lecture series catalysis solid states aspects in oxidation ... · a. tipler, physik, spektrum...

60
Modern Methods in Heterogeneous Catalysis Research Solid State Aspects in Oxidation Catalysis 20th January 2012 Maik Eichelbaum / FHI

Upload: vucong

Post on 07-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Modern Methods in Heterogeneous Catalysis Research

Solid State Aspects in Oxidation Catalysis

20th January 2012 

Maik Eichelbaum / FHI

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

2Maik Eichelbaum

How chemists like to see the world: Everything is molecular

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

3Maik Eichelbaum

1. Introduction

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

4Maik Eichelbaum

Solid State Aspects: Goingunderneath the surface and beyond

the molecule

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

5Maik Eichelbaum

1. Introduction

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

6Maik Eichelbaum

1. Introduction

Dehydrogenation of formic acid with different bronzealloys: activation energy and resistivity

HCOOH CO2 + H2

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

7Maik Eichelbaum

1. Introduction

Defect electrons (holes) in NiO (withO excess): p-type semiconductor

Ni3+ Ni2+

Ni3+

Ni2+ Ni2+ Ni2+

Ni2+

Ni2+Ni2+Ni2+Ni2+

Ni2+ Ni2+

Increase of defect electrons byLi2O, decrease by Cr2O3 addition: CO + ½O2 CO2

Explanation: donor reactiondefect electron + Ni2+ = active site

fast

CO chemisorption rate-determining

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

8Maik Eichelbaum

1. Introduction

Excess electrons in ZnO (with Znexcess): n-type semiconductor

Increase of quasi-free electrons byGa2O3, decrease by Li2O addition: CO + ½O2 CO2

Explanation: acceptor reactionZn2+ + (1 or 2) quasi-free electrons = active site

fast

Oxidation of active site rate-determing(strong influence of oxygen on rate)

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

9Maik Eichelbaum

1. Introduction

Kröger-Vink notation for point defects in crystalsF. A. Kröger, H. J. Vink, Solid State Phys. 1956, 3, 307

P. J. Gellings, H. J. M. Bouwmeester, Catal. Today 2000, 58, 1

Precise description of point defects possible; differentiation between bulkvacancies, interstitials, surface vacancies, adsorbed ions etc.

Examples: Ni3+ in Ni2+O2- on normal lattice position •NiNi

Interstitial Zn+ in Zn2+O2- •iZn

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

10Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

11Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

1) Proton conduction in oxides

2) Oxygen conduction in oxides

1) Proton conduction in oxides

2) Oxygen conduction in oxides

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

12Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

Formation of protonic defects:

„normal“ lattice oxygen

Doubly ionized oxygen vacancy

hydroxyl group on regular oxygen position

1) Reaction with water

2) Reaction with hydrogen and electron holes

3) Reaction with hydrogen and formation of free electrons

Oxygen vacancy

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

13Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

Proton conduction mechanisms:

1) Proton hopping (Grotthus mechanism): protonhops between adjacent oxygen ions (large H+/D+

isotope effect)

2) Hydroxyl-ion migration (vehicle mechanism): negligible H+/D+ isotope effect

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

14Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

Example: Oxidation of propene to acrylic acid on MoVTeNbOx (M2)

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

15Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

“humid“ propene-oxygen-helium (2-8-90) mixture

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

16Maik Eichelbaum

1) Proton conduction in oxides

2) Oxygen conduction in oxides

1) Proton conduction in oxides

2) Oxygen conduction in oxides

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

17Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

Oxygen conduction or How is oxygen incorporated into oxides?Existing point defects (oxygen vacancies: VO

••, oxygen interstitials: Oi‘‘, electronic

point defects: h•, e‘) allow a finite compositional flexibility in a binary oxide MO with phase width MO1-δ

R. Merkle, J. Maier,

Example: Fe-doped SrTiO3-δ (quasi-binary due to fixed Sr/Ti ratio below 1200°C)

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

18Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

Phase diagram for MO1-δ

R. Merkle, J. Maier, 

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

19Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

Reaction and transport of oxygen: kinetic limitations

R. Merkle, J. Maier, 

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

20Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

Fe‐doped SrTiO3 single crystal, surface reaction is limiting, T=923 K, pO2: 0.01‐>1 bar, ttotal=24 h

false‐color image                                                    concentration profile

http://www.fkf.mpg.de/maier/downloads.html

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

21Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

Fe‐doped SrTiO3 single crystal, bulk diffusion is limiting, T=823 K, pO2: 0.1‐>1 bar, ttotal=6300 s

false‐color image                                                        concentration profile

http://www.fkf.mpg.de/maier/downloads.html

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

22Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

Fe‐doped SrTiO3  bicrystal, blocking grain boundary, T=873 K, pO2: 0.1‐>1 bar, ttotal=24 h7.5° tilt grain boundary

false‐color image               concentration profile       HRTEM image, structural model

http://www.fkf.mpg.de/maier/downloads.html

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

23Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

Blocking grain boundary formation of space charge layers

R. Merkle, J. Maier, 

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

24Maik Eichelbaum

2. Electrical Conductivity in Solid Oxides

array of circular gold microelectrodes (20 µm diameter) on polycrystalline Fe-doped SrTiO3 platinum

contact tips

R. Merkle, J. Maier, 

Localized Impedance Spectroscopy

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

25Maik Eichelbaum

Insertion: Impedance spectroscopy

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

26Maik Eichelbaum

3. Impedance Spectroscopy

Impedance measurements (measurement at alternating voltages):

)(

)(

ˆ)(

ˆ)(I

U

ti

ti

et

etφω

φω

+

+

=

=

II

UU

22 XRZ +==IUˆˆ

Impedance [Ω]:

)( IUii eZeZiXR φφθ −==+=ZComplex impedance:

Resistance Reactance

θieZIIZU ==Ohm`s law:

Phase differencebetween voltage andcurrent

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

27Maik Eichelbaum

3. Impedance Spectroscopy

Impedance of an ideal resistor:

Impedance of an ideal inductor:

Impedance of an ideal capacitor: )2

(

2

11 π

π

ωω

ωω−

==

==

=

i

C

i

L

R

eCCi

Z

LeLiZ

RZ

Total impedance calculated by using rules for combining impedances in seriesand parallel:

Series combination: Ztot = Z1 + Z2 + … + Zn

Parallel combination: 1/Ztot = 1/Z1 + 1/Z2+ … + 1/Zn

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

28Maik Eichelbaum

3. Impedance Spectroscopy

Impedance spectroscopy (IE): Sinosoidal voltage, frequency variation (typicallybetween 106 and 10-3 Hz)

According to Ohm’s law the impedance of a sample can be calculated by complex division of the voltage and current

Looking for an “equivalent circuit“ with certain impedance elements thatdescribes best the frequency-dependent behavior of the sample

The impedance elements are related to certain physico-chemical properties, e.g. electrochemical double layer between electrode and electrolyte ions (Helmholtz layer) can be described by a capacitor

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

29Maik Eichelbaum

3. Impedance Spectroscopy

Bode plot (phase angle θ vs. frequency)e.g. oxide layer on Al

one time constant (τ = R C)e.g. chromate layer on oxide layer on Al

two time constants

Equivalent circuit:

D. Ende, K.-M. Mangold, ChiuZ 1993, 3, 134

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

30Maik Eichelbaum

3. Impedance Spectroscopy

Simplified equivalent circuit for a redox reaction:

Cdl

Rct

-ImZ

ReZ

ωRctCdl = 1

Rct

ω = 0ω = ∞

Corresponding Nyquist diagram forRC parallel circuit:

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

31Maik Eichelbaum

The Physicist‘s View of a Solid

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

32Maik Eichelbaum

4. The Physicist`s View of a Solid

A. W. Bott, Current Separations 1998, 17, 87

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

33Maik Eichelbaum

4. The Physicist`s View of a Solid

Occupancy of electrons in a band is determined by Fermi-Dirac statistics

Fermi-Dirac distribution (for an electron gas):

potential Chemical(Electro-)...

eTemperatur...constantBoltzmann ...

Energy...

1exp

1)(

μ

μ

TkE

TkE

Ef

B

B

+⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

2/1)( == μEf= Fermi level

Population densityE

W

EFermi

Vacuum level

Conduction band

WA(work function)

The Fermi curve determines thepopulation of occupied states, independent of the existence ofstates in the regarded E region

μ (T = 0) = EFermi

P. A. Tipler, Physik, Spektrum Verlag

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

34Maik Eichelbaum

4. The Physicist`s View of a Solid

Intrinsicsemiconductor

(Extrinsic) n-type semiconductor

(Extrinsic) p-type semiconductor

Donor level Acceptorlevel

e.g. Si (band gap at300 K = 1.12 eV)

e.g. As-doped Si e.g. Ga-doped Si

additional electrons

hole

hole

P. A. Tipler, Physik, Spektrum Verlag

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

35Maik Eichelbaum

Space charge region

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

36Maik Eichelbaum

4. The Physicist`s View of a Solid

Metals

Metal 1 Metal 1Metal 2 Metal 2

free electrons

a) Energy states of two different metals with different Fermi energies andwork functions. b) With contact, electrons will flow from the metal with higherFermi energy (lower work function) to the one with lower Fermi energy (larger work function) until the Fermi levels of both metals are equalized

Valence band

Conductionband

Contact voltage = (WA1 -WA2)/e

P. A. Tipler, Physik, Spektrum Verlag

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

37Maik Eichelbaum

4. The Physicist`s View of a Solid

Semiconductorsn-type SC in contact with electrolyte p-type SC in contact with electrolyte

Space Charge Region Space Charge Region

Electrochemical double layer

In metals: penetration depth (space charge region to compensate surface charge) of only a fewlattice constants (high concentration of free charge carriers)

In SCs: Debye shielding, LD, can amount from 10 nm to 1 µmi

BD nq

TkL 22πε

=

torsemiconduc intrinsicin carriers charge ofion Concentrat... charge;Electron ... crystal; ofty permittivi Dielectric... inqε

LD LD

A. W. Bott, Current Separations 1998, 17, 87

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

38Maik Eichelbaum

4. The Physicist`s View of a Solid

External Potential Control

Positive potential

Negative potential

Flatband potential

A. W. Bott, Current Separations 1998, 17, 87

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

39Maik Eichelbaum

4. The Physicist`s View of a Solid

Conductionband Conduction

band

Valenceband Valence

band

Junction(charge depleted zone)

n sidep side

p-n junction

Electrons migrate to p side, holes migrate to n side untilelectrochemical potentials (Fermi energies) are equilibrated

Potential difference

(highresistance)

Energy

P. A. Tipler, Physik, Spektrum Verlag

‐++‐

forwardbias

reversebias

breakdown voltage

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

40Maik Eichelbaum

4. The Physicist`s View of a Solid

Metal-semiconductor junction (Schottky barrier)

Ohmic contact

Schottky barrier

K. W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, John Wiley & Sons 2008

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

41Maik Eichelbaum

Back to Chemistry…

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

42Maik Eichelbaum

5. Oxidation Catalysis

Oxidation catalysis with transition metal ions:

1) Oxidation of the substrate by the catalyst (being reduced)

2) Reoxidation of the catalyst (usually by gas phase oxygen)

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

43Maik Eichelbaum

5. Oxidation Catalysis

Experimental hints for the participation of “lattice“ oxygen (oxygencovalently bound to the active transition metal ion) in the reaction:

1) Reaction runs (awhile) without gas phase oxygen present (riser reactorconcept)

2) Different oxidation states of the transition metal are monitored in dependence on the partial pressures of reaction gases or on contact time

3) By using 18O2 in isotope exchange experiments, first 16O (from thecatalyst) is found in the reaction product, and only after some time 18O

4) After long 18O/16O exchange, 18O is found in the catalyst lattice (e.g. in ToF-SIMS experiments)

5) Conductivity changes upon reaction conditions, correlation betweenconductivity and activity/selectivity for differently doped semiconductors

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

44Maik Eichelbaum

5. Oxidation Catalysis

Example:

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

45Maik Eichelbaum

5. Oxidation Catalysis

Participation of “lattice oxygen“ is often associated with the Mars-van Krevelen mechanism

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

46Maik Eichelbaum

5. Oxidation Catalysis

Original derivation of the Mars-van Krevelen rate expressionAn analysis by

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

47Maik Eichelbaum

5. Oxidation Catalysis

kinetic gas theory allows only n = 1only O2 single-site adsorption represented (two-

site adsorption: (1-θ)2), however involvement of O lattice ions necessitates O2 dissociation into atoms

severe inconsistency

no elementary step, Eley-Rideal reaction veryunlikely, multiple bond-breaking, multiple intermediates, sequence of elementary steps needed

no intermediate species of final productsincluded, only O ions considered

Mars-van Krevelen rate equation:

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

48Maik Eichelbaum

5. Oxidation Catalysis

Simple elementary steps for adsorption of O2 on a lattice vacancy (active site)Alternative derivations by Vannice:

Mars-van Krevelen rate equation:

(n = 1)

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

49Maik Eichelbaum

5. Oxidation Catalysis

Simple elementary steps for lattice O ions involved in the reaction

Mars-van Krevelen rate equation:

⎟⎟

⎜⎜

⎛++= 1

164 2O

21

2R

22

O1

R2R2R

22Pk

PkPkPkPkr

?

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

50Maik Eichelbaum

Unifying Physics and Chemistry andCatalysis; an Attempt

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

51Maik Eichelbaum

5. Oxidation Catalysis – Electronic Theory

Selective oxidation of hydrocarbons, consideration of bands and frontier orbitals:

J. Haber, M. Witko, J. Catal. 2003, 216, 416‐424

Rigid band assumption (no local surface states)

No site isolation total conduction!

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

52Maik Eichelbaum

Surface States

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

53Maik Eichelbaum

5. Oxidation Catalysis – Electronic Theory

Surface states of a 3D crystal

Intrinsic surface states: On ideal surfaces (perfecttermination with 2D translational symmetry)

Extrinsic surface states: On surfaces with imperfections(e.g. missing atom)

H. Lüth, Solid Surfaces, Interfaces and Thin Films, Springer 2001

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

54Maik Eichelbaum

5. Oxidation Catalysis – Electronic Theory

J. Haber, M. Witko, J. Catal. 2003, 216, 416‐424

Electrocatalytic oxidation of catechol on vanadium-doped TiO2 electrodes

Flat band potential(no external potential)

With external potential

Surface states

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

55Maik Eichelbaum

5. Oxidation Catalysis – Electronic Theory

Surface statecharge

Space charge (to compensatesurface charge)

Neutrality condition determines the Fermi level

ECEFED

EV

acceptors

e‐

Build-up ofuncompensatednegative charge in surface acceptor state

unstable

Hypothetical flatband situation: Formation of (depletion) space charge layer:

H. Lüth, Solid Surfaces, Interfaces and Thin Films, Springer 2001

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

56Maik Eichelbaum

5. Oxidation Catalysis – Electronic Theory

H. Lüth, Solid Surfaces, Interfaces and Thin Films, Springer 2001

Band schemes:

Free chargecarrierdensities:

Localconductivity:

n-SC: p-SC:

DEPLETION

pb

nb

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

57Maik Eichelbaum

5. Oxidation Catalysis – Electronic Theory

p-type semiconductor (e.g. (VO)2P2O7 for butane oxidation to maleic anhydride)

Adsorption (catalysis) at surface states:

Local surface state = active (isolated single) site selective oxidation

Oxidation Reduction

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

58Maik Eichelbaum

5. Oxidation Catalysis – Electronic Theory

H. Lüth, Solid Surfaces, Interfaces and Thin Films, Springer 2001

Spectroscopic evidence? Photoemission spectroscopy

adsorbate-induced extrinsicsurface state

Core levels, valence states, workfunction at the surface shift by same amount of eΔΦ due to band bending in dependence on chemical potential ofadsorbate (no surface dipoles)

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

59Maik Eichelbaum

5. Oxidation Catalysis – Electronic Theory

Valence band spectra (hν = 35 eV) of In2O3 surface in dependence on PO2

A. Klein, Appl. Phys. Lett. 2000, 77, 2009-2011

Lecture Series Catalysis: Solid State Aspects in Oxidation Catalysis

60Maik Eichelbaum

Literature

Reviews, e.g.:“Solid state aspects of oxidation catalysis“: P. J. Gellings, H. J. M. Bouwmeester, CatalysisToday 2000, 58, 1-53; ibid. 1992, 12, 1-105“The role of redox, acid-base and collective properties and of cristalline sate ofheterogeneous catalysts in the selective oxidation of hydrocarbons“, J. C. Védrine, Top. Catal. 2002, 21, 97-106“In situ and operando spectroscopy for assessing mechanisms of gas sensing“, A. Gurlo, R. Riedel, Angew. Chem. Int. Ed. 2007, 46, 3826-3848

Surface physics and surface chemistry, e.g.:S. R. Morrison, “The chemical physics of surfaces“, Plenum Press New York and London 1977(surface physics and surface chemistry, includes chapter on heterogeneous catalysis)H. Lueth, “Solid surfaces, interfaces and thin films“, Springer 2010P. A. Cox, “The electronic structure and chemistry of solids”, Oxford University Press 1989R. Hoffmann, “Solids and surfaces : a chemist's view of bonding in extended structures” VCH 1988

Fundamental textbooks, e.g.:N. W. Ashcroft, N. D. Mermin, “Solid state physics“, Brooks/Cole Cengage Learning 2009H. Ibach, H. Lueth, “Solid-state physics : an introduction to principles of materials science”, Springer 2009

(Examples)