lecture 5 quantum information 1: quantum communication & quantum cryptography

24
Purdue University Spring 2014 Prof. Yong P. Chen ([email protected] ) Lecture 5 (2/3/2014) Slide 1 Introduction to Quantum Optics & Quantum Photonics PHYS522 ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Lecture 5 Quantum Information 1: Quantum Communication & Quantum Cryptography Note: HWK2 posted on course web, due next Wed 2/12 in class

Upload: wyanet

Post on 08-Jan-2016

52 views

Category:

Documents


4 download

DESCRIPTION

Lecture 5 Quantum Information 1: Quantum Communication & Quantum Cryptography. Note: HWK2 posted on course web, due next Wed 2/12 in class. Course Outline. Part 1: basic review: Optics+Quantum; Part 2: Basic Light-matter interaction; laser; Part 3: Quantum Optics of photons - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 1

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Lecture 5Quantum Information 1:

Quantum Communication & Quantum Cryptography

Note: HWK2 posted on course web, due next Wed 2/12 in class

Page 2: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 2

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Lectures Topics Lecture 1 (1/13) Overview (FQ1+) Lecture 2 (1/15) Review Classical Optics (FQ2; FS1-2) No Class on 1/20 Monday (MLK day) Lecture 3 (1/22) Review Quantum Mechanics, birth of photons (FQ3+) Lecture 4 (1/27) Quantum Information, cryptography & communication (FQ12) Lecture 5 (1/29) Radiative Transitions in Atoms & Molecules (FQ4; FS8.2) Lecture 6 (2/03) Radiative/Inter-band transition in solids (FS3, FS7.3.2) Lecture 7 (2/05) Masers & Lasers: CW, pulsed, frequency comb, Xasers Lecture 8 (2/10) Photon Statistics (FQ5) Lecture 9 (2/12) Photon Correlation (FQ6), extension to other (quasi)particles Lecture 10 (2/17) Coherent, Squeezed & Number states (FQ7,8) Lecture 11 (2/19) Resonant Light-atom interaction, density matrices, Rabi oscillation (FQ9) Lecture 12 (2/24) Solid state quantum structures: wells, wires and dots (FS6) Lecture 13 (2/26) Laser cooling of atoms & solids (FQ11+) Lecture 14 (3/03) Cold atoms & atom optics, atom lasers (given by TA R. Niffenegger) Lecture 15 (3/05) TBD (Special topics/APS/coherent control) Lecture 16 (3/10) Excitons and Polaritons (FS4+) Lecture 17 (3/12) Luminescence, Luminescence/NV centers & quantum emitters (FS5,9+) No classes on 3/17 & 3/19 (Spring Break) Lecture 18 (3/24) EIT, slow light (Agarwal) & coherent control Lecture 19 (3/26) Quantum entanglement, memory & teleportation (FQ14) Lecture 20 (3/31) Atoms in cavities, Jaynes-Cummings model (FQ10) Lecture 21 (4/02) Cavity QED/circuit QED, optomechanics Lecture 22 (4/07) Quantum Computing, photon based QC (FQ13+) Lecture 23 (4/09) Quantum Computing systems: ions, Rydberg atoms, molecules Lecture 24 (4/14) Quantum Computing systems: superconductor/cQED, quantum dots, NMR Lecture 25 (4/16) Photonics with nanomaterials: CNT, graphene & 2D materials (FS8+) Lecture 26 (4/21) Phonons/Vibrons and Raman spectroscopy, CARS (FS10) Lecture 27 (4/23) Special topics: Quantum Sensing & Photodetectors, applications Lecture 28 (4/28) Special topics: Optically synthetic gauge fields/topological/quantum

matter, quantum emulation, student presentations Lecture 29 (4/30) Special topics: Casimir, (quantum) plasmonics etc. student presentations Final Exam on (TBD)

Course OutlinePart 1: basic review:Optics+Quantum;

Part 2: Basic Light-matter interaction; laser;

Part 3: Quantum Optics of photons

Part 4: More advanced light-matter interaction

Part 5: Quantum information/photonics/applications

Subject to change;Check updates on course web/wiki

Page 3: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 3

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

This Lecture• Quantum Information Science 1: quantum (secure)

communication & quantum cryptography (photon based) (cf. *FQ Chap12)

Shapiro-Wong Group: http://www.rle.mit.edu/qoptics/

MIT 6.453 course on quantum communicationhttp://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-453-quantum-optical-communication-fall-2008/

Learn more:

M. Le Blanc: A Short Introduction to Quantum Information and Quantum ComputationChuang & Nielson, QCQIDavid Mermin, Quantum Computer Science: An Introduction

Good to reach on beach or train: J. Dowling’s Schrodinger’s Killer AppL. Susskind, Quantum Mechanics: The Theoretical Minimum (see also Stanford course lectures/videos of same title)

N. Gisin et al. Rev. Mod. Phys. 74, 145–195 (2002)J.W.Pan Lecture: http://quantuminformation.physi.uni-heidelberg.de/pic/LEC430.pdf

Page 4: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 4

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

http://researcher.watson.ibm.com/researcher/files/us-bennetc/QInfWeb.pdfFrom :C. Bennett lecture “Information is quantum” [highly recommended to read]

See also http://www.youtube.com/watch?v=tKfyw-uAgac

Page 5: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 5

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Page 6: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 6

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Classical Cryptography (Secure Communication)

ENIGMA

RSARSA-100 =15226050279225333605356183781326374297180681149613 80688657908494580122963258952897654000350692006139

RSA-100=37975227936943673922808872755445627854565536638199× 40094690950920881030683735292761468389214899724061

Earn $200,000 to factorize RSA-2048

Later quantum computing will break this

Page 7: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 7

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

The purpose of quantum cryptography is toprovide a reliable method for transmitting a secret key and knowing thatno-one has intercepted it along the way.

The method is founded on thefundamental laws of quantum physics, and the process of sharing a secret key in a secure way is called quantum key distribution.

Two basic schemes for quantum cryptography, using •basic principles of quantum measurements on single particles (photons)•The properties of entangled photon properties of entangled states.

Page 8: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 8

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Classical communication & evesdropper

Page 9: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 9

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Photon polarization qbits

Page 10: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 10

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Review 2-state QM (d=2 Hilbert space)

R2 representation

1 0,

0 1

y

x

11 1( )

12 2

11 1( )

12 2

1 1( ), ( )

2 2

Page 11: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 11

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Quantum No Cloning Theorem

http://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes4.pdf

U

Page 12: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 12

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

QKD by BB84 Protocol

(ex.12.3)

http://researcher.watson.ibm.com/researcher/view.php?person=us-bennetc

http://www.noodls.com/view/C72E62DBAF2DB94324F14C95042A47D40F3E72EF

Interesting read on B&B

(also discovered q. teleportation)

http://www1.cse.wustl.edu/~jain/cse571-07/ftp/quantum/index.html

Page 13: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 13

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Page 14: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 14

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Page 15: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 15

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Page 16: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 16

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Reality Complications

Missing photons .. Reduce # of useful bits

Birefringence (change polarization during transmission)

Detector dark counts (false click even with missing photons)

address by(classical)Error correction

Reduced key length

General Read: “Quantum cryptography: Seeking absolute security”http://www.nature.com/nature/journal/v447/n7143/full/447372a.html

Page 17: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 17

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Hardware requirements/complications• (reliable) Single photon source[multiphoton emission compromises security by giving Eve

more chances to evade detection (both Eve’s detectors click knows basis wrong)]

– Attenuated single-freq laser: photon Poisson distr, subject to multi-photons

– “on-demand” single photon source [current research] (will revisit this when discussing QO)

• (reliable) single photon detectors, polarization rotators, medium

Page 18: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 18

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Transmission Media for quantum communication/cryptography

Subject to environmental noise (air turb. stray light etc.) <possible project/essay>

Subject to loss and birefringence (at long distance)

Phase (vs polarization) encoding

Page 19: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 19

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Page 20: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 20

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

See also : http://qwcap.com

(potential essay topic, explain how these work, or market analysis)

Page 21: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 21

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Quantum communication in space

http://www.nature.com/news/data-teleportation-the-quantum-space-race-1.11958

(use entanglement)

(another example potential essay topic, explain how this work)

Page 22: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 22

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

QKD based on entanglement

(Eckert protocol)

Page 23: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 23

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Entanglement based QKD

Entanglement’s Benefit Survives an Entanglement-Breaking ChannelZheshen Zhang, Maria Tengner, Tian Zhong, Franco N. C. Wong, and Jeffrey H. ShapiroPhys. Rev. Lett. 111, 010501 (2013)

Viewpoint: Don’t Cry over Broken Entanglement

http://physics.aps.org/articles/v6/74

A secure communication channel that relies on quantum entanglement survives despite the noisy break up of the entanglement itself.

Related to idea of “quantum illumination” (entanglement enhanced quantum sensing/detection) S. Lloyd, “Enhanced Sensitivity of Photodetection via Quantum Illumination,” Science 321, 1463 (2008).

A modern example

Page 24: Lecture 5 Quantum Information 1:  Quantum Communication &  Quantum Cryptography

Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 5 (2/3/2014) Slide 24

Introduction to Quantum Optics & Quantum Photonics

PHYS522 ECE695

(“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/

Next Lecture (5): Light Matter Interaction --- Radiative Transition in Atoms

• FQ Chap 4