lecturenote2_3period

14

Click here to load reader

Upload: naotosoma

Post on 30-Sep-2015

215 views

Category:

Documents


1 download

DESCRIPTION

Two Periods

TRANSCRIPT

  • 2008 11 10update 2010 5 21update 2010 5 26

    I 2

    I.1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2I.2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

    II 5II.1 (Consumer Problem (CP)) : : : : : : : : : : : : : : : : : 5II.2 (Firm Problem (FP)) : : : : : : : : : : : : : : : : : : : : 9II.3 (Competitive Equilibrium) : : : : : : : : : : : : : : : : : : : : : : : : : 10

    III (Social Planner Problem) 12III.1 The Welfare Theorem : : : : : : : : : : : : : : : : : : : : 13

    (real business cycle: RBC)RBC (dynamic stochastic generalequilibrium model: DSGE model) Ramsey(1928) (s) (1 s)Gertler

    1

  • I t = 0; 1 consumer (one representative household)1

    1 12

    ()

    (goods)

    I.1

    (1) u(c0) + u(c1)

    0 < < 1 (discount factor)3u()

    u(0) = 0; u0() > 0; u00() < 0; u0(0) =1; u0(1) = 0

    u() (concave function)4

    (marginal utility)

    1 (2006)Ljungqvist and Sargent(2004)

    23 11+

    u(c0) +1

    1 + u(c1)

    (discount rate)4 (1995) (1990)

    2

  • I.2 KL

    (2) Yt = Ft(Kt; Lt)

    1. (Constant return to scale) z z z

    zYt = Ft(zKt; zLt)

    2. (increasing function with respect to each input)

    MPK =@Y

    @K> 0; MPL =

    @Y

    @L> 0

    MPK: (marginal product of capital)MPL: (marginal product of labor)

    3. (diminishing marginal product with respect to eachinput)

    @MPK

    @K=

    @2Y

    @K2< 0;

    @MPL

    @L=

    @2Y

    @L2< 0

    4. (Inada condition)

    limK!0

    @Y

    @K=1; lim

    K!1@Y

    @K= 0;

    limL!0

    @Y

    @L=1; lim

    L!1@Y

    @L= 0:

    z zYt = Ft(zKt; zLt) z = 1Lt

    zYt = Ft(zKt; zLt)

    () YtLt

    = Ft(KtLt

    ; 1)

    yt YtLt; kt Kt

    Lt

    3

  • yt Ft(kt; 1)

    Ft(kt; 1) f(kt)

    (3) yt = f(kt)

    f(kt)

    MPK = f 0(k) > 0

    f 00(k) < 0

    limk!0

    f 0(k) =1limk!1

    f 0(k) = 0

    4

  • II II.1 (Consumer Problem (CP))

    (CP) maxc0;i0;c1;i1

    u(c0) + u(c1)

    c0 + i0 = w0 + r0a0(4)

    c1 + i1 = w1 + r1a1(5)

    a1 a0 = i0 a0(6)a2 a1 = i1 a1(7)a0 = a0(8)

    a2 0:(9)

    (4) 0a a0 a0w (real wage) w 1 r (real rental price)5 0(5) 1(6)(7)12a2a2 0a2 = 0a2 > 0a2 > 0 (transversalitycondition)a2 < 0 (no-Ponzi-game condition)6 a2 0a2 a2 = 0 c0c1i0i1

    (10) maxa1

    uw0 a1 + (1 + r0 )a0

    + u

    w1 + (1 + r1 )a1

    a1 (rst order conditions, F.O.C.s)

    (11) u0(c0) + u0(c1)(1 + r1 ) = 05w r6Ponzi

    5

  • 7

    (12) u0(c0) = u0(c1)(1 + r1 )

    (Euler equation)(14) 0 (opportunitycost) (marginal utility) 0 1

    (4)(5)(6)(7)

    (13) c0 +c1

    1 + r1 = w0 +w1

    1 + r1 + (1 + r0 )a0

    0 1 0(13) (intertemporal budget constraint)c0c1

    (14)u0(c0)u0(c1)

    = (1 + r1 )

    (marginal rate of substitution: MRS) 1Friedman (permanent income hypothesis)Modigliani (life cycle hypothesis)

    (marginal propensity to consume)

    7 (1995) (1990)

    6

  • c0

    c1

    c0

    c1 O

    u(c0) + u(c1)

    (11)

    1:

    Lucas(1976) (Lucas critique) (2006) 2 2.5.2

    7

  • (CP)i0i1 (CP)

    maxc0;c1;a1;a2

    u(c0) + u(c1)

    subject to

    c0 + a1 (1 )a0 = w0 + r0a0c1 + a2 (1 )a1 = w1 + r1a1a0 = a0

    a2 0:

    L = u(c0) + u(c1) + 0hw0 + r0a0

    c0 + a1 (1 )a0

    i+ 1

    hw1 + r1a1

    c1 + a2 (1 )a1

    i+ 1(a0 a0) + 2a2:

    c0; c1; a1; 0; 1; a2; 2

    @L@c0

    = 0 () u0(c0) = 0(15)@L@c1

    = 0 () u0(c1) = 1(16)@L@a1

    = 0 () 0 = 1(1 + r1 )(17)@L@0

    = 0 () c0 + a1 (1 )a0 = w0 + r0a0(18)@L@1

    = 0 () c1 (1 )a1 = w1 + r1a1(19)@L@a2

    = 0 () 1 = 2(20)a2 0; 2 02a2 = 0 ()(21)@L@1

    = 0 () a0 = a0 ()(22)

    8

  • 0 1

    u0(c0) = u0(c1)(1 + r1 )c0 + a1 (1 )a0 = w0 + r0a0c1 (1 )a0 = w1 + r1a1

    (14)8(21)

    2a2 = 0

    complementary slackness conditiona2 > 02 = 0 a2 = 02 > 01 > 0 1 = 22 > 0k2 = 0 (1995) (1990)

    II.2 (Firm Problem (FP))

    (23) maxKt;Lt

    Ft(Kt; Lt) rtKt wtLt for t = 0; 1

    Lt

    (24) maxkt

    f(kt) rtkt wt for t = 0; 1

    kt9

    (25) f 0(kt) = rt for t = 0; 1

    wt10

    (26) wt = f(kt) rtkt for t = 0; 1

    9 (1995) (1990)

    10

    9

  • II.3 (Competitive Equilibrium) (1994)

    (competitive equilibrium)

    1.

    2. t( (market clearing condition) (resource constraint)

    (allocation)ct; it; at+1; kt+1; yt (prices)wt; rt

    1. w0; w1; r0; r1 a = 0c0; c1, i0, i1, a1, a2

    2. w0; w1; r0; r1 k0; k1

    3. (market clearing)

    1 1 at kt

    4.

    c0 + i0 = y0

    c1 + i1 = y1

    10

  • 1. w0; w1; r0; r1

    (CP) maxc0;i0;c1;i1

    u(c0) + u(c1)

    c0 + i0 = w0 + r0a0

    c1 + i1 = w1 + r1a1

    a1 a0 = i0 a0a2 a1 = i1 a1a0 = a0

    a2 0:

    2. w0; w1; r0; r1

    (FP) maxkt

    f(kt) rtkt wt for t = 0; 1

    3.

    at = kt ct + it = yt

    F.O.C.s

    u0(c0) = u0(c1)(1 + r1 )(27)f 0(kt) = rt(28)

    wt = f(kt) rtkt(29)yt = f(kt)(30)

    ct + it = yt(31)

    it = kt+1 (1 )kt(32)k0 = k0(33)

    k2 = 0:(34)

    t = 0; 1

    11

  • III (Social Planner Problem)

    (SP) maxc0;i0;c1;i1

    u(c0) + u(c1)

    s.t. c0 + i0 = f(k0)

    c1 + i1 = f(k1)

    k1 k0 = i0 k0k2 k1 = i1 k1k0 = k0

    k2 0:

    i k2

    maxc0;c1;k1

    u(c0) + u(c1)

    s.t. c0 + k1 (1 )k0 = f(k0)c1 (1 )k1 = f(k1)k0 = k0

    k2 0:

    c0; c111

    maxk1

    uf(k0) k1 + (1 )k0

    + u

    f(k1) + (1 )k1

    12

    u0(c0) + u0(c1)nf 0(k1) + (1 )

    o= 0

    () u0(c0) = u0(c1)nf 0(k0) + (1 )

    o11k2 = 012

    12

  • u0(c0) = u0(c1)nf 0(k1) + (1 )

    o(35)

    c0 + k1 (1 )k0 = f(k0)(36)c1 (1 )k1 = f(k1)(37)k0 = k0(38)

    k2 = 0:(39)

    III.1 The Welfare TheoremLjungqvist and Sargent (2004)

    First Welfare Theorem fct; kt+1g1t=0 (socially op-timal)

    Proof

    fct; ktg1t=0 (27),(28)

    (40) u0(c0) = u0(c1)nf 0(k1) + (1 )

    o (35) fct; kt+1g1t=0Q.E.D.

    Second Welfare Theorem fct; kt+1g1t=0fct; at+1; kt+1g1t=0 fwt; rtg1t=0.

    Proof

    (market clearing condition) ((36)(37))

    rt = f0(kt)(41)

    wt = f(kt) rtkt(42)

    (35) (27)Q.E.D.

    13

  • [1] , A., C., (1995),CAP

    [2] Romer, David, (2005) \Advanced Macroeconomics", 3rd edition, McGraw-Hill.

    [3] Ljungqvist, Lars and Thomas Sargent, (2004), \Recursive Macroeconomic Theory," 2nd

    edition, MIT Press.

    [4] Lucas, Robert, (1976), \ Econometric Policy Evaluation: A Critique," in K. Brunner and

    H. Meltzer (eds.), The Phillips Curve and Labor Markets, Amsterdam: North-Holland,

    19-46.

    [5] , G., , N.,, ,1994.

    [6] Ramsey, F. P., (1928), \A Mathematical Theory of Saving," Economic Journal, 38, 152,

    543-559.

    [7] (2006),

    [8] (1990)

    14