lecture 6a introduction to bioenergetics

27
Faculdade de Desporto, Universidade do Porto, 1º Ciclo, 1º Ano 2012_2013 BIOQUÍMICA E BIOLOGIA CELULAR António Ascensão, José Magalhães IntroducMon to bioenergeMcs

Upload: others

Post on 23-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Faculdade  de  Desporto,  Universidade  do  Porto,  1º  Ciclo,  1º  Ano  

2012_2013  

BIOQUÍMICA  E  BIOLOGIA  CELULAR  

António  Ascensão,  José  Magalhães  

IntroducMon  to  bioenergeMcs  

   Aims  

1.  Define  the  following  terms:  (1)  endergonic  reac+ons,  (2)  exergonic  reac+ons,  (3)  coupled  reac+ons,  and  (4)  bioenerge+cs.  

2.  Describe  the  role  of  enzymes  as  catalysts  in  cellular  chemical  reacMons.  

3.  List  and  discuss  the  nutrients  that  are  used  as  fuels.  

4.  IdenMfy  the  high-­‐energy  phosphates.  

   Aims  

6.  Discuss  the  biochemical  pathways  involved  in  anaerobic  ATP  producMon.  

7.  Discuss  the  aerobic  producMon  of  ATP.  8.  Describe  the  general  scheme  used  to  regulate  

metabolic  pathways  involved  in  bioenergeMcs.  9.  Discuss  the  interacMon  between  aerobic  and  

anaerobic  ATP  producMon.  10. IdenMfy  the  enzymes  that  are  considered  rate  

limiMng  in  glycolysis  and  the  Krebs  cycle.  

   Outline  

§  Biological  Energy  Transforma2on  Cellular  Chemical  Reac+ons  Oxida+on-­‐Reduc+on  Reac+ons  Enzymes  

§  Fuels  for  Exercise  Carbohydrates  Fats  Proteins  

 

§  High-Energy Phosphates

§  Bioenergetics Anaerobic ATP Production Aerobic ATP production

§  Aerobic ATP §  Efficiency of Oxidative

Phosphorylation

§  Control of Bioenergetics

Control of ATP-PC System Control of Glycolysis Control of Krebs Cycle

and Electron Transport Chain

§  Interaction Between Aerobic/Anaerobic ATP Production

   General  concepts  and  noMons  

•  Metabolism    –  Sum  of  all  chemical  reacMons  that  occur  in  the  body  – Anabolic  reacMons  

•  Synthesis  of  molecules  

–  Catabolic  reacMons  •  Breakdown  of  molecules  

•  BioenergeMcs  –  ConverMng  foodstuffs  (fats,  proteins,  carbohydrates)  into  energy  

 General  concepts  and  noMons  

•  Study  of  molecular  structures  and  events  underlying  biological  processes  – RelaMonship  between  genes  and  cellular  characterisMcs  they  control  

•  Genes  code  for  specific  cellular  proteins  – Process  of  protein  synthesis  

•  Exercise  training  results  in  modificaMons  in  protein  synthesis  – Strength  training  results  in  increased  synthesis  of  muscle  contracMle  protein  

•  Molecular  biology  provides  “tools”  for  understanding  the  cellular  response  to  exercise  

   Steps  leading  to  protein  synthesis  

1.  DNA contains information to produce proteins.

2.  Transcription produces mRNA.

3.  mRNA leaves nucleus and binds to ribosome.

4.  Amino acids are carried to the ribosome by tRNA.

5.  In translation, mRNA is used to determine the arrangement of amino acids in the polypeptide chain.

   Cellular  chemical  reacMons  

•  Endergonic  reacMons  – Require  energy  to  be  added    – Endothermic  

•  Exergonic  reacMons  – Release  energy    – Exothermic  

•  Coupled  reacMons  – LiberaMon  of  energy  in  an  exergonic  reacMon  drives  an  endergonic  reacMon  

   Glucose  breakdown  as  an  exergonic  reacMon  

   Coupled  reacMons  

The energy given off by the exergonic reaction powers the endergonic reaction

   OxidaMon-­‐reducMon  reacMons  

•  OxidaMon    –  Removing  an  electron    

•  ReducMon    – AddiMon  of  an  electron  

•  OxidaMon  and  reducMon  are  always  coupled  reacMons  

•  Ofen  involves  the  transfer  of  hydrogen  atoms  rather  than  free  electrons  – Hydrogen  atom  contains  one  electron  – A  molecule  that  loses  a  hydrogen  also  loses  an  electron  and  therefore  is  oxidized  

•  Importance  of  NAD  and  FAD  

 OxidaMon-­‐reducMon  reacMons  involving  NAD  and  NADH  

   Enzymes  

•  Catalysts  that  regulate  the  speed  of  reacMons  – Lower  the  energy  of  acMvaMon  

•  Factors  that  regulate  enzyme  acMvity  – Temperature  – pH    

•  Interact  with  specific  substrates  – Lock  and  key  model  

   Enzymes  

Enzymes lower the energy of activation

   The  Lock-­‐and-­‐Key  Model  of  Enzyme  AcMon  

a)  Substrate (sucrose)

approaches the active

site on the enzyme.

b)  Substrate fits into the

active site, forming

enzyme-substrate

complex.

c)  The enzyme releases

the products (glucose

and fructose).

 DiagnosMc  Value  of  Measuring  Enzyme  AcMvity  in  the  Blood  

•  Damaged  cells  release  enzymes  into  the  blood  –  Enzyme  levels  in  blood  indicate  disease  or  Mssue  damage  

•  DiagnosMc  applicaMon  –  Elevated  lactate  dehydogenase  or  creaMne  kinase  in  the  blood  may  

indicate  a  myocardial  infarcMon  

   ClassificaMon  of  Enzymes  

•  Oxidoreductases  –  Catalyze  oxidaMon-­‐reducMon  reacMons  

•  Transferases  –  Transfer  elements  of  one  molecule  to  another  

•  Hydrolases  –  Cleave  bonds  by  adding  water  

•  Lyases  –  Groups  of  elements  are  removed  to  form  a  double  bond  or  added  to  a  double  bond  

•  Isomerases  –  Rearrangement  of  the  structure  of  molecules  

•  Ligases  –  Catalyze  bond  formaMon  between  substrate  molecules  

   ClassificaMon  of  Enzymes  

   Factors  That  Alter  Enzyme  AcMvity  

•  Temperature  – Small  rise  in  body  temperature  increases  enzyme  acMvity  

– Exercise  results  in  increased  body  temperature  

•  pH  – Changes  in  pH  reduces  enzyme  acMvity  – LacMc  acid  produced  during  exercise  

   The  Effect  of  Body  Temperature  on  Enzyme  AcMvity  

   The  Effect  of  pH  on  Enzyme  AcMvity  

   Macromolecules  -­‐  Carbohydrates  

•  Glucose  – Blood  sugar  

•  Glycogen    – Storage  form  of  glucose  in  liver  and  muscle  

•  Synthesized  by  enzyme  glycogen  synthase  

– Glycogenolysis  •  Breakdown  of  glycogen  to  glucose  

   Macromolecules  -­‐  Fats  

•  Fajy  acids  –  Primary  type  of  fat  used  by  the  muscle  –  Triglycerides  

•  Storage  form  of  fat  in  muscle  and  adipose  Mssue  •  Breaks  down  into  glycerol  and  fajy  acids  

•  Phospholipids  – Not  used  as  an  energy  source  

•  Steroids  – Derived  from  cholesterol  – Needed  to  synthesize  sex  hormones  

   Macromolecules  -­‐  Proteins  

•  Composed  of  amino  acids  •  Some  can  be  converted  to  glucose  in  the  liver  

– Gluconeogenesis  •  Others  can  be  converted  to  metabolic  intermediates  – Contribute  as  a  fuel  in  muscle  

•  Overall,  protein  is  not  a  primary  energy  source  during  exercise  

   BioenergeMcs  

•  FormaMon  of  ATP    –  PhosphocreaMne  (PC)  breakdown  – DegradaMon  of  glucose  and  glycogen    

•  Glycolysis  – OxidaMve  formaMon  of  ATP  

•  Anaerobic  pathways  – Do  not  involve  O2  –  PC  breakdown  and  glycolysis  

•  Aerobic  pathways  –  Require  O2  – OxidaMve  phosphorylaMon  

   Overview  of  carbohydrate  and  amino  acid  metabolism  

   Anaerobic  ATP  ProducMon  

•  ATP-­‐PC  system  –  Immediate  source  of  ATP  

•  Glycolysis  – Glucose  →  2  pyruvic  acid  or  2  lacMc  acid    –  Energy  investment  phase  

•  Requires  2  ATP  –  Energy  generaMon  phase  

•  Produces  4  ATP,  2  NADH,  and  2  pyruvate  or  2  lactate