lecture 3: nocturnal (stably stratified) boundary layer

51
Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Upload: lorin-patterson

Post on 18-Dec-2015

230 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Lecture 3:

Nocturnal (Stably Stratified)

Boundary Layer

Page 2: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

2

2

2

2

ZU

Zb

ZU

Zg

dZUd

NRi

;;

0

0

ggb 10

;

Stable Stratification – Ri > 0

Page 3: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Stable flows Richardson Number

2

2

22

Z

U

N

Z

U

dZ

bd

Z

U

z

g

Ri

RiK

K

dZUd

k

dZbd

K

dZUd

wu

wbRi

m

b

m

b

f

2

Page 4: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Thermally Driven Slope Flows

Reproduced from Mountain Meteorology (2000). Courtesy of Dr. Whiteman, PNNL.

Page 5: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Thermally Driven Valley flows

Reproduced from Mountain Meteorology (2000). Courtesy of Dr. Whiteman, PNNL.

Page 6: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Salt Lake City

Page 7: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

downtown uptown

365 m

305 m

610 m

915 mradiosonde / ozonesonde

tethersonde

Bank One Building

Bank One Building

G-1

nightime buildup of pollutants

meteorological station

temperature

South Mountain

Nouth Mountain

chemistry

DOAS

ozone aerosols

~ 3 km

ADEQ

radar wind profiler

Page 8: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

A Typical Urban Experiment

Page 9: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

VTMX ASU Equipment

Page 10: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Theta profile in the valley

Page 11: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

VTMX Measurements

2 7 4 2 7 5 2 7 6 2 7 7 2 7 8 2 7 9

T im e (Jd a y , L S T )

0

9 0

1 8 0

2 7 0

3 6 0

Win

d D

irec

tion

(Deg

.)

0

1

2

3

4

5

6

Win

d Sp

eed

(ms

)

4

8

1 2

1 6

2 0

2 4

2 8

Tem

pera

ture

(°C

)

-1 0 0 0

-6 0 0

-2 0 0

2 0 0

6 0 0

1 0 0 0

Rad

iati

ve f

lux

(W m

)

-2-1

4 .5 m

1 3 .8 6 m

L o n g w a v e o u tS h o rt w a v e in

(1 O c t) (5 O c t) 2 7 4 2 7 5 2 7 6 2 7 7 2 7 8 2 7 9

T im e (Jd a y , L S T )

0 .0

0 .3

0 .6

0 .9

1 .2

1 .5

(°C

)

0 .0

0 .3

0 .6

0 .9

1 .2

1 .5

(ms

)

0 .0

0 .3

0 .6

0 .9

1 .2

1 .5

(ms

)

0 .0

0 .3

0 .6

0 .9

1 .2

1 .5

(m

s )-1

-1-1

D S U S D S U S D S U S D S U S D S U S

u

vw

T

(1 O c t) (5 O c t)

Page 12: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Downslope – Field Data10/15 TS2

0

50

100

150

200

250

0 2 4 6

Wind Speed

Alt

itu

de

0:22

0:42

1:09

1:30

1:49

2:07

2:30

2:56

10/15 TS2

0

50

100

150

200

250

288 290 292 294 296 298

Potential Tem perature

Alt

itu

de

0:22

0:42

1:09

1:30

1:49

2:07

2:30

2:56

Page 13: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Flow Analysis

Page 14: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Idealized Slope Flow Analysis

0

0

0

H

Hwudns

n

w

s

u

HD wuUCbhbhss

hU

t

Uh ''222

sincos2

1

Ho wbBbhUs

EUhNbht

''2 cossin

EUUhs

Uh EU

EntrainmentCoefficient, Ri = bh/U2

XXX X

X X X XXX

Page 15: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Downslope flow - PulsationLinearized governing equations with neglected flux divergence and the entrainment-rate,

have oscillatory solution with the frequency

EaN~

or period

EaN~T

2

0222

2

UNat

UE

bat

U

UNat

bE22

Wind Speed

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

275.15 275.2 275.25 275.3 275.35 275.4 275.45 275.5

JDay

Win

d S

pe

ed

[m

/s]

Page 16: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Downslope flow - Pulsation

Down-slope Wind

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

275.15 275.25 275.35 275.45

JDay

Win

d S

pe

ed

[m

/s]

Wind Speed

Sin T=55 min T=55 min

EaN~T

2

ACS = 4.7 deg: T=20 – 50 min

SS = 1.8 deg: T=50 – 130 min

Page 17: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Other Observations

– the Riviera valley (Gorsel et al., ICAM/MAP proceedings, 2003)

– Cobb Mountain (Doran and Horst, JAM, 20(4), 361-364, 1981)

– Phoenix valley (Keon, Master Thesis, ASU, 1982)

– Slope and ACS sites of the VTMX campaign in Salt Lake City (Doran et al., BAMS, 83(4), 537-554).

0 40 80 120

Slope Site

ACS

Gorsel et al.

0

40

80

120

Critical wave period [min]

Obs

erve

d w

ave

peri

od [

min

] Doran and Horst

160 200 240

160

200

240

280

280

Keon

American Scientist 2004

Page 18: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Manin and Sawford’s (1978) Solutions(Combining with Briggs formula)

shI

32

sin073.0

3131

0

92

Isin5.2 U sB

3132

0

98

sin2.8 sBbI

0NFor

( is the slope angle, the stabilizing buoyancy flux driving the flow and s the along-slope distance measured downward, hI integral scales of katabatic layer depth, UI velocity and DbI buoyancy )

32

sin05.0 E

Page 19: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Flow Velocity

HD wuUCbhbhss

hU

t

Uh ''222

sincos2

1

s

UhU

s

UUh

2EU

High Ri Entrainment is Unimportant

)1966Rao&(Businger

sin 21

Hu bLU

Low Ri Entrainment is dominant

21

1

sin

E

bhU u

EUUhs

Page 20: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

Ri

Lam

bd

a_c

High Ri Entrainment is Unimportant

21

sin Hu bLU

21

1

E

sinbhU u

Page 21: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer
Page 22: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Low Ri Entrainment is dominant

21

1

sin

E

bhU u

Page 23: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Parameterization of Vertical Mixing

z

)(zU

j

jj

j

iji

jj x

puqu

bwx

Uuu

x

qU

t

q 222

222

P B DFlux Richardson Number

j

iji

f

xU

uu

bwR

Gradient Richardson Number

2

2

zU

NRig

Diffusion Coefficients

ihi

i

j

j

imji

x

bKbu

x

U

x

UKuu

e.g..z

UKuw m

Page 24: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Flux versus Gradient Richardson Numbers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1 1 10 100Ri g

Ri f

Strang & Fernando

MY (1982)

VTMX (2000)

TA-6 data

Townsend (1958)

Nakashini (2001)

fRi

J. Fluid Mech. 2002

Page 25: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Eddy Coefficients

(

m s

)

M2

-1

g

(m s

)

R i

K

/ KH

2 -

1H

M

F ie ld e x p e rim e n t

E q u a tio n (3 .4 )

F ie ld e x p e rim e n t

E q u a tio n (3 .5 )

E q u a tio n (3 .6 )

F ie ld e x p e rim e n t

S tra n g & F e rn a n d o

0 .0 1 0 .1 1 1 0 1 0 0

1 0

1

0 .1

0 .0 1

0 .0 0 1

1 0

1

0 .1

0 .0 1

0 .0 0 1

1 0

1

0 .1

0 .0 1

0 .0 0 1K

K

22.0)45.0( gm RiK

45.0)07.0(

gh RiK

for the entire range of Rig;

for Rig < 1 and 07.0hK for Rig > 1

Page 26: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Normalization of the eddy coefficients in the VTMX

K

/

/ |d

V/d

z|

g

M

w2~

R i

K

/

/ |d

V/d

z|

Hw2

~

F ie ld E x p e rim en t

E q u a tio n (3 .7 )

F ie ld ex p e rim en t

E q u a tio n (3 .8 )

0 .0 1 0 .1 1 1 0 1 0 0

1 0

1

0 .1

0 .0 1

0 .0 0 1

1 0

1

0 .1

0 .0 1

0 .0 0 1

(

)(

)

J. Atmospheric Sci., 2003

Page 27: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Eddy Diffusivity (Semi Empirical)

34.0)34.0(/

~/

02.0

2

g

w

m RidzVd

K

5.049.0

2)08.0()08.0(

/~

/

gg

w

h RiRidzVd

K

45.0)07.0(

gh RiK

22.0)45.0( gm RiK

for Rig < 1 and

07.0hK for Rig > 1

Page 28: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Eddy Diffusivity Ratio

gRi

K /

KH

M

0.01 0.1 1 10 100

10

1

0.1

0.01

0.001

M onti et al (2002)Strang & Fernando (2001)

M R F

G S

Inverse Prandtl Number

gRi

K /

KH

M

0.01 0.1 1 10 100

10

1

0.1

0.01

0.001

M onti et al (2002)Strang & Fernando (2001)

M R F

G S

Inverse Prandtl Number

• J. Physical Oceanography 2001• Boundary layer Meteor. 2005

Page 29: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

CROSS SECTION SW-NE 45 deg.

Page 30: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Temperature & Wind comparison

Page 31: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

0

1

2

3

4

5

Win

d Sp

eed

(m s

)

-1 8 0

-1 2 0

-6 0

0

6 0

1 2 0

1 8 0

Win

d D

irec

tion

(Deg

.)

T im e (L S T )

2 8 8

2 9 2

2 9 6

3 0 0

3 0 4

3 0 8

Tem

pera

ture

(K

)-1

0 0 0 0 0 3 0 0 0 6 0 0 0 9 0 0 1 2 0 0 1 6 0 0 1 9 0 0 2 1 0 0 0 0 0 0

(a )

(b )

(c )

0

1

2

3

E (

m s

)2

-2

(d )

(averaged over 1-(averaged over 1-h, at 10 km inland h, at 10 km inland

versus versus simulations) simulations) RAMS uses RAMS uses Therry and Therry and Lacarrere’s Lacarrere’s

(1983) (1983) parameterization parameterization

(200x200 km (200x200 km domain, including domain, including

RomeRome))

Page 32: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Entrainment -- Encroachment of nearby fluid across a boundary

Boundary entrainment velocity (rate of propagation of a bounding surface due to turbulence).

U

uE eEntrainment Coefficient

U Characteristic velocity

Due to a normal mean flow

Flux entrainment velocity (characteristic velocity the scales cross across an interface – boundary stationary).

Page 33: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Downslope flow - Entrainment

x U

z

h(x)

U(z,x)

UE

E

ue

eu

eu

eu

(z,x)

TS4

TS3

TS2

TS1

x

Uhue

u

uE e

Entrainment coefficient Richardson number

2'

u

hgRi

gg 'EUUu

Page 34: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Entrainment Velocity

Ellison and Turner, JFM, 1959

Page 35: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Ellison & Turner Results

Ri

RiE

51

1.008.0

Page 36: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

OquirrhMountain

EUUhs

Page 37: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

ASU Doppler Lidar

Page 38: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

ENTRAINMENT

Page 39: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Entrainment Coefficient

y = 0.054x-0.7494

R2 = 0.7666

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Ri

E

field

laboratory

J. Fluid Mech. 2005,

Mixing Transition -- above a certain critical Reynolds number, entrainment increases

Page 40: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

y = 0.0532x-0.495

y = 0.0663x-0.6586

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Ri

E

Turner

Dumitrescu

Princevac

Power (Dumitrescu)

Power (Princevac)

Page 41: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Re vs. E

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 500 1000 1500 2000 2500 3000

Re

E

Re big

Re small

Linear (Re big)

Linear (Re small)

Page 42: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Hydraulic Adjustment

Page 43: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Steady state, small angle

22 UCds

dhbhsinbhhU

ds

dD

ical supercritis

E

sin

bh

UF

E

sinbhU

*u

*u

5

21

21

Ri < 1

bh

UF

FCFds

dhD

221

Hydraulic Equation

050

10

13

.

~C

F when,C Critical

D

D

tical supercriis

Lh

sin

bh

UF

H

*u

2

21

Ri > 1

H''D wuUCsinbhcosbh

ss

hU

t

Uh

22

2

2

1

Page 44: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer
Page 45: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

a) α= (10˚, 20˚) b) α= (0˚, 26˚)

Page 46: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Applications

Power plant emissions

Page 47: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Phoenix Terrain

Page 48: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

7/22/19940:00

7/23/19940:00

7/24/19940:00

7/25/19940:00

7/26/19940:00

7/27/19940:00

Date & Time

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Ozone Particles

Page 49: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer
Page 50: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer
Page 51: Lecture 3: Nocturnal (Stably Stratified) Boundary Layer

Dispersion of Air Pollutants