lecture 17-10-24 bank erosion dean

38
Review – Adapted from Brierley and Fryers. An approach to River Characteriza<on Valley Confinement River morphology Planform (number of channels, sinuosity, stability) Floodplain characteris<cs Channel Size Channel Morphology Bank Morphology Bed Morphology Bars Bedforms Ripples Dunes Func<on of local hydraulics – depth, shear stress (velocity), sediment supply.

Upload: shakirhamid6687

Post on 05-Feb-2016

8 views

Category:

Documents


0 download

DESCRIPTION

river bank erosion mitigation techniques.usually applied for high velocity stream rivers

TRANSCRIPT

Page 1: Lecture 17-10-24 Bank Erosion Dean

Review  –  Adapted  from  Brierley  and  Fryers.        An  approach  to  River  Characteriza<on    •  Valley  Confinement  

•  River  morphology  •  Planform  (number  of  channels,  sinuosity,  stability)  

•  Floodplain  characteris<cs  •  Channel  Size  

•  Channel  Morphology  •  Bank  Morphology  •  Bed  Morphology  

•  Bars  •  Bedforms  

•  Ripples  •  Dunes  

•  Func<on  of  local  hydraulics  –  depth,  shear  stress  (velocity),  sediment  supply.    

Page 2: Lecture 17-10-24 Bank Erosion Dean

Bank  erosion  processes  •  Existence  of  cohesion  because  silt/clay  dominate  upper  

part  of  many  banks  –  Creates  Stability  •  Stability  controlled  by  strength  of  basal  materials  •  Gravity  contributes  to  stability  and  instability  •  Vegeta<on  contributes  to  bank  strength  

–  Smith  (1976)  •  Silty  banks  with  no  veg  [erosion  rate  =  265  kg/hr]  [lateral  erosion  rate  =  162  cm/hr]  •  Silty  banks  with  17%  root  reinforcement  and  5  cm  of  root  reinforcement  [erosion  rate  =  

0.01  kg/hr]  [lateral  erosion  rate  =  0.018  cm/hr]  

•  Weakening  mechanisms  •  Prewe[ng  •  Desicca<on  •  Freeze-­‐thaw  

•  Processes  –  Hydraulic  ac<on  

•  Fluvial  entrainment  •  Undercu[ng  

–  Mass  failure  •  Slab  failures  •  Rota<onal  failures  

Smith  (1976),  Effect  of  vegeta7on  on  lateral  migra7on  of  anastomosed  channels  of  a  glacier  meltwater  river.    GSA  Bulle7n  87:  857-­‐860.  Thorne  (1982),  Processes  and  mechanisms  of  river  bank  erosion,  in  Gravel-­‐bed  Rivers,  Hey  et  al.  eds.    Wiley,  227-­‐271.  

Page 3: Lecture 17-10-24 Bank Erosion Dean
Page 4: Lecture 17-10-24 Bank Erosion Dean

Bank  morphology  

•  Bank  morphology  records  the  balance  of  erosional  and  deposi<onal  processes  associated  with  different  transport,  alignment,  and  flow  energy  at  different  discharges  

•  Bank  angle  primarily  is  determined  by  the  type  of  the  bank  material  – Cohesive  material  forms  steeper  banks  

 

Page 5: Lecture 17-10-24 Bank Erosion Dean

Measure  Stability  of  Bank  Using  Factor  of  Safety:    

Factor  of  Safety:  Resis<ng  Forces/Driving  Forces    Fs>  1                STABLE  

         Fs<  1            UNSTABLE  Resis7ng  Forces:  cohesion  and  fric7on  f (µw (pore- water pressure), Φ‘ (effective angle of internal friction), c

(cohesion of soil), σ (normal stress))  Driving  Forces:    f  (bank  height,  slope,  weight  of  bank  material  (soil  +  water),  surcharge)  

       

 Review  of  impacts  in  Simon  and  Collison  2002  

Page 6: Lecture 17-10-24 Bank Erosion Dean

Shear  Strength  of  the  Soil  (sediment)  

fn  (cohesion,  bank  height,  slope  angle,  water  content)  

τf = c’ + (σ-µw)tanφ’

shear  strength      

effec<ve  cohesion   normal  

stress  

effec<ve  angle  of  internal  fric<on  

pore-­‐water  pressure  

Mohr-­‐Coulomb  Equa<on  for  the  shear  strength  of  soils  

Review  of  impacts  in  Simon  and  Collison  2002  

Page 7: Lecture 17-10-24 Bank Erosion Dean

Cohesion  Increased  (or  Decreased)  directly  with:  • Clays    • Roots  • Cemen<ng  of  minerals    Other  factors  that  add  (or  reduce)  cohesion:  • Water  Content  as  it  relates  to  

• pore  pressure  (matric  suc<on)    • fric<on  angle  

hip://www.cals.ncsu.edu/course/zo419/lectaids.html  

Page 8: Lecture 17-10-24 Bank Erosion Dean

Vegeta<ve  Effects  on  Bank  Stability  

Hydrologic  Impacts  Stabilizing  (reduce  pore  water  pressures)  

Intercep<on  and  ET  Destabilizing  (increase  pore  water  pressures)  

Concentrate  flow  in  certain  areas  –  i.e.  stem  flow    

Mechanical  Impacts  Stabilizing  

Root  reinforcement-­‐  added  cohesion  Increase  normal  stress  

Destabilizing  Surcharge  –  weight  of  the  trees  on  the  bank.    

 

Review  of  impacts  in  Simon  and  Collison  2002  

(Remember:(ψ = µa - µw))

Page 9: Lecture 17-10-24 Bank Erosion Dean

Simon  and  Collison  2002;  Pollen  and  Simon  2005  

Characterize  added  cohesion  from  roots  and  their  distribu<on  in  the  

bank  

Cr  –  soil  cohesion  

Page 10: Lecture 17-10-24 Bank Erosion Dean
Page 11: Lecture 17-10-24 Bank Erosion Dean

ε  =  k(τe-­‐τc)  

Use  a  jet-­‐test  in  the  field  –  Test  the  erodibility  of  sediment  

Greg  Hanson  

erosion  rate  (m/s)   erodibility  

coefficient  (m3/N-­‐s)  

effec<ve  and  cri<cal  shear  stress  (Pa)  

(Hanson  1990;  Constan<ne  et  al  2010)  

Page 12: Lecture 17-10-24 Bank Erosion Dean

M  =  E  *  ub’  

Suggests  that  E  is  directly  related  to  k    Constan<ne  et  al.,  2010  

Bank  Erodibility  and  Migra<on  Rates  Empirically  derive  meander  migra<on  rate  –  many  meander  evolu<on  models  employ  a  coefficient  of  bank  erosion  E.  Typically  determined  through  planform  changes  –  thus,  unclear  physical  meaning.    

M  =  migra<on  rate    E  =  coefficient  of  bank  erosion  –  typically  determined  by  historic  planform  changes  Ub

’  =  difference  between  depth-­‐averaged  near-­‐bank  velocity  and  the  cross-­‐sec<onally  average  velocity.  

ε  =  k(τe-­‐τc)  

erosion  rate  (m/s)   erodibility  

coefficient  (m3/N-­‐s)  

effec<ve  and  cri<cal  shear  stress  (Pa)  

Page 13: Lecture 17-10-24 Bank Erosion Dean

M  =  E  *  ub’  

Sacramento  River  Test  show:  • Vegeta<on  plays  a  minor  role  • Bank  material  proper<es  dominate  • Limit  to  migra<on  is  the  erosion  of  the  unconsolidated  basal  layer  

BUT,  this  rela@onship  may  vary  with:  • The  size  of  the  river  • Roo<ng  depth  and  bank  height  • Timeframe  over  which  these  variables  are  measured  

Photo:  M.B.  Singer  

Page 14: Lecture 17-10-24 Bank Erosion Dean

Root  Zone  

Bank  Toe  

Coarse-­‐grained  bar  deposits  –  and  basal  sands  (bedload)  

Fine-­‐grained  overbank  deposits  

Bank  angle  

Page 15: Lecture 17-10-24 Bank Erosion Dean

Bank  morphology  generally  dictated  by:  1)  Sediment  mixture  (homogenous,  cohesion)  2)  Vegeta<on  3)  Mass  movement  mechanisms  

What  can  we  infer  from  bank  morphology?  

Page 16: Lecture 17-10-24 Bank Erosion Dean

Other  factors  that  play  a  major  role  in  bank  morphology:  §  Coarsening  vs  Fining  Upward  Profiles    §  Locally  sourced  resistant/forcing  

elements    §  Recent  history  of  erosional  deposi<onal  

processes  

However,  generally  bank  morphologies  are  simple.  Many  have  bank-­‐aiached  bars  that  create  a  low-­‐sloped,  stepped  morphology.    

Page 17: Lecture 17-10-24 Bank Erosion Dean

Modeling  Bank  Stability/Failure  •  Takes  slope  stability  approach  •  Best  for  steep  banks  •  Model  accounts  for  bank  material,  bank  geometry,  added  cohesion  from  roots,  and  

groundwater  •  Also  incorporates  fluvial  erosion  

Developed  by  Andrew  Simon  and  others  at  the  USDS-­‐ARS    

   

hip://www.ars.usda.gov/research/docs.htm?docid=5044  

Page 18: Lecture 17-10-24 Bank Erosion Dean

Rela%ve  Effects  of  Mechanical  and  Hydrologic  Impacts  Vegeta%on  

Simon  and  Collison  2002  

Mechanical  effects  –  root  tensile  strength,  root  distribu<on,  root  diameter/area  Hydrologic  effects  –  stem  flow  (water  infiltra<on  around  trunk),  canopy  intercep<on,  pore-­‐water  pressure  (suc<on).  

Page 19: Lecture 17-10-24 Bank Erosion Dean

q Increased  Fs  due  to  tree  cover  (winter  2000)  

q Decrease  in  Fs  with  large  rainstorm  

q Fs  begins  to  rise  again  due  to  higher  matric  suc7ons  (greatest  under  trees  due  to  transpira7on)  

q Soil  moisture  deficit  protected  bank  through  January  un7l  next  storm.    

q Early  season  winter  rain  resulted  in  failure  because  there  was  no  intercep7on  from  the  canopy.    

Page 20: Lecture 17-10-24 Bank Erosion Dean

Role  of  Invasive  Vegeta@on  In  Channel  Narrowing  

•  Rapid  invasion  of  Tamarisk  and  Russian  Olive  

•  Incised  channel  with  sandy  banks  (no  cohesion)  

•  NPS  interested  in  vegeta<on  removal  and  channel  recovery  

(Pollen-­‐Bankhead  et  al  2009  –  Canyon  de  Chelly)  

Page 21: Lecture 17-10-24 Bank Erosion Dean

shape  aiributes  

•  Symmetrical  – May  be  erosional  channel  or  cross-­‐over  between  bends  

•  Asymmetrical  –  Typical  of  one  side  of  channel  erosional  and  one  side  is  deposi<onal  

•  Irregular  •  Compound    

Page 22: Lecture 17-10-24 Bank Erosion Dean

Channel  Cross-­‐sec<on  Form  •  Width  (B)  •  Mean  depth  (h)  •  Cross-­‐sec<on  area  (A)  •  Weied  perimeter  (P)  •  Hydraulic  radius  (R)  •  Maximum  depth  (hmax)  •  Bed  width  (Bbed)  

•  Width/depth  (B/h)  •  hmax  /  hmean  

•  asymmetry  indices  –  A*  =  (Ar  -­‐  Al)/A  

•  Ar  –area  to  right  of  center  •  Al  –  area  to  lev  of  center  

–  A2  =  2x  (hmax  -­‐  h)  /  A  •  X  –  hor  dist  from  center  to  max  depth  

From  Knighton  

Page 23: Lecture 17-10-24 Bank Erosion Dean

Channel  size  •  Channels  with  steep  slopes  and  channels  transpor<ng  large  

volumes  of  coarse  bedload  with  braided  channels  are  typically  wide  and  shallow  

•  Channels,  especially  sand  channels,  with  flashy  discharge  are  typically  wide  

•  Channels  with  dense  riparian  vegeta<on  are  narrower  and  deeper  than  with  sparse  vegeta<on  

•  Regime  theory  and  hydraulic  geometry  -­‐-­‐  be  aware  of  regional  se[ng  of  the  data  and  condi<on  of  the  channels  that  were  measured    

•  Is  it  possible  to  predict  channel  geometry???  –  i.e.  channel  width???  Given  certain  hydrologic  parameters  and  drainage  basin  aiributes.    

Page 24: Lecture 17-10-24 Bank Erosion Dean

Hydraulic  geometry  rela<ons:  at-­‐a-­‐sta<on  

Page 25: Lecture 17-10-24 Bank Erosion Dean

The  mathema<cal  form  of  these  rela<ons  is:  

B  =  aQb  

h  =  cQf  

U  =  kQm  

Note:  Q  =  B  h  U  =  ackQ(b+f+m)  

This  plot  is  an  at-­‐a-­‐sta<on  hydraulic  geometry  plot,  because  it  depicts  changes  that  occur  at  one  place  on  the  channel  

Page 26: Lecture 17-10-24 Bank Erosion Dean

The hydraulic geometry of streams: �

n B = aQb �n b = 0.26 �n b = 0.5 �

n h = cQf �n f = 0.40 �n f = 0.4 �

n U = kQm �

n m = 0.34 �n m = 0.1 �

at-a-station   downstream �

Page 27: Lecture 17-10-24 Bank Erosion Dean

… or use regional relations between drainage basin area and width�

(Leopold, 1994)�

Page 28: Lecture 17-10-24 Bank Erosion Dean

We do not yet have a good physically-based model that predicts channel width. The downstream hydraulic geometry is a good predictor of channel width, But there is a significant degree of scatter, and natural variability�n  B = aQ0.5 �

Given  a  certain  hydrology,  and  certain  drainage  basin  aiributes,  how  else  can  we  approach  the  problem  of  predic<ng  channel  geometry?      

Page 29: Lecture 17-10-24 Bank Erosion Dean

Methods  to  es<mate  channel-­‐forming  discharge:  1.    Bankfull  discharge  –  a  field-­‐based  channel  a[ribute  

Original  observa<ons:  heavily  grazed  meadow,  single-­‐thread  meandering  stream,  rapid  migra<on  rate,  maintenance  of  channel  conveyance  over  a  decade  of  channel  movement  

Big  Creek,  UT:  meandering  form,  very  slow  migra<on  rate  

Florence  Creek,  MT:  coarse-­‐bedded,  straight  channel,  very  slow  migra<on  rate  

Original  field  iden<fica<on  criteria  (top  of  the  flat-­‐lying  alluvial  surface),  now  expanded  to  include  non-­‐geomorphic  aiributes  (i.e.,  lower  eleva<on  of  perennial  vegeta<on,  stain  lines)  

Page 30: Lecture 17-10-24 Bank Erosion Dean

Methods  to  es<mate  channel-­‐forming  discharge:  1.    Bankfull  discharge  –  a  field-­‐based  channel  a[ribute  

“Although  several  criteria  have  been  iden7fied  to  assist  in  field  iden7fica7on  of  bank-­‐full  stage  …  considerable  experience  is  required  to  apply  these  in  prac7ce,  especially  on  rivers  that  have  in  the  past  undergone  aggrada7on  or  degrada7on.”  

(Biedenharn  et  al.  2008)  

Harrelson  et  al.    1994.    Stream  channel  reference  sites:  an  illustrated  guide  to  field  technique.    General  Report  No.  RM-­‐245,  U.  S.  Forest  Service.  

Page 31: Lecture 17-10-24 Bank Erosion Dean

DATE  1920   1930   1940   1950   1960   1970   1980   1990   2000  

0.2  

0.3  

0.4  

0.5  

140.0  

160.0  

MEAN  CHANNEL  WIDTH,  IN  METERS  

SECONDARY  CHANNEL  AREA,  IN  SQ.  METERS  

CHANNEL WIDTH CHANGE OVER TIME

1920   1930   1940   1950   1960   1970   1980   1990   2000  98  102  106  110  114   PRE-­‐DAM   POST-­‐DAM  

BANKFULL  CHANNEL  WIDTH,  IN  METERS  

Allred  and  Schmidt,  1999  –  Green  River  near  Green  River,  UT.    

Page 32: Lecture 17-10-24 Bank Erosion Dean

Methods  to  es<mate  channel-­‐forming  discharge:  2.    Specified  recurrence  of  peak  -­‐-­‐  objec7vely  defined  

from  hydrologic  data  

1 10 100

Return Period of Bankfull Flow (years)

Wolman and Leopold, 1957 WY, MT, MD, NC, SC, CT

Kilpatrick & Barnes, 1964 AL, GA, NC, SC

Leopold, Wolman, Miller 1964 IN, NB, MS, MD

Williams, 1978 CO, UT, NM, OR

ALL n = 107

2 @ 200 yrs -->

75% of obs within box 1.06 5

19% of obs: 1.36<RI<2.2 yr

“because  of  the  uncertain7es  …,  it  is  recommended  that  discharges  …  [of  1-­‐3  yr  recurrence]  be  compared  to  the  bank-­‐full  stage  in  the  field  to  verify  that  they  do  have  morphological  significance.”  

 (Biedenharn  et  al.  2008)    

Soar.    2000.    Channel  restora7on  design  for  meandering  rivers.    Ph.  D.  thesis,  University  of  Nohngham,  UK.  

“assuming  a  priori  that  Qri  is  related  to  either  Qbf  or  Qef  should  be  avoided  in  channel  design”  (Shields  et  al.,  2008)   Many  studies  show  that  the  1-­‐3  yr  recurrence  

has  liPle  to  do  with  the  bankfull  discharge!!!  Bad  approxima@on!!!  

Page 33: Lecture 17-10-24 Bank Erosion Dean

Methods  to  es<mate  channel-­‐forming  discharge:  3.  Effec7ve  discharge  –  a  calculated  value    based  on  

sediment  transport  data  

But  many  studies  have  shown  that  effec<ve  discharge  is  not  equivalent  to  bank-­‐full  discharge  and  that  the  effec<ve  discharge  may  not  always  be  a  direct  surrogate  for  the  channel-­‐forming  flow  

(Andrews,  1980)  

(Wolman  and  Miller,  1960)  

(Baker,  1977)  

Effec<ve  discharge  “is  the  best  basis  for  channel  restora<on  design”  (Shields  et  al.,  2008)  

Page 34: Lecture 17-10-24 Bank Erosion Dean

The  channel-­‐forming  discharge  

Long-­‐term  average  channel  form  depends  on  the  <me-­‐averaged  magnitude  of  erosion  and  deposi<on  (recovery)  processes.    Rivers  where  recovery  processes  are  faster  typically  are  adjusted  to  more  common  floods.    Channels  with  less  riparian  vegeta<on  and  with  highly  variable,  ephemeral  flow  are  more  likely  to  have  disequilibrium  morphologies.  

(Poff  et  al.,  1997)  

Wolman  and  Gerson,  1978)  

Page 35: Lecture 17-10-24 Bank Erosion Dean

Method  for  determining  effec<ve  discharge  (method  in  montecarlo.xls)  

1A)  Obtain  discharge  data  for  at  least  10-­‐15  year  period.    well  established  that  mean  daily  discharge  masks  role  of  short-­‐dura<on  

events.    Thus,  hourly  or  15-­‐min  data  should  be  used  for  small  streams  if  data  exist.  USGS  Instantaneous  Data  Archive    hip://ida.water.usgs.gov/ida/index.cfm    2)  Develop  sediment  ra<ng  curve,  for  transport  of  those  sediment  sizes  that  form  the  channel  boundary  

 bed  material  only  or  include  sizes  that  comprise  the  banks  and  natural  levees?    3)  Determine  the  transport  by  each  discharge  event    4)  Establish  discharge  bins  and  sum  total  transport  for  each  bin    5)  Determine  sensi<vity  of  Qef  to  bin  size    6)  Iden<fy  modal  value    

Page 36: Lecture 17-10-24 Bank Erosion Dean

Accoun<ng  for  Bank  Stability/Erosion  Improves  Width  Predic<ons  

Eaton  and  Millar  2004  

“unconstrained”   “constrained”  

Page 37: Lecture 17-10-24 Bank Erosion Dean

Problems  associated  with  effec<ve  discharge  calcula<ons  (Shields  et  al.,  2008)  

1.  Computed  values  are  sensi<ve  to  the  number  of  increments  used  to  build  the  discharge  histogram  

2.  Effec<ve  discharge  is  just  one  flow  that  over-­‐simplifies  the  actual  flow  regime  and  its  history  

3.  Limited  applicability  to  unstable  channels  and  those  where  a  catastrophic  event  has  occurred  during  the  period  of  record.    Flow  frequency  and  sediment-­‐transport  rela<ons  may  have  changed  as  system  adjusts  to  this  event.  

In  an  unstable  channel  that  adjusts  its  form  to  a  changing  hydrologic  and  sediment  supply  regime,  Qbf  does  not  equal  Qef.    “Therefore,  the  expression  “bank-­‐full  discharge”  should  never  be  used  to  refer  to  Qri  or  Qef.      

Page 38: Lecture 17-10-24 Bank Erosion Dean

References  

B-­‐F:  93-­‐108  

B:  162-­‐180      

Knighton,  165-­‐187  

L:  126-­‐182    

 

Mueller,  E.  R.,  and  Pitlick,  J.  (2005),  Morphologically  based  model  of  bed  load  transport  capacity  in  a  headwater  stream.  Journal  of  Geophysical  Research,  110,  F02016,  doi:10.1029/2003JF000117.  

Parker,  G.,  et  al.  (2003),  Effect  of  floodwater  extrac<on  on  mountain  stream  morphology.    Journal  of  Hydraulic  Engineering  129:885-­‐895.  

Pitlick,  J.,  and  Cress,  R.  (2002),  Downstream  changes  in  the  channel  geometry  of  a  large  gravel  bed  river.    Water  Resources  Research  38(10),  1216,  doi:10.1029/2001WR000898.