lecture 4 geos24705 the pre-industrial energy crisis the...

56
Lecture 4 GEOS24705 The pre-industrial energy crisis The steam engine Copyright E. Moyer 2011

Upload: others

Post on 17-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Lecture 4 GEOS24705

The pre-industrial energy crisis The steam engine

Copyright E. Moyer 2011

Page 2: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Horse drawn combine, likely 1910s-20s. Source: FSK Agricultural Photographs

“Bio-engines” and some technology make harvesting much more efficient.

27 horsepower! (or perhaps horse-+mule-power)

Page 3: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Very early a switch was made from vertical to horizontal axes

Pitstone windmill, believed to be the oldest in Britain.

Horizontal-axis waterwheel

Page 4: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

What were the needs for mechanical work by mills?

anything besides grinding grain?

Page 5: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Why so many windmills along rivers?

Luyken, 1694 Source unknown

Page 6: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Pumping can be done with rotational motion alone…

Dutch drainage mill using Archimedes’ screw from The Dutch Windmill, Frederick Stokhuyzen

Page 7: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Pumping can be done with rotational motion alone…

Chain  pumps,  including  bucket  chain  pumps  (R)  From  Cancrinus,  via  Priester,  Michael  et  al.    

“Tools  for  Mining:  Techniques  and  Processes  for  Small  Scale  Mining”  

Bucket  chain  pumps  are  seen  as  early  as  700  BC.  

Common  in  ancient  Egypt,  Roman  empire,  China  from  1st  century  AD,  Medieval  Muslim  world,  Renaissance  Europe.  

Page 8: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Chain pumps need not involve buckets

Chain  pump  cutaway  From  Lehman’s  

Page 9: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

…but linear motion allows more efficient pumping

The  liG  pump  AnimaBon  from  Scuola  Media  di  Calizzano  

Same technology used today in oil wells

Page 10: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Linear motions were needed very early in industrial history

European hammer mill w/ cam coupling, 1556 A.D.

Chinese bellows, 1313 A.D.

Page 11: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

The cam converts rotational to linear motion

The  knife-­‐edge  cam  AnimaBon  from  the  University  of  Limerick  

The noncircularity of the cam creates a push at only one part of the cycle

Page 12: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

The cam converts rotational to linear motion

The  rocker  arm  &  camshaG  AnimaBon  from  the  University  of  Limerick  

The noncircularity of the cam creates a push at only one part of the cycle

Page 13: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Gold refining, France. D. Diderot & J. Le Rond d`Alembert eds, Encyclopédie méthodique. Paris 1763-1777 & 1783-87.

Gears and cams let one wheel drive multiple machines

Page 14: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Rotational • Grindstones • Pumps • Winches • Bucket lifts • Spinning wheels • Lathes, borers, drilling machines (first use)

Linear (reciprocating) • Hammer-mills • Beaters • Bellows • Saws • Looms

Linear (non-reciprocating) • Boats

Machines powered by wind & water include:

Page 15: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Rotational • Grindstones • Pumps • Winches • Bucket lifts • Spinning wheels • Lathes, borers, drilling machines (first use)

Linear (reciprocating) • Hammer-mills • Beaters • Bellows • Saws • Looms

Linear (non-reciprocating) • Boats

Machines powered by wind & water include:

Page 16: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Heating Large-scale wood-burning to make heat for industrial use

Georg Acricola “De res metallica”, Book XII (“Manufacturing salt, soda, alum, vitriol, sulphur, bitumen, and glass”), 1556.

Complex chemical transformations driven by heat were common in Medieval Europe.

Page 17: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Wood and coal fired technologies include

Fuel burnt for • Heating • Metallurgy • Glass-making • Brewing (drying the malt) • Baking • Brick-making • Salt-making • Tiles and ceramics • Sugar refining

Page 18: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Wood and coal fired technologies include

Fuel burnt for • Heating • Metallurgy • Glass-making • Brewing (drying the malt) • Baking • Brick-making • Salt-making • Tiles and ceramics • Sugar refining

Page 19: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Heating Large-scale wood-burning to make heat for industrial use

Copper foundry, France

D. Diderot & J. Le Rond d`Alembert eds, Encyclopédie méthodique. Paris 1763-1777 & 1783-87.

Foundries are wood-fired in 1700s and getting large enough to significantly affect the local fuel supply.

Page 20: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

“When  the  fuel  situaLon  became  difficult  in  France  in  the  eighteenth  century,  it  was  said  that  a  single  forge  used  as  much  wood  as  a  town  the  size  of  Chalon-­‐sur-­‐Marne.  Enraged  villagers  complained  of  the  forges  and  foundries  which  devoured  the  trees  of  the  forests,  not  even  leaving  enough  for  the  bakers’  ovens.”  

-­‐-­‐-­‐  F.  Braudel,  The  Structures  of  Everyday  Life,  1979.  

The  energy  crisis  in  Europe:  lack  of  wood  

1700s  

Page 21: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

“Aeneas  Sylvius  (aGerwards  Pope  Pius  II),  who  visited  Scotland…  in  the  middle  of  the  fiGeenth  century,  menLons  …that  he  saw  the  poor  people  who  begged  at  churches  going  away  quite  pleased  with  stones  given  them  for  alms.  ‘This  kind  of  stone  …  is  burnt  instead  of  wood,  of  which  the  country  is  desLtute.”  

“Within  a  few  years  aGer  the  commencement  of  the  seventeenth  century  the  change  from  wood  fuel  to  coal,  for  domesLc  purposes,  was  general  and  complete.”  

-­‐-­‐-­‐  R.  Galloway,  A  History  of  Coal  Mining  in  Great  Britain,  1882.  

The  energy  crisis  hit  Britain  first:  lack  of  wood  

1400s  

1600  

Page 22: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

“The  miners,  no  less  than  the  smelters,  had  their  difficulLes  during  the  seventeenth  century,  but  of  a  totally  different  kind;  for  while  the  la^er  were  suffering  from  too  li^le  fire,  the  former  were  embarrassed  by  too  much  water…  the  exhausLon  of  he  coal  supply  was  considered  to  be  already  within  sight.  In  1610,  Sir  George  Selby  informed  Parliament  that  the  coal  mines  at  Newcastle  would  not  last  for  the  term  of  their  leases  of  twenty-­‐one  years.”  

-­‐-­‐-­‐  R.  Galloway,  A  History  of  Coal  Mining  in  Great  Britain,  1882.  

The  2nd  BriBsh  energy  crisis:  flooding  of  the  mines  

1600s  

Page 23: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

“Lack  of  energy  was  the  major  handicap  of  the  ancien  régime  economies”  

 -­‐-­‐-­‐  F.  Braudel,  The  Structures  of  Everyday  Life  

By  the  18th  century  Europe’s  energy  crisis  limits  growth  

Page 24: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

1.   Fuel  had  become  scarce  even  when  only  used  for  heat  

 Wood  was  insufficient,  &  coal  was  geang  hard  to  extract    Surface  “sea  coal”    deep-­‐shaG  mining  below  the  water  table  

2.  There  were  limited  ways  to  make  moIon    No  way  to  make  moLon  other  than  through  capturing  exisLng  moLon  or  through  muscle-­‐power  

3.  There  was  no  good  way  to  transport  moIon    Water  and  wind  weren’t  necessarily  near  demand  

The  great  18th  century  European  energy  crisis    

Page 25: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

The  18th  century  technological  impasse  

All  technology  involved  only  two  energy  conversions  

•     Mechanical  moLon    mechanical  moLon  •     Chemical  energy    heat  

There  was  no  way  to  convert  chemical  energy  to  moLon  other  than  muscles  (human  or  animal)  –  no  engine  other  than  flesh  

Even  for  heaLng,  the  only  means  out  of  the  energy  crisis  was  coal  –  but  to  mine  the  coal  required  moLon  for  pumps.    

18th  century  Europeans  had  complex  and  sophisBcated  technology,  and  an  abundance  of  industrial  uses  for  energy,  but  not  enough  supply  

Page 26: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Newcomen “Atmospheric Engine”, 1712

The  revoluIonary  soluIon  =  break  the  heat    work  barrier  

(Note that “revolution” followed invention by ~100 years – typical for energy technology)

Page 27: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

What  is  a  “heat  engine”?  

A  device  that  generates  converts  thermal  energy  to  mechanical  work  by  exploiLng  a  temperature  gradient  

•  Makes  something  more  ordered:      random  moLons  of  molecules    ordered  moLon  of  enLre  body  

•  Makes  something  less  ordered:      degrades  a  temperature  gradient  (transfers  heat  from  hot  to  cold)  

Page 28: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

The  two  technological  leaps  of  the  Industrial  RevoluIon  that  bring  in  the  modern  energy  era  

1.   “Heat  to  Work”  Chemical  energy      mechanical  work  via  mechanical  device  Use  a  temperature  gradient  to  drive  moLon  Allows  use  of  stored  energy  in  fossil  fuels  Late  1700’s:  commercial  adopLon  of  steam  engine  

2. Efficient  transport  of  energy:  electrificaDon  Mechanical  work                electrical  energy                mech.  work  Allows  central  generaLon  of  power  Late  1800s:  rise  of  electrical  companies  

Page 29: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Outline of next three lectures

History  of  early  steam  engines  (today)  Fundamental  physics  of  heat  engines  (Tues  Apr.  12th)    

 understanding  heat    work  

History  of  Industrial  RevoluIon    (Tues.  12th  makeup  or    ..with  preview  of  electric  generaLon            Thurs.  14th)  

Organizing  framework  for  energy  conversion  technology  The  modern  energy  system  

And  then  it’s  on  to  individual  energy  technologies…  

Having  finished  with  global  energy  flows  and  started  history  of  human  use,  we’ll  now  do  a  tricky  transiBon…  

Page 30: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Hero  of  Alexandria,  “TreaLse  on  PneumaLcs”,  120  BC  

“lebes”: demonstration of lifting power of steam “aeliopile”

Physics:  long  understood  that  steam  exerted  force  EvaporaLng  water  produces  high  pressure  (Pressure  =  force  x  area)  

Page 31: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Physics:  condensing  steam  can  produce  sucLon  force  Low  pressure  in  airLght  container  means  air  exerts  force  Same  physics  that  lets  you  suck  liquid  through  a  straw  (or  use  a  sucLon  pump)  

Page 32: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

First  conceptual  steam  engine  

Denis  Papin,  1690,  publishes  design    

Set  architecture  of  reciprocaLng  engines  through  modern  day  –  piston  moves  up  and  down  through  cylinder  

Papin  nearly  invented  the  internal  combusLon  engine  in  which  the  piston  is  pushed  up  by  high  pressure  in  the  cylinder  (from  expanding  air  aGer  an  explosion  of  gunpowder).  

Unfortunately  he  couldn’t  design  the  valves  correctly  to  vent  air  aGer  expansion,  and  gave  up.  He  then  designed  an  engine  in  which  the  piston  is  pulled  down  instead  by  low  pressure  in  the  cylinder  (provided  by  condensing  steam).  

This  is  deeply  unfortunate  for  beginning  students.  

Papin’s first design, now in Louvre. No patent, no working model.

Page 33: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

First  conceptual  steam  engine  

Denis  Papin,  1690,  publishes  design    

Papin  neither  built  his  engine  nor  even  patented  it.  He  did  not  have  the  mechanical  skill  to  actually  build  his  engine  successfully.  He  needed  to  machine  the  cylinder  and  piston  air-­‐Lght  to  maintain  a  pressure  gradient,  and  couldn’t  manage  that.  

He  forms  part  of  conLnuing  trend  in  the  history  of  energy  technology:  the  person  who  invents  a  technology  is  not  the  person  who  makes  it  pracLcal  (and  yet  a  third  person  is  the  one  who  makes  money  off  it).      

Also:  the  French  explained  without  building,  the  BriBsh  built  without  explaining.    

Papin’s first design, now in Louvre. No patent, no working model.

Page 34: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

First  commercial  use  of  steam:  

“A  new  InvenBon  for  Raiseing  of  Water  and  occasioning  MoBon  to  all  Sorts  of  Mill  Work  by  the  Impellent  Force  of  Fire  which  will  be  of  great  vse  and  Advantage  for  Drayning  Mines,  serveing  Towns  with  Water,  and  for  the  Working  of  all  Sorts  of  Mills  where  they  have  not  the  benefiY  of  Water  nor  constant  Windes.”  

 Thomas  Savery,  patent  applicaLon  filed  1698  

(good  salesman,  but  he  was  wrong  –  this  can  only  pump  water)  

Page 35: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

First  commercial  use  steam  

Thomas  Savery,  1698  

EssenLally  a  steam-­‐driven  vacuum  pump,  good  only  for  pumping  liquids.  

Max  pumping  height:  ~30  G.  (atmospheric  pressure)  

Efficiency  below  0.1%      

Some  use  in  Scoash  and  English  mines,  to  pump  out  water.  Fuel  was  essenLally  free.  2000  Lmes  less  efficient  than  people  or  animals,  but  they  can’t  eat  coal.  

Drawbacks  –  mines  were  deeper,  fire  in  mines  leads  to  explosions  

Page 36: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Newcomen’s  design  is  state  of  the  art  for  60+  years  

First  true  steam  engine:  

Thomas  Newcomen,  1712,  blacksmith  

Copy  of  Papin’s  engine  of  design  of  1690,  with  piston  falling  as  steam  cooled,  drawn  down  by  the  low  pressure  generated  

First  reciprocaDng  engine:  force  transmi^ed  by  moLon  of  piston  

Can  pump  water  to  arbitrary  height.  

Force  only  on  downstroke  of  piston  

Very  low  efficiency:  0.5%  

Intermi^ent  force  transmission  

Page 37: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Newcomen’s  design  is  state  of  the  art  for  60+  years  

First  true  steam  engine:  

Thomas  Newcomen,  1712,  blacksmith  

Copy  of  Papin’s  engine  of  design  of  1690,  with  piston  falling  as  steam  cooled,  drawn  down  by  the  low  pressure  generated  

First  reciprocaDng  engine:  force  transmi^ed  by  moLon  of  piston  

Can  pump  water  to  arbitrary  height.  

Force  only  on  downstroke  of  piston  

Very  low  efficiency:  0.5%  

Intermi^ent  force  transmission  

Page 38: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Newcomen’s design is state of the art for 60+ years

First  true  steam  engine:  

Thomas  Newcomen,  1712,  blacksmith  

Copy  of  Papin’s  engine  of  design  of  1690,  with  piston  falling  as  steam  cooled,  drawn  down  by  the  low  pressure  generated  

First  reciprocaDng  engine:  force  transmi^ed  by  moLon  of  piston  

Can  pump  water  to  arbitrary  height.  

Force  only  on  downstroke  of  piston  

Very  low  efficiency:  0.5%  

Intermi^ent  force  transmission  

Page 39: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

First  modern  steam  engine:  

James  Wa^,  1769  (patent),  1774  (prod.)  Higher  efficiency  than  Newcomen  by  introducing  separate  condense  Reduces  wasted  heat  by  not  requiring  heaLng  and  cooling  enLre  cylinder  

Page 40: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

First  modern  steam  engine:  

James  Wa^,  1769  (patent),  1774  (prod.)  Higher  efficiency  than  Newcomen  by  introducing  separate  condenser  

Page 41: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

First  modern  steam  engine:  

James  Wa^,  1769  patent              (1774  producLon  model)  

Like  Newcomen  engine  only  with  separate  condenser    Higher  efficiency:  2%  

Force  only  on  downstroke  of  piston  

Intermi^ent  force  transmission  

No  rotaLonal  moLon  

Page 42: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Improved  WaY  steam  engine:  

James  Wa^,  1783  model  Albion  Mill,  London  

Separate  condenser    Higher  efficiency:  ca.  3%  

Force  on  both  up-­‐  and  downstroke  

ConLnuous  force  transmission  

RotaLonal  moLon  (sun  and  planet  gearing)  

Engine  speed  regulator  

Page 43: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK
Page 44: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Improved  WaY  steam  engine:  

James  Wa^,  1783  model  Albion  Mill,  London  

Separate  condenser    Higher  efficiency:  ca.  3%  

Force  on  both  up-­‐  and  downstroke  

ConLnuous  force  transmission  

RotaLonal  moLon  (sun  and  planet  gearing)  

Engine  speed  regulator  –  don’t  need  electronics  for  controls  

sun and planet gearing

Gearing  lets  the  linear-­‐moBon  engine  produce  rotaBon,  mimic  a  water  wheel  

Page 45: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Improved  WaY  steam  engine:  

James  Wa^,  1783  model  Albion  Mill,  London  

Separate  condenser    Higher  efficiency:  ca.  3%  

Force  on  both  up-­‐  and  downstroke  

ConLnuous  force  transmission  

RotaLonal  moLon  (sun  and  planet  gearing)  

Engine  speed  regulator  –  don’t  need  electronics  for  controls!  

engine speed governor

No need for electronics for controls – can use mechanical system

Page 46: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Double-­‐acBon  steam  engine:  

Why  use  sucLon  to  pull  the  piston  down  –  why  not  just  push  it  down  with  another  injecLon  of  steam?  

Piston  pushed  by  steam  on  both  up-­‐  and  down-­‐stroke.  

No  more  need  for  a    condenser.  Steam  is  simply  vented  at  high  temperature  

 slide  valve  alternates  input  &  exhaust  

Page 47: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Double-­‐acBon  steam  engine:  

slide valve alternates input & exhaust

Page 48: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Double-­‐acIon  steam  engine  

What  are  benefits?  

What  are  drawbacks?  

What  would  you  use  one  for?  

Page 49: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Double-­‐acIon  steam  engine  

What  are  benefits?  

Faster  cycle  –  no  need  to  wait  for  condensaBon.  Can  get  more  power,  higher  rate  of  doing  mechanical  work.  

Also  lighter  and  smaller  –  no  need  to  carry  a  condenser  around.  

What  are  drawbacks?  

Inefficiency  –  venBng  hot  steam  means  you  are  wasBng  energy.  

High  water  usage  –  since  lose  steam,  have  to  keep  replacing  the  water  

Page 50: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Double-­‐acBon  steam  engine:  

primary use: transportation

Page 51: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Double-­‐acBon  steam  engine:  

Images  top,  leb:  Sandia  Sobware  Image  boYom:  Ivan  S.  Abrams  

water-­‐intensive,  fuel-­‐intensive  –  requires  many  stops  to  take  on  water  and  fuel.

Page 52: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

An  alternate  design  choice  with  different  tradeoff:  Triple-­‐expansion  steam  engine:  

 primary  use:  steamships  (because  they  can’t  refuel,  and  weight  is  not  a  problem)  

Adds  two  more  cylinders  to  get  more  out  of  the  steam  before  condensing  it.  

Benefits:  More  efficient  –  conserves  fuel  Conserves  water  

Drawbacks  Large,  heavy  if  high  power  

Page 53: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

Image:  source  unknown  

History  of  locomoBves  Trevithick’s  first  “railway  engine”,  1804    (no  image)  Used  for  hauling  coal  –  replaces  horses.  Speed:  5  mph  

“Puffing  Billy”,  William  Hedley,  1813  Coal  hauler  9”  x  36”  cylinders  

First  locomoBves  are  basically  steam  engines  for  the  pumps  now  placed  on  wheels  

Page 54: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

History  of  locomoBves  Stephenson’s  “Rocket”,  1820  First  passenger  locomoLve  29  mph  (unloaded),  14  mph  loaded  

Image:  source  unknown  

Page 55: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

History  of  locomoBves  Central  Pacific  Railroad  locomoLve  #173,  Type  4-­‐4-­‐0,  1864  (Common  American  design,  1850s-­‐1900)  

Image:  Central  Pacific  Railroad  Photographic  History  Museum  

Page 56: Lecture 4 GEOS24705 The pre-industrial energy crisis The ...geosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture… · Horse drawn combine, likely 1910s-20s. Source: FSK

History  of  locomoBves  Northern  Pacific  Railway  steam  locomoLve  #2681,  1930  

Image:    Buckbee  Mears  Company,  Photograph  CollecBon  ca.  1930,  LocaBon  no.  HE6.1N  p11,  NegaBve  no.  25337.  Source:  Minnesota  Historical  Society