lecture 8 : optical lattices and band structurechevy/atomesfroids/lecture8.pdf · plane wave...

10
Lecture 8 : optical lattices and band structure lundi 19 mai 14

Upload: lethuy

Post on 14-Sep-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 8 : optical lattices and band structurechevy/AtomesFroids/Lecture8.pdf · Plane wave expansion Fourier series expansion of the potential : Fourier series expansion of the

Lecture 8 : optical lattices and band structure

lundi 19 mai 14

Page 2: Lecture 8 : optical lattices and band structurechevy/AtomesFroids/Lecture8.pdf · Plane wave expansion Fourier series expansion of the potential : Fourier series expansion of the

Atoms are trapped near the intensity maxima (red detuning) or minima (blue detuning)

One dimensional lattice : stacks of 2D gases

Additional (weaker) trapping potentials provide confinement in the plane perpendicular to the lattice

One-dimensional optical lattices

lundi 19 mai 14

Page 3: Lecture 8 : optical lattices and band structurechevy/AtomesFroids/Lecture8.pdf · Plane wave expansion Fourier series expansion of the potential : Fourier series expansion of the

Invariance by translation of a basis vector

Common eigenstates of Td and H have the generic form

Bloch theorem

Invariance by changing the quasi-momentum by a multiple of 2π/d (a reciprocal lattice vector)

Quasi-momentum can be restricted to the first Brillouin zone BZ1 =

Bloch wave Bloch functionperiodic with period d

1D sinusoidal potential :

d

Neil Ashcroft and David Mermin. Solid State PhysicsJean Dalibard, Cours au Collège de France 2013 http://www.phys.ens.fr/~dalibard/

lundi 19 mai 14

Page 4: Lecture 8 : optical lattices and band structurechevy/AtomesFroids/Lecture8.pdf · Plane wave expansion Fourier series expansion of the potential : Fourier series expansion of the

Plane wave expansion

Fourier series expansion of the potential :

Fourier series expansion of the eigenstates :

Schrödinger equation reduces to a matrix equation for the coefficients in the plane wave basis.

For a sinusoidal potential, only the terms with m=0,+1,-1 remain: tridiagonal matrix

Length scale :Momentum / quasi-momentum scale :

Energy scale :

lundi 19 mai 14

Page 5: Lecture 8 : optical lattices and band structurechevy/AtomesFroids/Lecture8.pdf · Plane wave expansion Fourier series expansion of the potential : Fourier series expansion of the

Band structure for V0=2 ER

−0.5 0 0.50

2

4

6

8

10

12

14

16

18

quasi−momentum (2//d)

Ener

gy (E

r)

V0=2ER

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20

0.02

0.04

Bloch wave functions

position (d)

un=

0,k=

0−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.1

−0.05

0

0.05

0.1

position (d)

un=

1,k=

0n=1

n=2

n=3

n=4

lundi 19 mai 14

Page 6: Lecture 8 : optical lattices and band structurechevy/AtomesFroids/Lecture8.pdf · Plane wave expansion Fourier series expansion of the potential : Fourier series expansion of the

Band structure for V0=4 ER

−0.5 0 0.50

2

4

6

8

10

12

14

16

18

20

quasi−momentum (2//d)

Ener

gy (E

r)

V0=4ER

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20

0.02

0.04

0.06

Bloch wave functions

position (d)

un=

0,k=

0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−0.1

−0.05

0

0.05

0.1

position (d)

un=

1,k=

0n=1

n=2

n=3

n=4

lundi 19 mai 14

Page 7: Lecture 8 : optical lattices and band structurechevy/AtomesFroids/Lecture8.pdf · Plane wave expansion Fourier series expansion of the potential : Fourier series expansion of the

Band structure for V0=10 ER

−0.5 0 0.52

4

6

8

10

12

14

16

18

20

22

quasi−momentum (2//d)

Ener

gy (E

r)

V0=10ER

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20

0.02

0.04

0.06

0.08Bloch wave functions

position (d)

un=

0,k=

0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−0.1

−0.05

0

0.05

0.1

position (d)

un=

1,k=

0n=1

n=2

n=3

n=4

lundi 19 mai 14

Page 8: Lecture 8 : optical lattices and band structurechevy/AtomesFroids/Lecture8.pdf · Plane wave expansion Fourier series expansion of the potential : Fourier series expansion of the

Band structure for V0=20 ER

−0.5 0 0.50

5

10

15

20

25

30

quasi−momentum (2//d)

Ener

gy (E

r)

V0=20ER

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20

0.05

0.1Bloch wave functions

position (d)

un=

0,k=

0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−0.1

−0.05

0

0.05

0.1

position (d)

un=

1,k=

0n=1

n=2

n=3

n=4

lundi 19 mai 14

Page 9: Lecture 8 : optical lattices and band structurechevy/AtomesFroids/Lecture8.pdf · Plane wave expansion Fourier series expansion of the potential : Fourier series expansion of the

Wannier functions

−2 −1 0 1 2

0

1

2

3

4

position x (d)

Wan

nier

func

tions

V0=4ER

−2 −1 0 1 2−1

0

1

2

3

4

5

position x (d)

Wan

nier

func

tions

V0=10ER

−2 −1 0 1 2−1

0

1

2

3

4

5

position x (d)

Wan

nier

func

tions

V0=20ER

wn(r� ri) =1pNs

X

k

un,k(r)eik·ri

un,k(r)

Wannier functions form an orthogonal basis :

For large lattice depths, they become more and more localized around site ri

Analog of the localized states introduced for the double-well case

Solid: Wannier functions

Dots: harmonic oscillator approximation

Instead of working in the Bloch basis , it is often convenient to use the so-called Wannier functions defined as

(some subtleties for higher bands, see W. Kohn Phys. Rev. 1959)

lundi 19 mai 14

Page 10: Lecture 8 : optical lattices and band structurechevy/AtomesFroids/Lecture8.pdf · Plane wave expansion Fourier series expansion of the potential : Fourier series expansion of the

Tight-binding limit

In the Wannier basis, we can express the hamiltonian as

Single-band approximation :

At low temperatures/chemical potential, only the lowest energy band n=0 is occupied appreciably : higher energy bands can be neglected.

Tight-binding approximation :

This leads to the simplest non-interacting lattice model describing particles in the ground band tunneling from sites to sites:

0 5 10 15 20

10−6

10−4

10−2

100

V0 [ER]

Tunn

el E

nerg

ies

[ER

]

0 5 10 15 2010−3

10−2

10−1

100

V0 [ER]

Tunn

el E

nerg

ies

[ER

]

J0(1)J0(2)J0(3)

J0(1)> J0W0/4J0 (approx)

When the lattice depth is large (roughly V0>>5 ER) Jn(i-j) decreases very fast with site distance : one can neglect all terms but the ones connecting nearest neighbors.

In the Bloch basis, we can express the hamiltonian as

lundi 19 mai 14