lecture7 wires

20
EE141 1 EE141 EECS141 1 Lecture #7 EE141 EECS141 2 Lecture #7 No lab next week Midterm on Fr Febr 19 6:30-8pm in 2060 Valley LSB Review Session: TBA (most likely on Th)

Upload: sriramnaidugorle

Post on 09-Sep-2015

243 views

Category:

Documents


4 download

DESCRIPTION

lii

TRANSCRIPT

  • EE141

    1

    EE141 EECS141 1 Lecture #7

    EE141 EECS141 2 Lecture #7

    No lab next week Midterm on Fr Febr 19 6:30-8pm in 2060 Valley

    LSB Review Session: TBA (most likely on Th)

  • EE141

    2

    EE141 EECS141 3 Lecture #7

    Last lecture Optimizing complex logic

    Todays lecture Applying what we learned on memory

    decoders Reading (Ch 6.2, 12.1,12.3)

    EE141 EECS141 4 Lecture #7

    Measure everything in units of tinv (divide by tinv):

    p intrinsic delay (kg) - gate parameter f(W) LE logical effort (k) gate parameter f(W) f electrical effort (effective fanout)

    Normalize everything to an inverter: LEinv =1, pinv =

    tpgate = tinv (p + LEf)

  • EE141

    3

    EE141 EECS141 5 Lecture #7

    Compute the path effort: PE = (LE)BF Find the best number of stages N ~ log4PE Compute the effective fanout/stage EF = PE1/N Sketch the path with this number of stages Work either from either end, find sizes:

    Cin = Cout*LE/EF

    Reference: Sutherland, Sproull, Harris, Logical Effort, Morgan-Kaufmann 1999.

    EE141 EECS141 6 Lecture #7

    LE=10/3 1 LE = 10/3 P = 8 + 1

    LE=2 5/3 LE = 10/3 P = 4 + 2

    LE=4/3 5/3 4/3 1 LE = 80/27 P = 2 + 2 + 2 + 1

  • EE141

    4

    EE141 EECS141 7 Lecture #7

    Branching effort:

    EE141 EECS141 8 Lecture #7

    5 15

    15

    90

    90

    LE = FO = PE = SE1 = SE2 = PE =

    1 90/5 = 18 18 (wrong!) (15+15)/5 = 6 90/15 = 6 36, not 18!

    Introduce new kind of effort to account for branching:

    Branching Effort:

    Path Branching Effort:

    Con-path + Coff-path Con-path

    b =

    bi B = Now we can compute the path effort: Path Effort: PE = LEFOB

    Branching Example 1

  • EE141

    5

    EE141 EECS141 9 Lecture #7

    Select gate sizes y and z to minimize delay from A to B

    Logical Effort: LE =

    Electrical Effort: FO =

    Branching Effort: B =

    Path Effort: PE =

    Best Stage Effort: SE =

    Delay: D =

    (4/3)3

    Cout/Cin = 9

    23 = 6

    LEFOB= 128

    PE1/3 5

    35 + 32 = 21

    Work backward for sizes:

    5 z = 9C(4/3) = 2.4C

    5 y = 3z(4/3) = 1.9C

    Branching Example 2

    EE141 EECS141 10 Lecture #7

    Compute the path effort: PE = (LE)BF Find the best number of stages N ~ log4PE Compute the effective fanout/stage EF = PE1/N Sketch the path with this number of stages Work either from either end, find sizes:

    Cin = Cout*LE/EF

    Reference: Sutherland, Sproull, Harris, Logical Effort, Morgan-Kaufmann 1999.

  • EE141

    6

    EE141 EECS141 11 Lecture #7

    EE141 EECS141 12 Lecture #7

    Physical Schematic

  • EE141

    7

    EE141 EECS141 13 Lecture #7

    All-inclusive model Capacitance-only

    EE141 EECS141 14 Lecture #7

    Interconnect and its parasitics can affect all of the metrics we care about Cost, reliability, performance, power consumption

    Parasitics associated with interconnect: Capacitance Resistance Inductance

  • EE141

    8

    EE141 EECS141 15 Lecture #7

    From Magen et al., Interconnect Power Dissipation in a Microprocessor

    SLocal = STechnology

    SGlobal = SDie

    EE141 EECS141 16 Lecture #7

  • EE141

    9

    EE141 EECS141 17 Lecture #7

    EE141 EECS141 18 Lecture #7

  • EE141

    10

    EE141 EECS141 19 Lecture #7

    EE141 EECS141 20 Lecture #7

  • EE141

    11

    EE141 EECS141 21 Lecture #7

    EE141 EECS141 22 Lecture #7

  • EE141

    12

    EE141 EECS141 23 Lecture #7

    EE141 EECS141 24 Lecture #7

  • EE141

    13

    EE141 EECS141 25 Lecture #7

    EE141 EECS141 26 Lecture #7

  • EE141

    14

    EE141 EECS141 27 Lecture #7

    EE141 EECS141 28 Lecture #7

  • EE141

    15

    EE141 EECS141 29 Lecture #7

    EE141 EECS141 30 Lecture #7

    Use Better Interconnect Materials e.g. copper, silicides

    More Interconnect Layers reduce average wire-length

    Selective Technology Scaling (More later)

  • EE141

    16

    EE141 EECS141 31 Lecture #7

    Silicides: WSi 2, TiSi 2 , PtSi 2 and TaSi Conductivity: 8-10 times better than Poly

    EE141 EECS141 32 Lecture #7

  • EE141

    17

    EE141 EECS141 33 Lecture #7

    EE141 EECS141 34 Lecture #7

  • EE141

    18

    EE141 EECS141 35 Lecture #7

    Analysis method: Break the wire up into segments of length dx Each segment has resistance (r dx) and capacitance (c dx)

    EE141 EECS141 36 Lecture #7

  • EE141

    19

    EE141 EECS141 37 Lecture #7 37

    Model the wire with N equal-length segments:

    For large values of N:

    EE141 EECS141 38 Lecture #7

  • EE141

    20

    EE141 EECS141 39 Lecture #7