lecture 2 statistical inference - tohoku university official...

25
Lecture 2 Statistical Inference

Upload: buiphuc

Post on 12-May-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Lecture 2

Statistical Inference

Page 2: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

An example of data Mid-Heights of Parents ๐‘ฅ

Hei

gh

ts o

f A

du

lt C

hil

dre

n

below 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5 72.5 above sum

above 5 3 2 4 14

73.2 3 4 3 2 2 3 17

72.2 1 4 4 11 4 9 7 1 41

71.2 2 11 18 20 7 4 2 64

70.2 5 4 19 21 25 14 10 1 99

69.2 1 2 7 13 38 48 33 18 5 2 167

68.2 1 7 14 28 34 20 12 3 1 120

67.2 2 5 11 17 38 31 27 3 4 138

66.2 2 5 11 17 36 25 17 1 3 117

65.2 1 1 7 2 15 16 4 1 1 48

64.2 4 4 5 5 14 11 16 59

63.2 2 4 9 3 5 7 1 1 32

62.2 1 3 3 7

below 1 1 1 1 1 5

sum 14 23 66 78 211 219 183 68 43 19 4 928

F. Galton:Regression towards mediocrity in hereditary stature, Anthropological Miscellanea (1886)

2

Page 3: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Multi-dimensional data and data matrix

2 dimensional data

No. father Adult child

1 68.2 63.3

2 71.8 72.5

3 64.4 69.2

โ‹ฏ โ‹ฏ โ‹ฏ

๐‘– ๐‘ฅ๐‘– ๐‘ฆ๐‘–

โ‹ฏ โ‹ฏ โ‹ฏ

928 ๐‘ฅ928 ๐‘ฆ928

๐‘ฅ1 ๐‘ฅ2 โ‹ฏ ๐‘ฅ๐‘— โ‹ฏ ๐‘ฅ๐‘

1

2

โ‹ฎ

๐‘– ๐‘ฅ๐‘–1 ๐‘ฅ๐‘–2 โ‹ฏ ๐‘ฅ๐‘–๐‘— โ‹ฏ ๐‘ฅ๐‘–๐‘

โ‹ฎ

๐‘›

p variables

nsa

mp

les

p dimensional data

๐—๐‘– =

๐‘ฅ๐‘–1๐‘ฅ๐‘–2โ‹ฎ๐‘ฅ๐‘–๐‘

๐‘–-th data

data matrix

๐ƒ = ๐—1 ๐—2โ‹ฏ ๐—๐‘– โ‹ฏ๐—๐‘›๐‘‡

3

Page 4: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Mid-heights of Parents

Hei

gh

ts o

f A

du

lt C

hil

dre

n

below 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5 72.5 above sum

above 5 3 2 4 14

73.2 3 4 3 2 2 3 17

72.2 1 4 4 11 4 9 7 1 41

71.2 2 11 18 20 7 4 2 64

70.2 5 4 19 21 25 14 10 1 99

69.2 1 2 7 13 38 48 33 18 5 2 167

68.2 1 7 14 28 34 20 12 3 1 120

67.2 2 5 11 17 38 31 27 3 4 138

66.2 2 5 11 17 36 25 17 1 3 117

65.2 1 1 7 2 15 16 4 1 1 48

64.2 4 4 5 5 14 11 16 59

63.2 2 4 9 3 5 7 1 1 32

62.2 1 3 3 7

below 1 1 1 1 1 5

sum 14 23 66 78 211 219 183 68 43 19 4 928

x

y

Joint distribution

4

Page 5: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Marginal distribution (Heights of adult children)

population

samples

statisticalinference

Inch below 62.2 63.2 64.2 65.2 66.2 67.2 68.2 69.2 70.2 71.2 72.2 73.2 above sum

Num. 5 7 32 59 48 117 138 120 167 99 64 41 17 14 928

Rel. Freq.

0.005 0.008 0.034 0.064 0.052 0.126 0.149 0.129 0.180 0.107 0.069 0.044 0.018 0.015 1.000

0.000

0.050

0.100

0.150

0.200

below 62.2 63.2 64.2 65.2 66.2 67.2 68.2 69.2 70.2 71.2 72.2 73.2 above

5

Page 6: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Point estimates of population parameters

The population distribution is our ultimate target. However, it is not reasonable to discuss the full

information about it. We will estimate some parameters of the

population distribution, e.g., mean value, variance, maximal value, correlation coefficient, ....

Point estimateLet ๐œƒ be a parameter of the population distribution.We wish to find a function

๐œƒ = ๐‘“ ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ‹ฏ , ๐‘ฅ๐‘such that ๐œƒ is a reasonable estimate of the unknown parameter ๐œƒ by using the sample data ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ‹ฏ , ๐‘ฅ๐‘.

population distribution

samples

๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ‹ฏ , ๐‘ฅ๐‘

๐œƒ

statisticalinference

6

Page 7: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Unbiased estimates

Definition ๐œƒ = ๐œƒ ๐‘‹1, ๐‘‹2, โ‹ฏ , ๐‘‹๐‘ is called an

unbiased estimator of ๐œƒ if ๐„ ๐œƒ = ๐œƒ.

population

samples๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ‹ฏ , ๐‘ฅ๐‘

Unknown parameter ๐œƒ

๐œƒ = ๐œƒ ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘

Sample data ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ‹ฏ , ๐‘ฅ๐‘ are definite values once a sampling is performed.

However, they vary with each sampling though the population remains the same.

Moreover, because each sample ๐‘ฅ๐‘– is a result of random sampling, it is modeled by a random variable ๐‘‹๐‘– obeying the population distribution.

Thus, the sample data ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ‹ฏ , ๐‘ฅ๐‘ are considered as realized values of the independent random variables ๐‘‹1, ๐‘‹2, ๐‘‹3, โ‹ฏ , ๐‘‹๐‘

Therefore, ๐œƒ should be considered as a random variable ๐œƒ = ๐œƒ ๐‘‹1, ๐‘‹2, โ‹ฏ , ๐‘‹๐‘ .

As usual, we adoptrandom sampling with replacement

7

Page 8: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Sample mean

For random samples ๐‘‹1, ๐‘‹2, ๐‘‹3, โ‹ฏ , ๐‘‹๐‘

the sample mean is defined by

Theorem The sample mean ๐‘‹ is an unbiased estimator of the mean value of the population:

where ๐‘š is the mean value of the population.

๐‘‹ =1

๐‘

๐‘˜=1

๐‘

๐‘‹๐‘˜

๐„ ๐‘‹ = ๐‘š

PROOF Since each ๐‘‹๐‘˜ is a random sample from the population, its distribution coincides with the population distribution. In particular, ๐„ ๐‘‹๐‘˜ = ๐‘š. Then,

๐„ ๐‘‹ =1

๐‘

๐‘˜=1

๐‘

๐„ ๐‘‹๐‘˜ = ๐‘š

population mean ๐‘š

sample 1: ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ‹ฏ , ๐‘ฅ๐‘ โ†’ ๐‘ฅ

sample 2: ๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3, โ‹ฏ , ๐‘ฆ๐‘ โ†’ ๐‘ฆ

โ‹ฎ

๐‘š ๐‘ฅ ๐‘ฆ

8

Page 9: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Better estimates

1. We have seen that the sample mean

๐‘‹ =1

๐‘

๐‘˜=1

๐‘

๐‘‹๐‘˜

is an unbiased estimator: ๐„ ๐‘‹ = ๐‘š.

Let ๐‘‹1, ๐‘‹2, ๐‘‹3, โ‹ฏ , ๐‘‹๐‘ be random samples.

2. The weighted mean

๐‘š =

๐‘˜=1

๐‘›

๐‘Ž๐‘˜๐‘‹๐‘˜ ,

๐‘˜=1

๐‘

๐‘Ž๐‘˜ = 1

is also an unbiased estimator.

๐„ ๐‘š =

๐‘˜=1

๐‘

๐‘Ž๐‘˜๐„ ๐‘‹๐‘˜ = ๐‘š

In fact,

3. Which is better?

Definition Let ๐œƒ1 and ๐œƒ2 be two unbiased

estimators of ๐œƒ, i.e., ๐„ ๐œƒ1 = ๐„ ๐œƒ2 = ๐œƒ.

We say that ๐œƒ1 is better than ๐œƒ2 if

๐„ ๐œƒ1 โˆ’ ๐œƒ2

โ‰ค ๐„ ๐œƒ2 โˆ’ ๐œƒ2.

In general, ๐„ ๐œƒ โˆ’ ๐œƒ2

= ๐• ๐œƒ is called the

mean squared error.

9

Page 10: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Sample mean is better than weighted mean

For the weighted mean ๐‘š = ๐‘˜=1๐‘› ๐‘Ž๐‘˜๐‘‹๐‘˜

we compute the mean squared error: ๐„ ๐‘š โˆ’๐‘š 2 .

๐‘š2 =

๐‘—=1

๐‘›

๐‘Ž๐‘—๐‘‹๐‘—

๐‘˜=1

๐‘›

๐‘Ž๐‘˜๐‘‹๐‘˜

=

๐‘—โ‰ ๐‘˜

๐‘Ž๐‘—๐‘Ž๐‘˜๐‘‹๐‘—๐‘‹๐‘˜ +

๐‘˜=1

๐‘›

๐‘Ž๐‘˜2๐‘‹๐‘˜

2

=

๐‘—โ‰ ๐‘˜

๐‘Ž๐‘—๐‘Ž๐‘˜ ๐‘š2 +

๐‘˜=1

๐‘›

๐‘Ž๐‘˜2 ๐œŽ2 +๐‘š2

= ๐‘š2

๐‘—,๐‘˜=1

๐‘›

๐‘Ž๐‘—๐‘Ž๐‘˜ + ๐œŽ2

๐‘˜=1

๐‘›

๐‘Ž๐‘˜2 =๐‘š2 + ๐œŽ2

๐‘˜=1

๐‘›

๐‘Ž๐‘˜2First note that

and

Hence

๐„ ๐‘š โˆ’๐‘š 2 = ๐„ ๐‘š2 โˆ’๐‘š2 = ๐œŽ2

๐‘˜=1

๐‘›

๐‘Ž๐‘˜2

= ๐œŽ2

๐‘˜=1

๐‘›

๐‘Ž๐‘˜ โˆ’1

๐‘›

2

+2

๐‘›

๐‘˜=1

๐‘›

๐‘Ž๐‘˜ โˆ’ ๐‘› ร—1

๐‘›2

= ๐œŽ2

๐‘˜=1

๐‘›

๐‘Ž๐‘˜ โˆ’1

๐‘›

2

+๐œŽ2

๐‘›

๐„ ๐‘š2 =

๐‘—โ‰ ๐‘˜

๐‘Ž๐‘—๐‘Ž๐‘˜ ๐„ ๐‘‹๐‘—๐‘‹๐‘˜ +

๐‘˜=1

๐‘›

๐‘Ž๐‘˜2๐„ ๐‘‹๐‘˜

2

=

๐‘—โ‰ ๐‘˜

๐‘Ž๐‘—๐‘Ž๐‘˜ ๐„ ๐‘‹๐‘— ๐„ ๐‘‹๐‘˜ +

๐‘˜=1

๐‘›

๐‘Ž๐‘˜2 ๐œŽ2 +๐‘š2

This attains minimum when ๐‘Ž๐‘˜ = 1/๐‘› (sample mean).

10

Page 11: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Exercise 3 (10min)

(1) A coin is tossed ๐‘ times. Let ๐‘‹ be the number of heads. Examine that the relative frequency ๐‘‹/๐‘ is an unbiased estimator of a probability that a head occurs. [Hint] ๐‘‹/๐‘ =

1

๐‘ ๐‘˜=1๐‘ ๐‘๐‘˜ , where ๐‘๐‘˜ = 0 or 1 according to heads or tails.

(2) An urn contains many white balls and a relatively small number of red

balls. ๐‘ balls are chosen randomly with replacement. Find an unbiased

estimator of the ratio of red balls in the urn.

11

Page 12: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Exercise 4 (Challenge)[Median is an unbiased estimator]

There is a deck of ๐‘ cards and a unique number from 1 to ๐‘ is assigned to each

card as a reward. Three cards are drawn randomly with replacement, say,

๐‘‹1, ๐‘‹2, ๐‘‹3. Then we know that (๐‘‹1 + ๐‘‹2 + ๐‘‹3)/3 is an unbiased estimator of the

mean of the reward. The median ๐‘€ of ๐‘‹1, ๐‘‹2, ๐‘‹3 is the reward which locates at

the middle rank among the three, i.e., in this case the second largest (or the

second smallest).

(1) Find the distribution of ๐‘€, i.e., ๐‘ƒ ๐‘€ = ๐‘˜ .

(2) Show that ๐‘€ is an unbiased estimator.

12

Page 13: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Unbiased variance

โ€ข Let ๐‘‹1, ๐‘‹2, ๐‘‹3, โ‹ฏ , ๐‘‹๐‘ be random

samples with mean ๐‘š and variance ๐œŽ2.

โ€ข The sample mean is defined by

๐‘‹ =1

๐‘

๐‘˜=1

๐‘

๐‘‹๐‘˜

โ€ข The variance would be naturally defined by

๐‘†2 =1

๐‘

๐‘˜=1

๐‘

๐‘‹๐‘˜ โˆ’ ๐‘‹ 2

โ€ข However, ๐„ ๐‘†2 โ‰  ๐œŽ2.

TheoremAn unbiased estimator of ๐œŽ2 is given by

๐‘ˆ2 =1

๐‘ โˆ’ 1

๐‘˜=1

๐‘

๐‘‹๐‘˜ โˆ’ ๐‘‹ 2.

In other words,

๐„ ๐‘ˆ2 = ๐œŽ2.

Definition ๐‘ˆ2 is called the unbiased variance (or sample variance in some literatures).

PROOF is by direct calculation of ๐„ ๐‘ˆ2

expanding the right-hand side [Hoel: p.220].

13

Page 14: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Maximum likelihood estimates

โ€ข It is desired to use the best unbiased estimator.

โ€ข The best unbiased estimators are known for many concrete cases,

however, it is not straightforward to obtain the best unbiased

estimator in general.

โ€ข Then the maximum likelihood method is employed because

the maximum likelihood estimator is rather easily derived;

and in many cases it is the best unbiased estimator.

14

Page 15: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Examples:

(1) Binomial population โ€“ opinion poll, etc.

The population distribution is the Bernoulli

distribution ๐ต 1, ๐‘ , so the unknown parameter

is ๐‘.

(2) Poisson population โ€“ counting rare events

The population distribution Po ๐œ† contains just

one unknown parameter ๐œ†.

(3) Normal population โ€“ Population consisting of

individuals sharing a lot of small fluctuations

The normal distribution ๐‘ ๐‘š, ๐œŽ2 contains two

unknown parameters ๐‘š and ๐œŽ2.

Formulation

population distribution

๐‘“ ๐‘ฅ, ๐œƒ

with unknown parameter ๐œƒ

samples๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ‹ฏ , ๐‘ฅ๐‘

๐œƒ = ๐œƒ ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘

15

Page 16: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Likelihood functions

Let ๐‘“ ๐‘ฅ, ๐œƒ be the population distribution, where ๐œƒ is unknown.

The likelihood function is defined by

๐ฟ ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘; ๐œƒ =

๐‘˜=1

๐‘

๐‘“ ๐‘ฅ๐‘˜ , ๐œƒ

Basic idea: โ€ข Given a set of sample data ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘,

we determine the value ๐œƒ which maximizes ๐ฟ ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘; ๐œƒ .

โ€ข Roughly, we presume that the occurring event (the data ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘) is the one that have the highest probability among many other candidates.

The maximum value of ๐ฟ is found by solving ๐œ•๐ฟ

๐œ•๐œƒ= 0.

Such a value ๐œƒ = ๐œƒ is called the maximum likelihood estimator.

It is often more convenient to consider the log-likelihood function:

log ๐ฟ ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘; ๐œƒ =

๐‘˜=1

๐‘

log ๐‘“ ๐‘ฅ๐‘˜ , ๐œƒ

Then

๐œ• log ๐ฟ

๐œ•๐œƒ=

๐‘˜=1

๐‘๐œ•

๐œ•๐œƒlog ๐‘“ ๐‘ฅ๐‘˜ , ๐œƒ .

16

Page 17: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Binomial population

We consider

๐‘“ ๐‘ฅ, ๐‘ =๐‘, if ๐‘ฅ = 11 โˆ’ ๐‘, if ๐‘ฅ = 0

= ๐‘๐‘ฅ 1 โˆ’ ๐‘ 1โˆ’๐‘ฅ

where ๐‘ is unknown and to be estimated.

The log-likelihood function is defined by

log ๐ฟ =

๐‘˜=1

๐‘

๐‘ฅ๐‘˜ log ๐‘ + 1 โˆ’ ๐‘ฅ๐‘˜ log 1 โˆ’ ๐‘

The likelihood function is defined by

๐ฟ ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘; ๐‘ =

๐‘˜=1

๐‘

๐‘“ ๐‘ฅ๐‘˜ , ๐‘ =

๐‘˜=1

๐‘

๐‘๐‘ฅ๐‘˜ 1 โˆ’ ๐‘ 1โˆ’๐‘ฅ๐‘˜

Then we have

๐œ•

๐œ•๐‘log ๐ฟ =

๐‘˜=1

๐‘

๐‘ฅ๐‘˜1

๐‘+ 1 โˆ’ ๐‘ฅ๐‘˜

โˆ’1

1 โˆ’ ๐‘

=

๐‘˜=1

๐‘๐‘ฅ๐‘˜ โˆ’ ๐‘

๐‘ 1 โˆ’ ๐‘

and solving ๐œ•

๐œ•๐‘log ๐ฟ = 0, we

obtain the maximum likelihood estimator:

๐‘ =1

๐‘

๐‘˜=1

๐‘

๐‘ฅ๐‘˜

which is known as the sample mean and is an unbiased estimator too.

17

Page 18: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Point estimates vs Interval estimates

populationsamples

๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ‹ฏ , ๐‘ฅ๐‘unknown parameter

๐œƒ

๐œƒ ๐œƒ

point estimator

๐œƒ = ๐œƒ ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘

โ€ข ๐œƒ is calculated by using our good estimator.โ€ข However, nobody knows whether or not ๐œƒ is

close to ๐œƒ.โ€ข What we know is that our estimating method

is statistically reasonable in the sense that ๐œƒ hits a good approximation of ๐œƒ with high frequency if we apply many times.

Probabilistic estimate is done using the confidence interval [Hoel: Chap 5]18

Page 19: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Problem 5

19

Consider the interval [0, ๐ด], where ๐ด > 0 is unknown and to be estimated (e.g., the ultimate world record). Let ๐‘‹1, ๐‘‹2, โ‹ฏ , ๐‘‹๐‘› be random samples obeying the uniform distribution [0, ๐ด]. Let ๐‘‹ be the sample mean.

(1) Show that 2 ๐‘‹ is an unbiased estimator of ๐ด.

(2) This model is too simple for application to estimating the ultimate world record of long jump. Discuss about this point.

Page 20: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Problem 6

There are many runners on the street. Each runner is given a number cloth starting with

1 to a certain unknown big number ๐‘. Snap shots are taken at random.

(1) In a snap shot there are 3 runners with numbers ๐‘‹1, ๐‘‹2, ๐‘‹3. Set ๐‘€ = max ๐‘‹1, ๐‘‹2, ๐‘‹3 .

Prove that

๐‘ƒ ๐‘€ = ๐‘˜ =3 ๐‘˜ โˆ’ 1 ๐‘˜ โˆ’ 2

๐‘ ๐‘ โˆ’ 1 ๐‘ โˆ’ 2

(2) Calculating the mean value ๐„ ๐‘€ , show that 4

3๐‘€ โˆ’ 1 is an unbiased estimator of ๐‘.

(3) In a snap shot there are ๐‘› runners with numbers ๐‘‹1, ๐‘‹2, โ‹ฏ , ๐‘‹๐‘›. Show that

1 +1

๐‘›๐‘€ โˆ’ 1 is an unbiased estimator of ๐‘, where ๐‘€ = max ๐‘‹1, ๐‘‹2, โ‹ฏ , ๐‘‹๐‘› .

20

Page 21: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Problem 7

Recall Exercise 7. There is a deck of ๐‘ cards and a unique number from 1 to ๐‘ is

assigned to each card as a reward. Three cards are drawn randomly with replacement,

say, ๐‘‹1, ๐‘‹2, ๐‘‹3. We know that both

๐‘‹ =1

3๐‘‹1 + ๐‘‹2 + ๐‘‹3 , ๐‘€ = median ๐‘‹1, ๐‘‹2, ๐‘‹3

are unbiased estimator of the mean of the reward. Calculating the mean squared

errors, determine the better estimator.

21

Page 22: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Problem 8

The exponential distribution with parameter ๐œ† > 0 is defined by the density

function:

๐‘“ ๐‘ฅ, ๐œ† = ๐œ†๐‘’โˆ’๐œ†๐‘ฅ , ๐‘ฅ โ‰ฅ 0,

0, ๐‘ฅ < 0.

Then the likelihood function is defined by

๐ฟ ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘; ๐œ† =

๐‘˜=1

๐‘

๐‘“ ๐‘ฅ๐‘˜ , ๐œ† .

Find the maximum likelihood estimator ๐œ† of ๐œ†.

22

Page 23: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Problem 9It is known [de Moivre-Laplace theorem] that the binomial distribution ๐ต ๐‘›, ๐‘ is well approximated

by the normal distribution ๐‘ ๐‘›๐‘, ๐‘›๐‘ 1 โˆ’ ๐‘ when ๐‘›๐‘ โ‰ฅ 30 and ๐‘› 1 โˆ’ ๐‘ โ‰ฅ 30. Then, for a

random variable ๐‘‹~๐ต ๐‘›, ๐‘ we have

๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ = ๐‘ƒ๐‘‹ โˆ’ ๐‘›๐‘

๐‘›๐‘ 1 โˆ’ ๐‘โ‰ค ๐‘ฆ โ‰ˆ

1

2๐œ‹ โˆ’โˆž

๐‘ฆ

๐‘’โˆ’๐‘ก2

2 ๐‘‘๐‘ก , ๐‘ฆ =๐‘ฅ โˆ’ ๐‘›๐‘

๐‘›๐‘ 1 โˆ’ ๐‘

On the other hand, by numerical computation for ๐‘~๐‘ 0,1 we know that

๐‘ƒ ๐‘ โ‰ค 1.96 =1

2๐œ‹ โˆ’1.96

1.96

๐‘’โˆ’๐‘ก2

2 ๐‘‘๐‘ก = 0.95

A fair coin is tossed ๐‘› times (๐‘› is so large as ๐‘› โ‰ซ 100). Let ๐‘‹๐‘› be the number of heads among ๐‘›

trials. Find ๐‘Ž๐‘› such that

๐‘ƒ๐‘‹๐‘›

๐‘›โˆ’1

2โ‰ค ๐‘Ž๐‘› = 0.95

23

Page 24: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Solution to Exercise 3

(1) Let ๐‘ be the probability that a head occurs

and ๐‘‹ the number of heads obtained in

tossing a coin ๐‘ times. Then ๐‘‹/๐‘ is an

unbiased estimator of ๐‘. In fact, define

๐‘๐‘˜ = 1, if a head occurs on ๐‘˜โˆ’th toss

0, otherwise

Then ๐‘1, ๐‘2, โ‹ฏ , ๐‘๐‘ are random samples from

the population with mean ๐‘ (This is called a

binomial population). Then we know that the

sample mean

๐‘ =1

๐‘

๐‘˜=1

๐‘

๐‘๐‘˜

(2) Let ๐‘ be the ratio of the red balls in the urn.

Then, choosing a ball from the urn is equivalent to

tossing a coin such that the probability that a

head occurs is ๐‘. Then the situation is the same as

in (1). Letting ๐‘‹ be the number of red balls among

๐‘ trials, X/๐‘ is an unbiased estimator of ๐‘.

is an unbiased estimator, i.e., ๐„ ๐‘ = ๐‘. On the other

hand, ๐‘˜=1๐‘ ๐‘๐‘˜ is the number of of heads obtained in

tossing a coin ๐‘ times and coincides with ๐‘‹.

Consequently, ๐‘‹

๐‘= ๐‘ is an unbiased estimator of ๐‘.

24

Page 25: Lecture 2 Statistical Inference - Tohoku University Official ...obata/student/graduate/file/...Unbiased estimates Definition ๐œƒ =๐œƒ ๐‘‹ 1,๐‘‹2,โ‹ฏ,๐‘‹๐‘ is called an unbiased

Solution to Exercise 4

First we find the distribution of ๐‘€. The event ๐‘€ = ๐‘˜ is divided into the following four cases:

โ€ข ๐‘‹1 < ๐‘˜, ๐‘‹2= ๐‘˜, ๐‘‹3 > ๐‘˜ or its permutations

โ€ข ๐‘‹1 = ๐‘‹2 = ๐‘˜, ๐‘‹3> ๐‘˜ or its permutations

โ€ข ๐‘‹1 < ๐‘˜, ๐‘‹2 = ๐‘‹3 = ๐‘˜ or its permutations

โ€ข ๐‘‹1 = ๐‘‹2 = ๐‘‹3 = ๐‘˜

Thus,

๐‘ƒ ๐‘€ = ๐‘˜ =1

๐‘36 ๐‘˜ โˆ’ 1 ๐‘ โˆ’ ๐‘˜ + 3 ๐‘ โˆ’ ๐‘˜ + 3 ๐‘˜ โˆ’ 1) + 1 =

1

๐‘3โˆ’6๐‘˜2 + 6 ๐‘ + 1 ๐‘˜ โˆ’ 3๐‘ + 2

๐ธ ๐‘€ =

๐‘˜=1

๐‘

๐‘˜ ๐‘ƒ ๐‘€ = ๐‘˜ =1

๐‘3

๐‘˜=1

๐‘

โˆ’6๐‘˜3 + 6 ๐‘ + 1 ๐‘˜2 โˆ’ 3๐‘ + 2 ๐‘˜

=1

๐‘3โˆ’6

๐‘2 ๐‘ + 1 2

4+ 6 ๐‘ + 1

๐‘ ๐‘ + 1 2๐‘ + 1

6โˆ’ 3๐‘ + 2

๐‘ ๐‘ + 1

2=

๐‘ + 1

2

The mean value of ๐‘€ is computed as follows:

which coincides with the mean of the reward ๐‘ + 1 /2. 25