lecture slides lecture 4 lecture4

Upload: ashwani-raj

Post on 13-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    1/26

    Lecture 4

    Noise as a random number

    generator

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    2/26

    Plan of the Lecture

    Extracting randomness from physical noise

    1 Technical definition of noise

    2-3 Thermal noise

    4 Randomness from noise

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    3/26

    MATHEMATICS OF N

    Many frequencies

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    4/26

    Frequency spectra

    1 1 2 1

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    5/26

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    M=10

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    M=40

    Adding frequencies

    0

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    6/26

    NoiseMore frequencies in the spectrum more noisy

    0 1000 2000 3000 4000 5000 6000 7000 8000 9-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Little correlation (short memory) hard to predict

    In fact, many natural source of noise have a continuous spectru

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    7/26

    Spectral bandwidth vs. memor

    Correlation time

    Coherence time

    Spectrin freq

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    8/26

    THERMAL

    Theory

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    9/26

    A resistor

    RI

    Really zero?

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    10/26

    Contact with a thermal bat

    R

    Temperature T

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    11/26

    Thermal noise

    V

    0

    V

    t

    time

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    12/26

    Johnson-Nyquist noise

    The thermal noise of the resistor is named af

    John Johnson, who reported it, and Harry Nywho did the theoretical description (Bell Labs

    From Johnsons paper:

    The mean-square potential fIuctuation over the

    conductor is proportionalto the electrical resistaand the absolute temperature of the conductor.

    independentof the size, shape or material of th

    conductor.

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    13/26

    The formula

    RPower dissipated

    by the resistor

    At equilibrium, they must be equal

    Ban

    the Cable = 1D

    waveguide for E,B

    Boltzmanns c

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    14/26

    More rigorous derivation

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    15/26

    Predictions in graphs

    Frequency s

    1kW

    1.6 10-13V2

    =(0.4 mV)2

    T=300K, Df=10kHz

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    16/26

    NOISE IN TH

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    17/26

    Devices

    R

    Amplifier

    Oscilloscope

    time

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    18/26

    Observation

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    19/26

    RANDOMNESS FROM

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    20/26

    Statistics of noise

    The observed distribution is enough, because we have a c

    source of noise: we checked that the noise is the one expected for th

    we trust physics that it is a phenomenon too comple

    One could put up an antenna and capture unknown signals

    look random to us. But they may not be random for others,

    unwanted structure in them.

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    21/26

    Observed distribution

    R=1kW

    T=300K

    time Counts (103

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    22/26

    Possible processing (1)

    Try to get directly fair coin sequences out o

    0 1 000

    1

    1

    0

    1

    More than one bit need to adapt carefully the in

    for each sequence to have the s

    (2)

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    23/26

    Possible processing (2)

    Remark: for a trusted source, one can be less conservativ

    compute randomness from the average (Shannon) entro

    C l ti f fi it b d

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    24/26

    Correlations from finite bandwPreviously we assumed that each value of V is independent of t

    As we know, no problem in principle: just estimate P of each se

    compute Hmin. But in practice, this is not feasible.

  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    25/26

    Wikipedia pages: http://en.wikipedia.org/wiki/Hardware_random_number_generat

    Suggested Readings

    S f L t 4

    http://en.wikipedia.org/wiki/Hardware_random_number_generatorhttp://en.wikipedia.org/wiki/Hardware_random_number_generator
  • 7/27/2019 Lecture Slides Lecture 4 Lecture4

    26/26

    Summary of Lecture 4

    Noise = large spectrum of frequencies

    Thermal noise

    Extracting randomness, effects of correlation

    Extracting randomness from physical noise