lecture 2: technology trends - bnrgbnrg.eecs.berkeley.edu/~randy/courses/cs252.s96/lecture... ·...

32
RHK.S96 1 Lecture 2: Technology Trends Prof. Randy H. Katz Computer Science 252 Spring 1996

Upload: others

Post on 01-Apr-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 1

Lecture 2: Technology Trends

Prof. Randy H. KatzComputer Science 252

Spring 1996

Page 2: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 2

Original Food Chain Picture

Big Fishes Eating Little Fishes

Page 3: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 3

1985 Computer Food Chain

PCWork-stationMini-

computer

Mainframe

Mini-supercomputer

Supercomputer

Page 4: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 4

1995 Computer Food Chain

PCWork-station

Mainframe

Supercomputer

Mini-supercomputer

Massively Parallel Processors

Mini-computer

Now who is eating whom?

Page 5: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 5

Why Such Change in 10 years?

• Function– Rise of networking/local interconnection technology

• Performance– Technology Advances

» CMOS VLSI dominates TTL, ECL in cost & performance– Computer architecture advances improves low-end

» RISC, superscalar, RAID, …

• Price: Lower costs due to …– Simpler development

» CMOS VLSI: smaller systems, fewer components– Higher volumes

» CMOS VLSI : same dev. cost 10,000 vs. 100,000 units – Lower margins by class of computer, due to fewer services

Page 6: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 6

1985 Computer Food Chain Technologies

PCWork-stationMini-

computer

Mainframe

Mini-supercomputer

Supercomputer

ECL TTL MOS

Page 7: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 7Year

Tra

nsis

tors

1000

10000

100000

1000000

10000000

100000000

1970 1975 1980 1985 1990 1995 2000

i80386

i4004

i8080

Pentium

i80486

i80286

i8086

Technology Trends: Microprocessor Capacity

CMOS improvements:• Die size: 2X every 3 yrs• Line width: halve / 7 yrs

“Graduation Window”

Pentium Pro: 5.5 millionPowerPC 620: 6.9 millionAlpha 21164: 9.3 millionSparc Ultra: 5.2 million

Page 8: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 8

CMOS ImprovementsDie size 2X every 3 yrsLine widths halve every 7 yrs

Rati

o t

o A

rea in 1

980

0

5

10

15

20

25

1980 1983 1986 1989 1992

Transistorsper Unit Area

Die SizeLine Width Improvement

Die size increase plus transistor count increase

Transistor Count

Page 9: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 9

Memory Capacity (Single Chip DRAM)

size

Year

Bit

s

1000

10000

100000

1000000

10000000

100000000

1000000000

1970 1975 1980 1985 1990 1995 2000

year size cyc time1980 64 Kb 250 ns1983 256 Kb 220 ns1986 1 Mb 190 ns1989 4 Mb 165 ns1992 16 Mb 145 ns1996 64Mb?? ??

Page 10: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 10

Moore’s Law for Memory

128K

128M

20008K

1M

8M

1G

8G

1970 1980 1990

512 chips64

8 chips1 chip

4K

32K

$50

$400

$3.2K

$25.6K

$200K

$1.6M

$61/8th chip

1Kbit

640K

4K 16K 64K 256K 1M 4M 16M 64M 256M

Number ofchips 32M

128M

8M

1 Gw

1G

DOS limit

Primary memory size ofvarious sized systemsin number of chips andmemory system price at$50/chip over time

Page 11: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 11

Memory Size of Various Systems Over Time

128K

128M

20008K

1M

8M

1G

8G

1970 1980 1990

1 chip

1Kbit

640K

4K 16K 64K 256K 1M 4M 16M 64M 256M

DOS limit

1/8 chip

8 chips-PC

64 chips workstation

512 chips

4K chips

Page 12: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 12

Technology Trends(Summary)

Capacity Speed

Logic 2x in 3 years 2x in 3 years

DRAM 4x in 3 years 1.4x in 10 years

Disk 2x in 3 years 1.4x in 10 years

Page 13: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 13

Processor PerformanceTrends

Microprocessors

Minicomputers

Mainframes

Supercomputers

Year

0.1

1

10

100

1000

1965 1970 1975 1980 1985 1990 1995 2000

Page 14: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 14

Performance vs. Time

Mips25 mhz

0.1

1.0

10

100

Per

form

ance

(V

AX

780

s)

1980 1985 1990

MV10K

68K

7805 Mhz

RISC 60% / yr

uVAX 6K(CMOS)

8600

TTL

ECL 15%/yr

CMOS CISC

38%/yr

o ||MIPS (8 Mhz)

o9000

Mips(65 Mhz)

uVAXCMOS Will RISC continue on a

60%, (x4 / 3 years)? Moore's speed law?

4K

Page 15: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 15

Processor Performance

Sun-4/260

MIPS M/120MIPS M2000

IBM RS6000/540

HP 9000/750

DEC AXP 3000

0

50

100

150

200

250

300

1987 1988 1989 1990 1991 1992 1993 1994 1995

Year

Performance

IBM Power 2/590

1.54X/yr

1.35X/yr

DEC 21064a

Sun UltraSparc

Page 16: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 16

Performance Trends(Summary)

• Workstation performance (measured in Spec Marks) improves roughly 50% per year

• Improvement in cost performance estimated at 70% per year

Page 17: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 17199919971995199319911989198719851983

1

10

100

1000

10000

100000

Mainframe

Super-mini

Workstation

Inst

ruct

ion

s/se

con

d/$

Instructions/Second/$ vs. Time

PC

Page 18: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 18

Processor Perspective• Putting performance growth in perspective:

IBM POWER2 Cray YMPWorkstation Supercomputer

Year 1993 1988MIPS > 200 MIPS < 50 MIPSLinpack 140 MFLOPS 160 MFLOPSCost $120,000 $1M ($1.6M in 1994$)Clock 71.5 MHz 167 MHzCache 256 KB 0.25 KBMemory 512 MB 256 MB• 1988 supercomputer in 1993 server!

Page 19: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 19

1995 Computer Food Chain Technologies

PCWork-station

Mainframe

Supercomputer

Mini-supercomputer

Mini-computer

CMOSECL

Massively Parallel Processors

Endangered Species??

Page 20: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 20

Where Has This Performance Improvement Come From?

• Technology?• Organization?• Instruction Set Architecture?• Software?• Some combination of all of the above?

Page 21: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 21

Performance Trends Revisited(Architectural Innovation)

Microprocessors

Minicomputers

Mainframes

Supercomputers

Year

0.1

1

10

100

1000

1965 1970 1975 1980 1985 1990 1995 2000

CISC/RISC

Page 22: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 22

Performance Trends Revisited(Technology Advances)

Logic Speed: 2x per 3 yearsLogic Capacity: 2x per 3 years

Leads to:Computing capacity:4x per 3 years

– If can keep all the transistors busy all the time– Actual: 3.3x per 3 years

Page 23: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 23

Performance Trends Revisited (Microprocessor Organization)

Year

Tra

nsis

tors

1000

10000

100000

1000000

10000000

100000000

1970 1975 1980 1985 1990 1995 2000

r4400

r4000

r3010

i80386

i4004

i8080

i80286

i8086

• Bit Level Parallelism

• Pipelining

• Caches

• Instruction Level Parallelism

• Out-of-order Xeq

• Speculation

• . . .

Page 24: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 24

• Greater instruction level parallelism?• Bigger caches?• Multiple processors per chip?• Complete systems on a chip? (Portable Systems)

• High performance LAN, Interface, and Interconnect

What is Ahead?

Page 25: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 25

Hardware Technology1980 1990 2000

Memory chips 64 K 4 M 256 M-1 G

Speed 1-2 20-40 400-1000

5-1/4 in. disks 40 M 1 G 20 G

Floppies .256 M 1.5 M 500-2,000 G

LAN (Switch) 2-10 Mbits 10 (100) 155-655 (ATM)

Busses 2-20 Mbytes 40-400

Page 26: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 26

Software Technology

1980 1990 2000• Languages C, FORTRAN C++, HPF object stuff??• Op. System proprietary +DUM* +DUM+NT• User I/F glass Teletype WIMP* stylus, voice,

audio,video, ??• Comp. Styles T/S, PC Client/Server agents*mobile• New things PC & WS parallel proc. appliances• Capabilities WP, SS WP,SS, mail video, ??

• DUM = DOS, n-Unixes, MAC• WIMP = Windows, Icons, Mouse, Pull-down menus• Agents = robots that work on information

Page 27: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 27

Computing 2001

• Continue quadrupling memory every 3 years– 1K chip in 72 becomes 1 gigabit chip (128 Mbyte) in 2002

• On-line 12-25 Gigabytes; $10 1-Gbyte floppies & CDs

• Micros increase at 60% per year ... parallelism ≈100

• Radio links for untethered computing

Page 28: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 28

Computing 2001

• Telephone, fax, radio, television, camera, house, ...Real personal (watch, wallet,notepad) computers

• We should be able to simulate: – Nearly everything we make and their factories – Much of the universe from the nucleus to galaxies

• Performance implies: voice and visualEase of use. Agents!

Page 29: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 29

Applications: Unlimited Opportunities

• Office agents: phone/FAX/comm; files/paper handling

• Untethered computing: fully distributed offices ??• Integration of video, communication, and

computing: desktop video publishing, conferencing, & mail

• Large, commercial transaction processing systems• Encapsulate knowledge in a computer: scientific &

engineering simulation (e.g. planetarium, wind tunnel, ... )

Page 30: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 30

Applications: Unlimited Opportunities

• Generic mathematics; visualization & virtual reality• Computational chemistry e.g biochemistry and

matterials • Mechanical engineering without prototypes• Image/signal processing: medicine, maps,

surveillance.• Personal computers in 2001 are today's

supercomputers• Integration of the PC & TV => TC

Page 31: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 31

Challenges for 1990s Platforms

• 64-bit computers & 16 Mbit (2Mbyte DRAM): video, voice, communication, any really new apps?

• Increasingly large, complex systems and environments Usability?

• Plethora of non-portable, distributed, incompatible, non-interoperable computers: Usability?

• Scalable parallel computers can provide “commodity supercomputing”: Markets and trained users?

Page 32: Lecture 2: Technology Trends - BNRGbnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture... · 1996. 1. 16. · Mini-supercomputer Massively Parallel Processors Mini-computer Now

RHK.S96 32

Challenges for 1990s Platforms

• Apps to fuel and support a chubby industry: communications, paper/office, and digital video

• Computer commoditization & eventual disappearance (true ubiquitous computing!)

• The true portable, wireless communication computer

• Truly personal card, pencil, pocket, wallet computer

• Networks continue to limit: WAN, ISDN, and ATM?