lecture 15a metal carbonyl compounds. introduction the first metal carbonyl compound described was...

18
Lecture 15a Metal Carbonyl Compounds

Upload: osborne-booker

Post on 18-Jan-2018

225 views

Category:

Documents


0 download

DESCRIPTION

Carbon Monoxide Carbon monoxide is a colorless, tasteless gas that is highly toxic because it strongly binds to the iron in hemoglobin The molecule is generally described with a triple bond because the bond distance of d=113 pm is too short for a double bond i.e., formaldehyde (H 2 C=O, d=121 pm) The structure on the left is the major contributor because both atoms have an octet in this resonance structure (  =0.122 D) The lone pair of the carbon atom is located in a sp-orbital, which means that it is very basic. HOMO

TRANSCRIPT

Page 1: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Lecture 15a

Metal Carbonyl Compounds

Page 2: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Introduction• The first metal carbonyl compound described was Ni(CO)4

(Ludwig Mond, ~1890), which was used to refine nickel metal (Mond Process)

• Ni(CO)4 is very volatile (b.p. =40 oC) and also very toxic!

• Metal carbonyl compounds are used in many industrial processes producing organic compounds i.e., Monsanto process (acetic acid), Fischer Tropsch process (gasoline, ethylene glycol, methanol) or Reppe carbonylation (vinyl esters) from simple precursors (CO, CO2, H2, H2O)

• Vaska’s complex (IrCl(CO)(PPh3)2) absorbs oxygenreversibly and serves as model for the oxygen absorptionof myoglobin and hemoglobin (CO and Cl-ligand are disordered in the structure, two CO ligands are shown in the structure)

Ni + 4 CO Ni(CO)450-60 oC

200-250 oC

Page 3: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Carbon Monoxide• Carbon monoxide is a colorless, tasteless gas that is highly toxic because it

strongly binds to the iron in hemoglobin• The molecule is generally described with a triple bond because

the bond distance of d=113 pm is too short for a double bond i.e., formaldehyde (H2C=O, d=121 pm)

• The structure on the left is the major contributor because both atoms have an octet in this resonance structure (m=0.122 D)

• The lone pair of the carbon atom is located in a sp-orbital, which means that it is very basic. HOMO

Page 4: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Bond Mode of CO to Metals• The CO ligand usually binds via the carbon atom to the metal

• The lone pair on the carbon forms a s-bond with a suitable d-orbital of the metal (i.e., d(x2-y2))

• The metal can form a p-backbond via the p*-orbital of the CO ligand (i.e., d(xy))

• Electron-rich metals i.e., late transition metals in low oxidation states are more likely to donate electrons for the p-backbonding

• A strong p-backbonding results in a shorter the M-C bond and a longer the C-O bond due to the population of an anti-bonding orbital in the CO ligand (see infrared spectrum)

xy-plane

(I) (II)

M C O M C O

Page 5: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Synthesis • Some compounds can be obtained by direct carbonylation of a metal at room

temperature or elevated temperatures

• In other cases, the metal has to be generated in-situ by reduction of a metal halide or metal oxide

• Many polynuclear metal carbonyl compounds can be obtained using photochemistry, which exploits the labile character of many M-CO bonds

Ni + 4 CO25 oC/1 atm

Ni(CO)4

Fe + 5 CO150 oC/100 atm

Fe(CO)5

CrCl3 + Al + 6 CO Cr(CO)6 + AlCl3

Re2O7 + 17 CO Re2(CO)10 + 7 CO2

2 Fe(CO)5

CH3COOH

UV-lightFe2(CO)9 + CO

(CO)= 2057 cm -1

(CO)= 2013, 2034 cm -1

(CO)= 2000 cm -1

(CO)= 1983, 2013, 2044 cm -1

(CO)= 1829, 2019, 2082 cm -1

Page 6: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Structures I• Three bond modes found in metal carbonyl compounds

• The terminal mode is the most frequently one mode found exhibiting a carbon oxygen triple bond i.e., Ni(CO)4

• The double or triply-bridged mode is found in many polynuclear metals carbonyl compounds with an electron deficiency i.e., Rh6(CO)16 (four triply bridged CO groups)

• Which modes are present in a given compound can often be determined by infrared and 13C-NMR spectroscopy

M

C

O

M M

C

O

M

M

M

C

O

terminal m2 m3

Page 7: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Structures II• Mononuclear Compounds

• Dinuclear Compounds

MOC

OC CO

CO

CO

CO

OC MCO

CO

CO

CO

CO

MOC

COCO

M(CO)6 (Oh) M(CO)5 (D3h) M(CO)4 (Td) i.e., Cr(CO)6 i.e., Fe(CO)5 i.e., Ni(CO)4

CO

MCO

OCOC

OC

M

COOC

COOC

CO

OC

Fe

OC

OC

OC CO

Fe

COOC

CO

CO

OC

Co

OC

OC

OC

Co

COOC

CO

CO

Co

CO

OC

OC

OC

Co

CO

COOC

CO

M2(CO)10 (D4d) Fe2(CO)9 (D3h)i.e., Re2(CO)10

Co2(CO)8 Co2(CO)8

(solid state, C2v) (solution, D3d)

OC

OCCO

Ni

OC OC

Fe

OC CO

CO

CO

Structures proposed by Ludwig Mond (1892)

Page 8: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Infrared Spectroscopy• Free CO: 2143 cm-1

• Terminal CO groups: 1850-2125 cm-1

• m2-brigding CO groups: 1750-1850 cm-1

• m3-bridging CO groups: 1620-1730 cm-1

• Non-classical metal carbonyl compounds can have (CO) greater than the one observed in free CO

Compound (CO) [cm-1] d(CO) [pm]Ni(CO)4 2057 112.6

Fe(CO)5 2013, 2034 112.2, 114.6

Cr(CO)6 2000 114.0

Re2(CO)10 1976, 2014, 2070 112-113, 114.7

Fe2(CO)9 1829, 2019, 2082 112.6, 116.0

Rh6(CO)16 1800, 2026, 2073 115.5, 120.1

Ag(CO)+ 2204 107.7Cu(CO)2

+ 2164 111.0

Page 9: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

13C-NMR Spectroscopy• Terminal CO: 180-220 ppm• Bridging CO: 230-280 ppm• Examples:

• M(CO)6: Cr: 211 ppm, Mo: 201.2 ppm, W: 193.1 ppm• Fe(CO)5

• Solid state: 208.1 ppm (equatorial) and 216 ppm (axial) in a 3:2-ratio

• Solution: 211.6 ppm (due to rapid axial-equatorial exchange)

• Fe2(CO)9 (solid state): 204.2 ppm (terminal), 236.4 ppm (bridging)• Co2(CO)8

• Solid state: 182 ppm (terminal), 234 ppm (bridging)• Solution: 205.3 ppm

Page 10: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Collman’s Reagent• This reagent is obtained from iron pentacarbonyl and sodium hydroxide in an ether

i.e., 1,4-dioxane• It exploits the labile character of the Fe-C bond of alkyl iron compounds which

allows for the insertion of a CO ligand, which technically generates a “RC=O-”.

• Advantages: high degree of chemoselectivity, produces high yields (70-90 %), bears low cost and is relatively environmental friendly

+ 2 NaOH Na2Fe(CO)4 Collman's ReagentFe(CO)5

RX

RFe(CO)4-

R'X

R R'

O

O2

RCOOH

X2

RCOX

RCOCl

(RCO)Fe(CO)4-

D+

R-D

H+

RCHO

Page 11: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Fischer Tropsch Reaction/Process

• The reaction was discovered in 1923• The reaction employs hydrogen, carbon monoxide and

a “metal carbonyl catalyst” to form alkanes, alcohols, etc.• Ruhrchemie A.G. (1936)

• Used this process to convert synthesis gas into gasoline using a catalyst Co/ThO2/MgO/Silica gel at 170-200 oCat 1 atm

• The yield of gasoline was only ~50 % while about 25 % diesel oil and 25 % waxes were formed

• An improved process (Sasol) using iron oxides as catalyst, 320-340 oC and 25 atm pressure affords 70 % gasoline

Page 12: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Fischer Tropsch Reaction/Process• Second generation catalyst are homogeneous i.e., [Rh6(CO)34]2-

• Union Carbide: ethylene glycol (antifreeze) is obtain at high pressures (3000 atm, 250 oC)

• Production of long-chain alkanes is favored at a temperature around 220 oC and pressures of 1-30 atm

MCO

M COH2 M C H

OH2 M CH3

COM COCH3

MCH2

O

H2

H2

M OCH3

M H

CH3OH

H2 H2

M CH3

H

CH4

M

M CH2 CH3

CO

M COCH2CH3

Gasolines

Page 13: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Monsanto Process (Acetic Acid)

• This process uses cis-[(CO)2RhI2]- as catalyst to convert methanol and carbon dioxide to acetic acid

• The reaction is carried out at 180 oC and 30 atm pressure

• Two separate cycles that are combined with each other• The BP Captiva Process uses cis-[(CO)2IrI2]- as catalyst

CH3OH

HI H2O

CH3COOH

CH3I

Rh

COI

I CO

Rh

COI

I CO

CH3

I

Rh

COCH3I

I CO

I

Rh

COCH3I CO

COI

CO

CH3COI

I

Oxidative Addition(+I to +III)

Reductive Elimination(+III to +I)

CO Insertion

CO Addition

Page 14: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Hydroformylation

• It uses cobalt catalyst to convert an alkene, carbon monoxide and hydrogen has into an aldehyde

• The reaction is carried at moderate temperatures (90-150 oC) and high pressures (100-400 atm)

HCo(CO)4

HCo(CO)3

CO

CH2=CHR

HCo(CO)3(CH2=CHR)

RCH2CH2Co(CO)3

RCH2CH2Co(CO)4 CO

RCH2CH2COCo(CO)3

RCH2CH2COCo(H2)(CO)3

H2

RCH2CH2CHO

Page 15: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Pauson–Khand Reaction

• The Pauson–Khand reaction is a [2+2+1] cycloaddition reaction between an alkene, alkyne and carbon monoxide to form an α,β-cyclopentenone

• Originally it was catalyzed by dicobalt octacarbonyl, more recently also by Rh-complexes (i.e., Wilkinson’s complex with silver triflate as co-catalyst)

R'

R'R

R R

R

+ CO+Co2(CO)8

O

R

R

R

R

R'

R'

Page 16: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Reppe-Carbonylation

• Acetylene, carbon monoxide and alcohols are reacted in the presence of a catalyst like Ni(CO)4, HCo(CO)4 or Fe(CO)5 to yield acrylic acid esters

• If water is used instead of alcohols, the carboxylic acid is obtained (i.e., acrylic acid)

• The BHC process to synthesize of ibuprofen uses a palladium catalyst for the last step to convert the secondary alcohol into a carboxylic acid • Green Process because it has 77 % atom economy (99 % after recycling)• The previous process (Boots process) displayed an atom economy of 40 % and

produced a lot of hazardous waste

(CH3CO)2O/HF

O

H2, Raney Ni

OH

CO, [Pd]

COOH

Page 17: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Doetz Reaction• Carbonyl compounds are reacted

with phenyl lithium and methyl iodide to form metal-carbene complexes (Fischer carbenes)

• The addition of an alkyne leads to the formation of a metallacycle

• Next, one of the carbonyl groups is inserted into the Cr-C bond

• The electrophilic addition of the carbonyl function to the phenyl group affords a naphthalene ring

Cr(CO)6

1.PhLi2.MeI (CO)5Cr

Ph

OMeR-C C-R

(OC)5Cr Ph

OMe

RR

(OC)5Cr

Ph

OMe

R

R

CO insertion

Ph

OMe

RR

OC

(OC)4CrOMeC

R

O

RCr(CO)4

H

O

R

R

OMe(OC)4Cr

OH

R

R

OMe(OC)3Cr

OH

R

R

OMeCr(CO)3

+

1. Loss of CO2. Enolization

Page 18: Lecture 15a Metal Carbonyl Compounds. Introduction The first metal carbonyl compound described was Ni(CO) 4 (Ludwig Mond, ~1890), which was used to refine

Further Reading

• Werner, H.: Landmarks in Organo-Transition Metal Chemistry, Springer, 2009