lecture07 - least squares regression

Upload: na2ry

Post on 29-May-2018

242 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Lecture07 - Least Squares Regression

    1/32

    Curve Fitting and Interpolation

    Lecture 7:

    Least Squares Regression

    MTH2212 Computational Methods and Statistics

  • 8/9/2019 Lecture07 - Least Squares Regression

    2/32

    Dr. M. HrairiDr. M. Hrairi MTH2212MTH2212 -- Computational Methods and StatisticsComputational Methods and Statistics 22

    Objectives

    Introduction

    Linear regression

    Polynomial regression

    Multiple linear regression

    General linear least squares

    Nonlinear regression

  • 8/9/2019 Lecture07 - Least Squares Regression

    3/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 33

    Curve Fitting

    Experimentation

    Data available at discrete points or times

    Estimates are required at points between the discrete values

    Curves are fit to data in order to estimate the intermediate values

  • 8/9/2019 Lecture07 - Least Squares Regression

    4/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 44

    Curve Fitting

    Two methods - depending on error in data

    Interpolation

    - Precise data

    - Force through each data point

    Regression- Noisy data

    - Represent trend of the data

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 2 4 6 8 10 12 14 16

    x

    f(x)

    0

    20

    40

    60

    80

    100

    120

    0 1 2 3 4 5

    Time (s)

    Tem

    perature(degF)

  • 8/9/2019 Lecture07 - Least Squares Regression

    5/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 55

    Least Squares Regression

    Experimental Data

    Noisy (contains errors or inaccuracies)

    x values are accurate, y values are not

    Find relationship betweenxand y = f(x)

    Fit general trend without matching individual points

    Derive a curve that minimizes the discrepancy between the data

    points and the curve Least-squaresregression

  • 8/9/2019 Lecture07 - Least Squares Regression

    6/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 66

    x y

    2.10 2.90

    6.22 3.83

    7.17 5.98

    10.5 5.71

    13.7 7.74

    Linear Regression: Definition

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 2 4 6 8 10 12 14 16

    x

    f(x)

    Straight line characterizes trend without

    passing through particular point

    Noisy Data From

    Experiment

    xaay10

    !

  • 8/9/2019 Lecture07 - Least Squares Regression

    7/32

    Dr. M. HrairiDr. M. Hrairi MTH2212MTH2212 -- Computational Methods and StatisticsComputational Methods and Statistics 77

    Linear Regression: criteria for a best fit

    How do we measure goodness of fit of the line to the data?

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 2 4 6 8 10 12 14 16

    x

    f(x)

    y1 y2

    y4

    y5

    y3

    e 3

    e2

    Regression Model

    y = a 0+ a 1x

    Residual

    e = y - (a 0+ a 1x)

    Data points

  • 8/9/2019 Lecture07 - Least Squares Regression

    8/32

    Dr. M. HrairiDr. M. Hrairi MTH2212MTH2212 -- Computational Methods and StatisticsComputational Methods and Statistics 88

    Linear Regression: criteria for a best fit

    Use the curve that minimizes the residual between the data

    points and the line

    Model:

    Find the values of a0 and a1 that minimize Sr

    xy10

    !

    ii xaay 10 !

    iii xaa= ye 10

    n

    i=ii

    n

    i=ir xaay=e=S

    1

    210

    1

    20

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 2 4 6 8 10 12 14 16

    x

    f(x)

    y1 y2

    y4

    y5

    y3

    e 3

    e 2

    Regression Model

    y = a 0+ a 1x

    Residual

    e = y - (a 0+ a 1x)

    Data points

    x y

    2.10 2.90

    6.22 3.83

    7.17 5.98

    10.5 5.71

    13.7 7.74

  • 8/9/2019 Lecture07 - Least Squares Regression

    9/32

    Dr. M. HrairiDr. M. Hrairi MTH2212MTH2212 -- Computational Methods and StatisticsComputational Methods and Statistics 99

    Linear Regression: Finding a0 and a1

    Minimize Sr by taking

    derivatives WRT

    a0and a1,

    First a0

    ? A

    ? A ? A

    !

    !

    n

    i=

    n

    i=

    a

    a

    1 0

    1

    2

    0

    2 ..

    .

    x

    x

    x

    x

    -

    n

    i=

    ii

    r x=S

    1

    2

    10

    00 x

    x

    x

    x

    !

    -

    n

    i=i

    n

    i=i yaxna

    1

    1

    1

    0

    ? A

    0

    12

    1

    10

    )(xaayn

    i=

    ii

    !

    ! Finally

  • 8/9/2019 Lecture07 - Least Squares Regression

    10/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 1010

    Linear Regression: Finding a0 and a1

    Finally

    Minimize Sr by taking

    derivatives WRT

    a0and a1

    Second a1

    -

    n

    i ii

    r aaa

    a 1

    2

    10

    11x

    x

    x

    x

    ? A

    ? A ? A

    !

    !

    n

    i=

    n

    i=

    a

    a

    1 1

    1

    2

    1

    2 ..

    .

    x

    x

    x

    x

    ? A

    0

    2

    1

    10

    )(i

    iii

    !

    !

    !

    -

    -

    iii

    ii

    ii

    1

    1

    1

    20

    1

  • 8/9/2019 Lecture07 - Least Squares Regression

    11/32

    Dr. M. HrairiDr. M. Hrairi MTH2212MTH2212 -- Computational Methods and StatisticsComputational Methods and Statistics 1111

    Linear Regression: Normal equations

    !

    -

    -

    n

    i=ii

    n

    i=i

    n

    i=i yxaxax

    1

    1

    1

    20

    1

    !

    -

    n

    i=i

    n

    i=i yaxna

    11

    10

    Set of two simultaneous linear equations with two unknowns( a0 and a1):

  • 8/9/2019 Lecture07 - Least Squares Regression

    12/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 1212

    Linear Regression: Solution of normal equations

    2

    11

    2

    111

    1

    2

    11

    2

    111

    2

    1

    0

    1

    1

    1

    11

    -

    !

    -

    !

    n

    i=i

    n

    i=i

    n

    i=i

    n

    i=i

    n

    i=ii

    n

    i=i

    n

    i=i

    n

    i=ii

    n

    i=i

    n

    i=i

    n

    i=i

    xn

    x

    yxn

    yx

    a

    xn

    x

    yxxn

    xyn

    a

    The normal equations can be solved simultaneously for:

  • 8/9/2019 Lecture07 - Least Squares Regression

    13/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 1313

    Example 1

    Fit a straight line to the values in the following table

    x y

    2.10 2.90

    6.22 3.83

    7.17 5.98

    10.5 5.71

    13.7 7.74

  • 8/9/2019 Lecture07 - Least Squares Regression

    14/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 1414

    Example 1 - Solution

    The intercept and the slope can be calculated with:

    i xi yi xi2

    xiyi

    1 2.10 2.90 4.41 6.09

    2 6.22 3.83 38.69 23.82

    3 7.17 5.98 51.41 42.88

    4 10.5 5.71 110.25 59.96

    5 13.7 7.74 187.69 106.04

    39.69 26.1

    6

    392.32 238.7

    4

    2

    11

    2

    1111

    2

    11

    2

    111

    2

    10

    1

    1

    1

    11

    -

    !

    -

    !

    n

    i=i

    n

    i=i

    n

    i=i

    n

    i=i

    n

    i=ii

    n

    i=i

    n

    i=i

    n

    i=ii

    n

    i=i

    n

    i=i

    n

    i=i

    xn

    x

    yxn

    yx

    a

    xn

    x

    yxxn

    xyn

    a

  • 8/9/2019 Lecture07 - Least Squares Regression

    15/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 1515

    Example 1 - Solution

    ? A

    ? A

    4023.0

    69.39

    5

    13.392

    )16.26)(69.39(5

    17.238

    038.2

    69.39513.392

    )7.238)(69.39(5

    1)3.392)(16.26(

    5

    1

    21

    2

    0

    !

    !

    !

    !

    a

    a

    x..y 402300382 !

    The values of the intercept and the slope:

    The equation of the straight line linear regression

  • 8/9/2019 Lecture07 - Least Squares Regression

    16/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 1616

    Linear Regression: Quantification of error

    Suppose we have data points (xi, yi) and modeled (orpredicted) points (xi, i) from the model = f(x).

    Data {yi} have two types of variations;(i) variation explained by the model and

    (ii) variation not explained by the model.

    Residual sum of squares: variation not explained by themodel

    Regression sum of squares: variation explained by themodel

    The coefficient of determination r2

    !

    !n

    iiir yyS

    1

    2)(

    !

    !n

    i

    it yyS1

    2)(

    t

    rt

    S

    SSr

    !2

  • 8/9/2019 Lecture07 - Least Squares Regression

    17/32

    Dr. M. HrairiDr. M. Hrairi MTH2212MTH2212 -- Computational Methods and StatisticsComputational Methods and Statistics 1717

    Linear Regression: Quantification of error

    For a perfect fit

    Sr=0 and r=r2=1, signifying that the line explains 100% of

    the variability of the data.

    For r=r2

    =0, Sr=St, the fit represents no improvement.

    x1 x2

    y1

    y2

    y

    Total variation in y = Variation explained by the model + Unexplained variation (error)

  • 8/9/2019 Lecture07 - Least Squares Regression

    18/32

    Dr. M. HrairiDr. M. Hrairi MTH2212MTH2212 -- Computational Methods and StatisticsComputational Methods and Statistics 1818

    Linear Regression: Another measure of fit

    In addition to r2, r

    Define

    = standard error of the estimate- Represents the distribution of the residuals around the

    regression line

    - Large Sy|xlarge residuals

    - Small Sy|xsmall residuals

    2| n

    SS rxy

  • 8/9/2019 Lecture07 - Least Squares Regression

    19/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 1919

    Example 2

    Compute the total standard deviation, the standard error of

    the estimate, and the correlation coefficient for the data in

    Example 1.

    x y

    2.10 2.90

    6.22 3.83

    7.17 5.98

    10.5 5.71

    13.7 7.74

  • 8/9/2019 Lecture07 - Least Squares Regression

    20/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 2020

    Example 2 - Solution

    The standard deviation is

    The standard error of the estimate is

    The correlation coefficient r is

    9028.115

    4819.14

    1!

    !

    !

    n

    SS

    t

    y

    8092.025

    9643.1

    2| !

    !

    !

    n

    SS

    r

    xy

    8644.4819.14

    9643.14819.142!

    !

    !

    t

    rtr

    i xi yi (yi-y)2

    (yi-a0-a1xi)2

    1 2.1 2.9 5.4382 0.0003

    2 6.22 3.83 1.9656 0.5045

    3 7.17 5.98 0.5595 1.11834 10.5 5.71 0.2285 0.3049

    5 13.7 7.74 6.2901 0.0363

    39.69 26.1

    6

    14.481

    9

    1.9643

    9297.08644.0 !!r

  • 8/9/2019 Lecture07 - Least Squares Regression

    21/32

  • 8/9/2019 Lecture07 - Least Squares Regression

    22/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 2222

    Linearization of Nonlinear Relationships

  • 8/9/2019 Lecture07 - Least Squares Regression

    23/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 2323

    Polynomial Regression

    Minimize the residual between the data points and the curve

    -- least-squaresregression

    Must find values ofa0 ,a1,a2, am

    ii xaay 10 !Linear

    2

    210 iii xaxaay !Quadratic

    2

    210 iiii xaxaxaay !Cubic

    Generalm

    imiiii xxxxy .3

    32

    210

  • 8/9/2019 Lecture07 - Least Squares Regression

    24/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 2424

    Polynomial Regression

    Residual

    Sum of squared residuals

    Minimize by taking derivatives

    )(3

    32

    210

    m

    imiiiii xxxxe .

    n

    i

    mm

    n

    iir aaaaaeS

    1

    233

    2210

    1

    2 )]([ .

  • 8/9/2019 Lecture07 - Least Squares Regression

    25/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 2525

    Polynomial Regression

    Normal Equations

    -

    !

    -

    -

    n

    i=i

    mi

    n

    i=ii

    n

    i=ii

    n

    i=

    i

    mn

    i=

    mi

    n

    i=

    mi

    n

    i=

    mi

    n

    i=

    mi

    n

    i=

    mi

    n

    i=i

    n

    i=i

    n

    i=i

    n

    i=

    mi

    n

    i=i

    n

    i=i

    n

    i=i

    n

    i=

    mi

    n

    i=

    i

    n

    i=

    i

    yx

    yx

    yx

    y

    a

    a

    aa

    xxxx

    xxxx

    xxxx

    xxxn

    1

    1

    2

    1

    1

    2

    1

    0

    1

    2

    1

    2

    1

    1

    1

    1

    2

    1

    4

    1

    3

    1

    2

    1

    1

    1

    3

    1

    2

    1

    11

    2

    1

    /

    /

    /1///

  • 8/9/2019 Lecture07 - Least Squares Regression

    26/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 2626

    Example 3

    Fit a third-order polynomial to the data given in the Table

    below

    x 0 1.0 1. 2.3 2. 4.0 5.1 6.0 6.5 7.0 8.1 9.0

    y 0.2 0.8 2.5 2.5 3.5 4.3 3.0 5.0 3.5 2.4 1.3 2.0

    x 9.3 11.0 11.3 12.1 13.1 14.0 15.5 16.0 17.5 17.8 19.0 20.0

    y -0.3 -1.3 -3.0 -4.0 -4.9 -4.0 -5.2 -3.0 -3.5 -1.6 -1.4 -0.1

  • 8/9/2019 Lecture07 - Least Squares Regression

    27/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 2727

    Example 3 - Solution

    -

    !

    -

    -

    n

    iii

    n

    iii

    n

    iii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    a

    a

    a

    a

    n

    1

    3

    1

    2

    1

    1

    3

    2

    1

    0

    1

    6

    1

    5

    1

    4

    1

    3

    1

    5

    1

    4

    1

    3

    1

    2

    1

    4

    1

    3

    1

    2

    1

    1

    3

    1

    2

    1

    -

    !

    -

    -

    3643

    2603

    316301

    22351 11612 014252 3546342

    12 014252 354634223060

    252 354634223060622463422306062224

    3

    2

    1

    0

    .

    .

    .

    .

    ....

    ....

    ....

    ...

    -

    -

    01210

    35320

    30512

    35930

    3

    2

    1

    0

    .

    .

    .

    .

    a

    a

    a

    a

  • 8/9/2019 Lecture07 - Least Squares Regression

    28/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 2828

    Example 3 - Solution

    Regression Equation

    y = - 0.359 + 2.305x - 0.353x2 + 0.012x3

    -6

    -4

    -2

    0

    2

    4

    6

    0 5 10 15 20 25

    x

    f(x)

  • 8/9/2019 Lecture07 - Least Squares Regression

    29/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 2929

    Multiple Linear Regression

    y = a0 + a1x1 + a2x2 + e

    Again very similar.

    Minimize e

    Polynomial and multipleregression fall within

    definition of General

    Linear Least Squares.

  • 8/9/2019 Lecture07 - Least Squares Regression

    30/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 3030

    General Linear Least Squares

    _ a ? A_ a _ a

    ? A

    _ a_ a

    _ a residualsE

    tscoefficienunknownA

    variabledependenttheofvaluedobservedY

    t variableindependentheofvaluesmeasuredat thefunctionsbasistheofvaluescalculatedtheofmatrix

    functionsbasis1are10

    221100

    !

    !

    Z

    EAZY

    m, z,, zz

    ezazazazay

    m

    mm

    -

    .

    2

    1 0

    ! !

    !

    n

    i

    m

    j

    jijir zayS

    Minimized by taking its partial

    derivative w.r.t. each of the

    coefficients and setting the

    resulting equation equal to zero

  • 8/9/2019 Lecture07 - Least Squares Regression

    31/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 3131

    Nonlinear Regression

    Not all equations can be broken down into General Linear

    Least Squares model i.e.

    Solve with nonlinear least squares using iterative methods

    like Gauss-Newton method

    Equation could possibly be transformed into linear form

    Caveat: when fitting transformed data you minimize the residuals of the

    data you are working with

    May not give you the exact same fit as nonlinear regression on

    untransformed data

    eeayxa! )1( 10

  • 8/9/2019 Lecture07 - Least Squares Regression

    32/32

    Dr. M. HrairiDr. M. Hrairi MTHMTH22122212 -- Computational Methods and StatisticsComputational Methods and Statistics 3232

    Nonlinear Regression

    eeayxa! )1( 10