r = sin 3θ = 0, i.e,at θ = 0, π

3 , 2π3 .

r(t) =(x(t), y(t)

)=

(sin 3t cos t, sin 3t sin t

)= (0, 0).

v(t) = r′(t) =(3 cos 3t cos t−sin 3t sin t, 3 cos 3t sin t+

sin 3t cos t)

=(3, 0

),(−3

2 ,−3√

32

),(

32 ,−3

√3

2

).

Slope m(t) = y ′(t)x ′(t) = 0,

√3,−

√3.

Tangent line at the origin y = 0, y =√

3x , y = −√

3x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 9 / 14

Page 68: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Petal Curves (Flowers)

Tangent Lines at the Origin: r = sin 3θ

The curve passes through the origin when r = sin 3θ = 0, i.e,at θ = 0, π

3 , 2π3 .

r(t) =(x(t), y(t)

)=

(sin 3t cos t, sin 3t sin t

)= (0, 0).

v(t) = r′(t) =(3 cos 3t cos t−sin 3t sin t, 3 cos 3t sin t+

sin 3t cos t)

=(3, 0

),(−3

2 ,−3√

32

),(

32 ,−3

√3

2

).

Slope m(t) = y ′(t)x ′(t) = 0,

√3,−

√3.

Tangent line at the origin y = 0, y =√

3x , y = −√

3x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 9 / 14

Page 69: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Petal Curves (Flowers)

Tangent Lines at the Origin: r = sin 3θ

The curve passes through the origin when r = sin 3θ = 0, i.e,at θ = 0, π

3 , 2π3 .

r(t) =(x(t), y(t)

)=

(sin 3t cos t, sin 3t sin t

)= (0, 0).

v(t) = r′(t) =(3 cos 3t cos t−sin 3t sin t, 3 cos 3t sin t+

sin 3t cos t)

=(3, 0

),(−3

2 ,−3√

32

),(

32 ,−3

√3

2

).

Slope m(t) = y ′(t)x ′(t) = 0,

√3,−

√3.

Tangent line at the origin y = 0, y =√

3x , y = −√

3x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 9 / 14

Page 70: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Petal Curves (Flowers)

Tangent Lines at the Origin: r = cos 4θ

The curve passes through the origin when r = cos 4θ = 0, i.e,at θ = π

8 , 3π8 , 5π

8 , 7π8 , 9π

8 , 11π8 , 13π

8 , 15π8 .

r(t) =(x(t), y(t)

)=

(cos 4 cos t, cos 4t sin t

)= (0, 0).

v(t) = r′(t) =(−4 sin 4t cos t−cos 4t sin t,−4 sin 4t sin t+

cos 4t cos t)

=(−4 cos π

8 ,−4 sin π8

),(4 cos 3π

8 , 4 sin 3π8

), · · · .

Slope m(t) = y ′(t)x ′(t) = tan π

8 , tan 3π8 , · · · .

Tangent line at the origin y = tan π8 x , y = tan 3π

8 x , · · · .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 9 / 14

Page 71: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Petal Curves (Flowers)

Tangent Lines at the Origin: r = cos 4θ

The curve passes through the origin when r = cos 4θ = 0, i.e,at θ = π

8 , 3π8 , 5π

8 , 7π8 , 9π

8 , 11π8 , 13π

8 , 15π8 .

r(t) =(x(t), y(t)

)=

(cos 4 cos t, cos 4t sin t

)= (0, 0).

v(t) = r′(t) =(−4 sin 4t cos t−cos 4t sin t,−4 sin 4t sin t+

cos 4t cos t)

=(−4 cos π

8 ,−4 sin π8

),(4 cos 3π

8 , 4 sin 3π8

), · · · .

Slope m(t) = y ′(t)x ′(t) = tan π

8 , tan 3π8 , · · · .

Tangent line at the origin y = tan π8 x , y = tan 3π

8 x , · · · .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 9 / 14

Page 72: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Petal Curves (Flowers)

Tangent Lines at the Origin: r = cos 4θ

The curve passes through the origin when r = cos 4θ = 0, i.e,at θ = π

8 , 3π8 , 5π

8 , 7π8 , 9π

8 , 11π8 , 13π

8 , 15π8 .

r(t) =(x(t), y(t)

)=

(cos 4 cos t, cos 4t sin t

)= (0, 0).

v(t) = r′(t) =(−4 sin 4t cos t−cos 4t sin t,−4 sin 4t sin t+

cos 4t cos t)

=(−4 cos π

8 ,−4 sin π8

),(4 cos 3π

8 , 4 sin 3π8

), · · · .

Slope m(t) = y ′(t)x ′(t) = tan π

8 , tan 3π8 , · · · .

Tangent line at the origin y = tan π8 x , y = tan 3π

8 x , · · · .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 9 / 14

Page 73: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Petal Curves (Flowers)

Tangent Lines at the Origin: r = cos 4θ

The curve passes through the origin when r = cos 4θ = 0, i.e,at θ = π

8 , 3π8 , 5π

8 , 7π8 , 9π

8 , 11π8 , 13π

8 , 15π8 .

r(t) =(x(t), y(t)

)=

(cos 4 cos t, cos 4t sin t

)= (0, 0).

v(t) = r′(t) =(−4 sin 4t cos t−cos 4t sin t,−4 sin 4t sin t+

cos 4t cos t)

=(−4 cos π

8 ,−4 sin π8

),(4 cos 3π

8 , 4 sin 3π8

), · · · .

Slope m(t) = y ′(t)x ′(t) = tan π

8 , tan 3π8 , · · · .

Tangent line at the origin y = tan π8 x , y = tan 3π

8 x , · · · .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 9 / 14

Page 74: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Example: Petal Curves (Flowers)

Tangent Lines at the Origin: r = cos 4θ

The curve passes through the origin when r = cos 4θ = 0, i.e,at θ = π

8 , 3π8 , 5π

8 , 7π8 , 9π

8 , 11π8 , 13π

8 , 15π8 .

r(t) =(x(t), y(t)

)=

(cos 4 cos t, cos 4t sin t

)= (0, 0).

v(t) = r′(t) =(−4 sin 4t cos t−cos 4t sin t,−4 sin 4t sin t+

cos 4t cos t)

=(−4 cos π

8 ,−4 sin π8

),(4 cos 3π

8 , 4 sin 3π8

), · · · .

Slope m(t) = y ′(t)x ′(t) = tan π

8 , tan 3π8 , · · · .

Tangent line at the origin y = tan π8 x , y = tan 3π

8 x , · · · .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 9 / 14

Page 75: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Tangents Examples

Quiz

Quiz

3. r = 2 sin 3θ is a

(a) flower with 6 petals, (b) circle, (c) flower with 3 petals.

4. The curve x(t) = 3 cos t, y(t) = 2 sin t, t ∈ [0, 2π] is:

(a) circle, (b) parabola, (c) ellipse.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 10 / 14

Page 76: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Circles: C = {P : d(P , O) = |a|}

Horizontal and Vertical Tangent for Circle Centered at (c , d)

r(t) =(x(t), y(t)

)=

(a cos t + c , a sin t + d), t ∈ [0, 2π).

v(t) = r′(t) =(−a sin t, a cos t)

).

Set x ′(t) = 0, sin t = 0, then t = 0, π;set y ′(t) = 0, cos t = 0, then t = π

2 , 3π2

Tangent line is horizontalat r(t) = (c , d + a), (c , d − a);it is vertical at r(t) = (c + a, d), (c − a, d).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 11 / 14

Page 77: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Circles: C = {P : d(P , O) = |a|}

Horizontal and Vertical Tangent for Circle Centered at (c , d)

r(t) =(x(t), y(t)

)=

(a cos t + c , a sin t + d), t ∈ [0, 2π).

v(t) = r′(t) =(−a sin t, a cos t)

).

Set x ′(t) = 0, sin t = 0, then t = 0, π;set y ′(t) = 0, cos t = 0, then t = π

2 , 3π2

Tangent line is horizontalat r(t) = (c , d + a), (c , d − a);it is vertical at r(t) = (c + a, d), (c − a, d).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 11 / 14

Page 78: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Circles: C = {P : d(P , O) = |a|}

Horizontal and Vertical Tangent for Circle Centered at (c , d)

r(t) =(x(t), y(t)

)=

(a cos t + c , a sin t + d), t ∈ [0, 2π).

v(t) = r′(t) =(−a sin t, a cos t)

).

Set x ′(t) = 0, sin t = 0, then t = 0, π;set y ′(t) = 0, cos t = 0, then t = π

2 , 3π2

Tangent line is horizontalat r(t) = (c , d + a), (c , d − a);it is vertical at r(t) = (c + a, d), (c − a, d).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 11 / 14

Page 79: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Circles: C = {P : d(P , O) = |a|}

Horizontal and Vertical Tangent for Circle Centered at (c , d)

r(t) =(x(t), y(t)

)=

(a cos t + c , a sin t + d), t ∈ [0, 2π).

v(t) = r′(t) =(−a sin t, a cos t)

).

Set x ′(t) = 0, sin t = 0, then t = 0, π;set y ′(t) = 0, cos t = 0, then t = π

2 , 3π2

Tangent line is horizontalat r(t) = (c , d + a), (c , d − a);it is vertical at r(t) = (c + a, d), (c − a, d).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 11 / 14

Page 80: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Circles: C = {P : d(P , O) = |a|}

Horizontal and Vertical Tangent for Circle Centered at (c , d)

r(t) =(x(t), y(t)

)=

(a cos t + c , a sin t + d), t ∈ [0, 2π).

v(t) = r′(t) =(−a sin t, a cos t)

).

Set x ′(t) = 0, sin t = 0, then t = 0, π;set y ′(t) = 0, cos t = 0, then t = π

2 , 3π2

Tangent line is horizontalat r(t) = (c , d + a), (c , d − a);it is vertical at r(t) = (c + a, d), (c − a, d).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 11 / 14

Page 81: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Ellipses: Cosine and Sine

Horizontal and Vertical Tangent for Ellipse Centered at (d , e)

r(t) =(x(t), y(t)

)=

(a cos t + d , b sin t + e), t ∈ [0, 2π).

v(t) = r′(t) =(−a sin t, b cos t)

).

Set x ′(t) = 0, sin t = 0, then t = 0, π;set y ′(t) = 0, cos t = 0, then t = π

2 , 3π2

Tangent line is horizontalat r(t) = (d , e + a), (d , e − a);it is vertical at r(t) = (d + b, e), (d − a, e).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 12 / 14

Page 82: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Ellipses: Cosine and Sine

Horizontal and Vertical Tangent for Ellipse Centered at (d , e)

r(t) =(x(t), y(t)

)=

(a cos t + d , b sin t + e), t ∈ [0, 2π).

v(t) = r′(t) =(−a sin t, b cos t)

).

Set x ′(t) = 0, sin t = 0, then t = 0, π;set y ′(t) = 0, cos t = 0, then t = π

2 , 3π2

Tangent line is horizontalat r(t) = (d , e + a), (d , e − a);it is vertical at r(t) = (d + b, e), (d − a, e).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 12 / 14

Page 83: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Ellipses: Cosine and Sine

Horizontal and Vertical Tangent for Ellipse Centered at (d , e)

r(t) =(x(t), y(t)

)=

(a cos t + d , b sin t + e), t ∈ [0, 2π).

v(t) = r′(t) =(−a sin t, b cos t)

).

Set x ′(t) = 0, sin t = 0, then t = 0, π;set y ′(t) = 0, cos t = 0, then t = π

2 , 3π2

Tangent line is horizontalat r(t) = (d , e + a), (d , e − a);it is vertical at r(t) = (d + b, e), (d − a, e).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 12 / 14

Page 84: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Ellipses: Cosine and Sine

Horizontal and Vertical Tangent for Ellipse Centered at (d , e)

r(t) =(x(t), y(t)

)=

(a cos t + d , b sin t + e), t ∈ [0, 2π).

v(t) = r′(t) =(−a sin t, b cos t)

).

Set x ′(t) = 0, sin t = 0, then t = 0, π;set y ′(t) = 0, cos t = 0, then t = π

2 , 3π2

Tangent line is horizontalat r(t) = (d , e + a), (d , e − a);it is vertical at r(t) = (d + b, e), (d − a, e).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 12 / 14

Page 85: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Ellipses: Cosine and Sine

Horizontal and Vertical Tangent for Ellipse Centered at (d , e)

r(t) =(x(t), y(t)

)=

(a cos t + d , b sin t + e), t ∈ [0, 2π).

v(t) = r′(t) =(−a sin t, b cos t)

).

Set x ′(t) = 0, sin t = 0, then t = 0, π;set y ′(t) = 0, cos t = 0, then t = π

2 , 3π2

Tangent line is horizontalat r(t) = (d , e + a), (d , e − a);it is vertical at r(t) = (d + b, e), (d − a, e).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 12 / 14

Page 86: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 13 / 14

Page 87: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Lemniscates (Ribbons): r 2 = a2 cos 2θ

Tangent Lines at the Origin

r(t) =(x(t), y(t)

)= (0, 0) ⇒

t = π2 , 3π

2 .

v(t) = r′(t) =(− a

2 ,− a2

),(

a2 ,− a

2

).

Slope m(t) = y ′(t)x ′(t) = 1,−1.

⇒ θ0 = tan−1(1) = π4 ,

θ1 = tan−1(−1) = 3π4

Tangent line at the origin y = x ,y = −x .

The parametric equations for the lemniscate with a2 = 2c2 is

x =a cos t

1 + sin2 t, y =

a sin t cos t

1 + sin2 t, t ∈ (0, 2π).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 13 / 14

Page 88: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Lemniscates (Ribbons): r 2 = a2 cos 2θ

Tangent Lines at the Origin

r(t) =(x(t), y(t)

)= (0, 0) ⇒

t = π2 , 3π

2 .

v(t) = r′(t) =(− a

2 ,− a2

),(

a2 ,− a

2

).

Slope m(t) = y ′(t)x ′(t) = 1,−1.

⇒ θ0 = tan−1(1) = π4 ,

θ1 = tan−1(−1) = 3π4

Tangent line at the origin y = x ,y = −x .

The parametric equations for the lemniscate with a2 = 2c2 is

x =a cos t

1 + sin2 t, y =

a sin t cos t

1 + sin2 t, t ∈ (0, 2π).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 13 / 14

Page 89: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Lemniscates (Ribbons): r 2 = a2 cos 2θ

Tangent Lines at the Origin

r(t) =(x(t), y(t)

)= (0, 0) ⇒

t = π2 , 3π

2 .

v(t) = r′(t) =(− a

2 ,− a2

),(

a2 ,− a

2

).

Slope m(t) = y ′(t)x ′(t) = 1,−1.

⇒ θ0 = tan−1(1) = π4 ,

θ1 = tan−1(−1) = 3π4

Tangent line at the origin y = x ,y = −x .

The parametric equations for the lemniscate with a2 = 2c2 is

x =a cos t

1 + sin2 t, y =

a sin t cos t

1 + sin2 t, t ∈ (0, 2π).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 13 / 14

Page 90: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Lemniscates (Ribbons): r 2 = a2 cos 2θ

Tangent Lines at the Origin

r(t) =(x(t), y(t)

)= (0, 0) ⇒

t = π2 , 3π

2 .

v(t) = r′(t) =(− a

2 ,− a2

),(

a2 ,− a

2

).

Slope m(t) = y ′(t)x ′(t) = 1,−1.

⇒ θ0 = tan−1(1) = π4 ,

θ1 = tan−1(−1) = 3π4

Tangent line at the origin y = x ,y = −x .

The parametric equations for the lemniscate with a2 = 2c2 is

x =a cos t

1 + sin2 t, y =

a sin t cos t

1 + sin2 t, t ∈ (0, 2π).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 13 / 14

Page 91: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Lemniscates (Ribbons): r 2 = a2 cos 2θ

Tangent Lines at the Origin

r(t) =(x(t), y(t)

)= (0, 0) ⇒

t = π2 , 3π

2 .

v(t) = r′(t) =(− a

2 ,− a2

),(

a2 ,− a

2

).

Slope m(t) = y ′(t)x ′(t) = 1,−1.

⇒ θ0 = tan−1(1) = π4 ,

θ1 = tan−1(−1) = 3π4

Tangent line at the origin y = x ,y = −x .

The parametric equations for the lemniscate with a2 = 2c2 is

x =a cos t

1 + sin2 t, y =

a sin t cos t

1 + sin2 t, t ∈ (0, 2π).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 13 / 14

Page 92: Lecture 15 - Section 9.7 Tangents to Curves Given ...jiwenhe/Math1432/lectures/lecture15.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008

Tangents Locus Circles Ellipses

Outline

Tangents to Parametrized curvesTangents to Parametrized curveExamples

LocusCirclesEllipses

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 15 March 4, 2008 14 / 14