legs and loops in real life

120
Outlines Legs and Loops in Real Life Giampiero PASSARINO Dipartimento di Fisica Teorica, Universit` a di Torino, Italy INFN, Sezione di Torino, Italy Karlsruhe December 2007

Upload: others

Post on 21-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Legs and Loops in Real Life

Outlines

Legs and Loops in Real Lif e

Giampiero PASSARINO

Dipartimento di Fisica Teorica, Universita di Torino, Italy

INFN, Sezione di Torino, Italy

Karlsruhe December 2007

Page 2: Legs and Loops in Real Life

Outlines

Based on work done in collaboration with Stefano Actis,Christian Sturm and Sandro Uccirati

Page 3: Legs and Loops in Real Life

Outlines

Outlines

(1, 2,)1 The standard model at two loop level

A probabledecisionaboutits truth is possibleinductivelybystudyingits success(verifiableconsequences)

2 How to reach itA prospectivecasestudy, peraspera ad astra

Page 4: Legs and Loops in Real Life

Outlines

Outlines

(1, 2,)1 The standard model at two loop level

A probabledecisionaboutits truth is possibleinductivelybystudyingits success(verifiableconsequences)

2 How to reach itA prospectivecasestudy, peraspera ad astra

Page 5: Legs and Loops in Real Life

Outlines

Outlines

(1, 2,)1 The standard model at two loop level

A probabledecisionaboutits truth is possibleinductivelybystudyingits success(verifiableconsequences)

2 How to reach itA prospectivecasestudy, peraspera ad astra

Page 6: Legs and Loops in Real Life

Outlines

Loop calculus in a nutshell

TheoremAny algorithm aimed atreducing the analyticalcomplexity of a (multi - loop)Feynman diagram isgenerally bound to

replace the originalintegral with a sum ofmany simpler diagrams,

introducingdenominators that showzeros.

DefinitionAn algorithm is optimal when

there is a minimalnumber of terms,

zeros of denominatorscorrespond to solutionsof Landau equations

the nature of thesingularities is not badlyoverestimated.

Page 7: Legs and Loops in Real Life

Outlines

Sunn y-side up

Progress

In the past years anenormous progress in thefield of 2 L integrals formassless 2 � 2 scattering;gg � gg � qg � qg andqQ � qQ as well as Bhabhascattering.

Achievementsbasic 2 L integrals havebeen evaluated

e.g. analytic expressionsfor the two loop planarand non-planar box

master integralsconnected with thetensor integrals havebeen determined.

Page 8: Legs and Loops in Real Life

Outlines

Sunn y-side up

Progress

In the past years anenormous progress in thefield of 2 L integrals formassless 2 � 2 scattering;gg � gg � qg � qg andqQ � qQ as well as Bhabhascattering.

Achievementsbasic 2 L integrals havebeen evaluated

e.g. analytic expressionsfor the two loop planarand non-planar box

master integralsconnected with thetensor integrals havebeen determined.

Page 9: Legs and Loops in Real Life

Outlines

Status of HO loop calculations

zero or oneImpressive calculations (up to four loops) for zero or onekinematical variable, e.g. g � 2, R,

�-function

1

Computations involving more than one kin. var. is a new art

Example

We would like to have n � 4 Green functions to all loop orders,from maximally supersymmetric YM amplitudes to real life it’s along way

Page 10: Legs and Loops in Real Life

Outlines

Status of HO loop calculations

zero or oneImpressive calculations (up to four loops) for zero or onekinematical variable, e.g. g � 2, R,

�-function

1

Computations involving more than one kin. var. is a new art

Example

We would like to have n � 4 Green functions to all loop orders,from maximally supersymmetric YM amplitudes to real life it’s along way

Page 11: Legs and Loops in Real Life

Outlines

Status of HO loop calculations

zero or oneImpressive calculations (up to four loops) for zero or onekinematical variable, e.g. g � 2, R,

�-function

1

Computations involving more than one kin. var. is a new art

Example

We would like to have n � 4 Green functions to all loop orders,from maximally supersymmetric YM amplitudes to real life it’s along way

Page 12: Legs and Loops in Real Life

Outlines

Main road

Step 1

reduce reducible integrals

Step 2

construct systems of IBP or Lorentz invariance identities

Step 3

reduce irreducible integrals to generalized scalar integrals

Step 4

solve systems of eqns in terms of MI

Step 5

evaluate MI, e.g. DE, MB representations, nested sums, etc.

Page 13: Legs and Loops in Real Life

Outlines

Main road

Step 1

reduce reducible integrals

Step 2

construct systems of IBP or Lorentz invariance identities

Step 3

reduce irreducible integrals to generalized scalar integrals

Step 4

solve systems of eqns in terms of MI

Step 5

evaluate MI, e.g. DE, MB representations, nested sums, etc.

Page 14: Legs and Loops in Real Life

Outlines

Main road

Step 1

reduce reducible integrals

Step 2

construct systems of IBP or Lorentz invariance identities

Step 3

reduce irreducible integrals to generalized scalar integrals

Step 4

solve systems of eqns in terms of MI

Step 5

evaluate MI, e.g. DE, MB representations, nested sums, etc.

Page 15: Legs and Loops in Real Life

Outlines

Main road

Step 1

reduce reducible integrals

Step 2

construct systems of IBP or Lorentz invariance identities

Step 3

reduce irreducible integrals to generalized scalar integrals

Step 4

solve systems of eqns in terms of MI

Step 5

evaluate MI, e.g. DE, MB representations, nested sums, etc.

Page 16: Legs and Loops in Real Life

Outlines

Main road

Step 1

reduce reducible integrals

Step 2

construct systems of IBP or Lorentz invariance identities

Step 3

reduce irreducible integrals to generalized scalar integrals

Step 4

solve systems of eqns in terms of MI

Step 5

evaluate MI, e.g. DE, MB representations, nested sums, etc.

Page 17: Legs and Loops in Real Life

Outlines

But, for the real problem

Loop integrals are not enough�assemblage of scattering amplitudes�infrared divergenges�collinear divergenges�numerical programs

Page 18: Legs and Loops in Real Life

Outlines

Two-loop conceptual problems

WSTI vs LSZTwo loop a la LSZ

The LSZ formalism isunambiguously definedonly for stable particles,and it requires somecare when externalunstable particlesappear

Unstab le internalUnphysical behaviorsinduced by self-energyinsertions into 1 L diagrams;they signal the presence ofan UP and are theconsequence of a misleadingorganization of PT.

Around thresholdsThese regions are notaccessible withapproximations, e.g.expansions.

Page 19: Legs and Loops in Real Life

Outlines

Two-loop conceptual problems

WSTI vs LSZTwo loop a la LSZ

The LSZ formalism isunambiguously definedonly for stable particles,and it requires somecare when externalunstable particlesappear

Unstab le internalUnphysical behaviorsinduced by self-energyinsertions into 1 L diagrams;they signal the presence ofan UP and are theconsequence of a misleadingorganization of PT.

Around thresholdsThese regions are notaccessible withapproximations, e.g.expansions.

Page 20: Legs and Loops in Real Life

Outlines

Two-loop conceptual problems

WSTI vs LSZTwo loop a la LSZ

The LSZ formalism isunambiguously definedonly for stable particles,and it requires somecare when externalunstable particlesappear

Unstab le internalUnphysical behaviorsinduced by self-energyinsertions into 1 L diagrams;they signal the presence ofan UP and are theconsequence of a misleadingorganization of PT.

Around thresholdsThese regions are notaccessible withapproximations, e.g.expansions.

Page 21: Legs and Loops in Real Life

Outlines

Technical problems I

Reduction to MIAlgebraic problem,

Buchberger algorithm toconstruct Grobner basesseems to be inefficient

New bases?

It remainsto generalize to morethan few scales

to compute the MI

Page 22: Legs and Loops in Real Life

Outlines

Technical problems I

Reduction to MIAlgebraic problem,

Buchberger algorithm toconstruct Grobner basesseems to be inefficient

New bases?

It remainsto generalize to morethan few scales

to compute the MI

Page 23: Legs and Loops in Real Life

Outlines

Technical problems I

Reduction to MIAlgebraic problem,

Buchberger algorithm toconstruct Grobner basesseems to be inefficient

New bases?

It remainsto generalize to morethan few scales

to compute the MI

Page 24: Legs and Loops in Real Life

Outlines

Technical problems II

Although�HTF (usually) have nice properties,

expansions are often available with good properties ofconvergence

the expansion parameter has the same cut of the function

where is the limit?One - loop, Nielsen - Goncharov

Two - loop, one scale (s � 0 � m2 cuts) harmonicpolylogarithms

Two - loop, two scales (s � 4 m2 cuts) generalizedharmonic polylogarithms

next? New higher transcendental functions?

Page 25: Legs and Loops in Real Life

Reduction

Part I

Future of 2 L calc: explorator y case stud y

Page 26: Legs and Loops in Real Life

!

Reduction

From modern 1 L to 2 L

1 L in a nutshell

Sn " N # f $%� & 'i ( 2 dnq

f # q �*) p +,$i - 0 . N / 1 # i $ �# i $0� # q 1 p0 132424251 pi $ 2 1 m2

i 6Sn " N # f $0�

i

bi B0 # P2i $71

ij

cij C0 # P2i � P2

j $1

ijk

dijk D0 # P2i � P2

j � P2k $*1 R �

Page 27: Legs and Loops in Real Life

8

Reduction

From modern 1 L to 2 L

1 L in a nutshell

Sn " N # f $%� & 'i ( 2 dnq

f # q �*) p +,$i - 0 . N / 1 # i $ �# i $0� # q 1 p0 132424251 pi $ 2 1 m2

i 6Sn " N # f $0�

i

bi B0 # P2i $71

ij

cij C0 # P2i � P2

j $1

ijk

dijk D0 # P2i � P2

j � P2k $*1 R �

Page 28: Legs and Loops in Real Life

9

Reduction

The multi facets of QFT

Popular wisdom

Tree is nirvana

1 L is limbo

2 L is samsara

1 L �1 L will be nirvana whengeneral consensus onreduction is reached

1 L �:�Which is the most efficientway of computing thecoefficients?

Page 29: Legs and Loops in Real Life

;

Reduction

The multi facets of QFT

Popular wisdom

Tree is nirvana

1 L is limbo

2 L is samsara

1 L �1 L will be nirvana whengeneral consensus onreduction is reached

1 L �:�Which is the most efficientway of computing thecoefficients?

Page 30: Legs and Loops in Real Life

<

Reduction

The multi facets of QFT

Popular wisdom

Tree is nirvana

1 L is limbo

2 L is samsara

1 L �1 L will be nirvana whengeneral consensus onreduction is reached

1 L �:�Which is the most efficientway of computing thecoefficients?

Page 31: Legs and Loops in Real Life

=

Reduction

Reduction at 2 L

ProblemAt 2 L reduction is differentsince irreducible scalarproducts are present

Master Integrals

One way or the other a basisof generalized scalarfunctions is selected (MI)

Whic h MI are present?

Some care should be payedin avoiding MIs that do notoccur in the actualcalculation. This fact isespecially significant whenthe MI itself is divergent andthe singularity must beextracted analytically

Page 32: Legs and Loops in Real Life

>

Reduction

Reduction at 2 L

ProblemAt 2 L reduction is differentsince irreducible scalarproducts are present

Master Integrals

One way or the other a basisof generalized scalarfunctions is selected (MI)

Whic h MI are present?

Some care should be payedin avoiding MIs that do notoccur in the actualcalculation. This fact isespecially significant whenthe MI itself is divergent andthe singularity must beextracted analytically

Page 33: Legs and Loops in Real Life

?

Reduction

Reduction at 2 L

ProblemAt 2 L reduction is differentsince irreducible scalarproducts are present

Master Integrals

One way or the other a basisof generalized scalarfunctions is selected (MI)

Whic h MI are present?

Some care should be payedin avoiding MIs that do notoccur in the actualcalculation. This fact isespecially significant whenthe MI itself is divergent andthe singularity must beextracted analytically

Page 34: Legs and Loops in Real Life

@

The Tree

Part II

Renormalization Tree: embed ded case stud y

Page 35: Legs and Loops in Real Life

A

The Tree

flo w-char t

FeynmanRules

FeynmanDiagrams

UVCounterterms

IPSRen. Eq.

GreenFunctions

(Pseudo)Observables

Page 36: Legs and Loops in Real Life

B

The Tree

Generating amplitudes

Group the diagrams into families

p1

p2

p3

p1

p2

p3

p1

p2

p3 � p1

p2

p3

p1

p3

p2

p2

p3

p1

Page 37: Legs and Loops in Real Life

C

The Tree

Generating amplitudes

Steps

Combinatorial factors (Goldberg strategy)

Combine the topologies and the Feynman rules

Introduce projectors, compute the trace of Dirac matrices

Page 38: Legs and Loops in Real Life

D

The Tree

Generating amplitudes

Steps

Combinatorial factors (Goldberg strategy)

Combine the topologies and the Feynman rules

Introduce projectors, compute the trace of Dirac matrices

Page 39: Legs and Loops in Real Life

E

The Tree

Generating amplitudes

Steps

Combinatorial factors (Goldberg strategy)

Combine the topologies and the Feynman rules

Introduce projectors, compute the trace of Dirac matrices

Page 40: Legs and Loops in Real Life

F

The Tree

Generating amplitudes

Reduction to Master Integrals

recursive algebraic reduction

2 q G pHq2 I m2 JLK H q I p J 2 I M2 MON 1

q2 I m2 P 1Hq I p J 2 I M2 P p2 P m2 I M2H

q2 I m2 JQK H q I p J 2 I M2 MMapping on a fixed standard routing for loop momenta

R P

p1

p2

q1 S P

q1 S p2

q1R q2

q2 S p2

q2 PUT R P

p1

p2

q1

q1 S p1

q1R q2

q2 S p1

q2 S P Vq1 TWP q1 P Pq2 TWP q2 P P X

Page 41: Legs and Loops in Real Life

Y

The Tree

Generating amplitudes

Reduction to Master Integrals

Symmetrization

R P

p2

p1

m5

m4

m3m2

m1 PUT R P

p1

p2

m1

m2

m3m4

m5 Vq1 TWP q2 P Pq2 TWP q1 P P X

Page 42: Legs and Loops in Real Life

Z

The Tree

Generating amplitudes

Reduction to Master Integrals

We end with integrals up to rank 2: 1-loop functions, 2-looptadpoles (2)

T A T B

Page 43: Legs and Loops in Real Life

[

The Tree

Generating amplitudes

Reduction to Master Integrals

2-loop self-energies (4 topologies)

SA SC SE SD

Page 44: Legs and Loops in Real Life

\

The Tree

Generating amplitudes

Reduction to Master Integrals

2-loop vertices (6 topologies)

V E V I V G V M V K V H

Page 45: Legs and Loops in Real Life

]

The Tree

Univer sal UV decomposition: I

One-loop integrals

Any one-loop integral f 1 can be decomposed as

f 1 # ) l +_$`� 1

k -_/ 1

f 1 # ) l +ba k $ F 1k # x $ �

where ) l +dc external kinematical variables, masses of internalparticles. x is some kinematical variable and the dependenceon the dimensional regulator e is entirely transferred to theuniversal UV factors,

F 1/ 1 # x $ � 1e � 12 f UV # x $*1 1

8 f 2UV # x $geh�

F 10 # x $ � 1 � 1

2 f UV # x $geh� F 11 # x $ �ie 6

Page 46: Legs and Loops in Real Life

j

The Tree

Univer sal UV decomposition: II

One-loop integrals

Because of overlapping divergencies we include k # el$ terms inall one-loop results.

f UV � mn1 ln (o1 lnM2

& 2 � f UV # x $p� f UV � lnM2

x�

m

� � 2 F 1/ 1 # M2 $1 ln

m2

M2 � 1 F 10 # M2 $ 1q24242

Page 47: Legs and Loops in Real Life

r

The Tree

Univer sal UV decomposition: III

Two-loop integrals

A generic two-loop integral f 2 can be written as

f 2 # ) l +_$s� 0

k -_/ 2

f 2 # ) l +ba k $ F 2k # x $ 6

Here the two-loop UV factors read as follows:

F 2/ 2 # x $ � 1e 2 � f UV # x $e 1 12 f 2

UV # x $t�F 2/ 1 # x $ � 1e � f UV # x $t� F 2

0 # x $ � 1 6Note that the product of two one-loop integrals can be writtenthrough the same UV decomposition of a two-loop integral.

Page 48: Legs and Loops in Real Life

u

The Tree

Univer sal UV decomposition: IV

Example

vE0 # 24242vaw� 2 $0� � 2 �

vE0 # p2 � P �4) m + 1234 aw� 1 $0� � 2 b0 # 1 � 1 � p1 �4) m + 34 a 0 $_� 1 6

� P

p1

p21

2

4

3

V E

Page 49: Legs and Loops in Real Life

x

The Tree

Univer sal UV decomposition: IV

Example

vE0 # 24242vaw� 2 $0� � 2 �

vE0 # p2 � P �4) m + 1234 aw� 1 $0� � 2 b0 # 1 � 1 � p1 �4) m + 34 a 0 $_� 1 6

� P

p1

p21

2

4

3

V E

Page 50: Legs and Loops in Real Life

y

The Tree

Renormalization constants

Multiplicative renormalization

c.t. not needed but useful

Zi N 1 I{z|n } 1 ~ g2

R

16 � 2 � n �Z � n �i �

Example

masses, parameters

m N Z1 � 2m mR �

p N Zp pR � p N g � c � � s �

Example

Fields, gauge parameters

Z �AZ N z|

n } 1 ~ g2R

16 � 2 � n �Z � n ��

AZ� N Z1 � 2� �R � L � R N Z1 � 2�

L � R � L � RR

A � N Z1 � 2AA A �R I Z1 � 2

AZ Z �RZ1 � 2

AZ N z|n } 1 ~ g2

R

16 � 2 � n �Z � n �AZ

FP ghost fields are not renormalized

Page 51: Legs and Loops in Real Life

The Tree

Renormalization constants

�Q����� ���� � � � ���� ����� ���� � � � � � � � ����� ���� � � � ��� �� ����� ���� � � � � � � � ����� ���� � � � ���  � ����� ���� � � � � � ¡ � ����� ���� � � � ��� ¢� ����� ���� � � � � � £ � ����� ���� � � � ��� ¤� ����� ���� � � � � � ¥ � �¦��� ���� � � � � � � §� ����� ���� � � � � � � � � �¦��� ���� � � � � � � �� ����� ���� � � � � � � �

Page 52: Legs and Loops in Real Life

¨

The Tree

Renormalization constants

MS and beyond I

NMS scheme: advancing renormalization theor y

In the spirit of the UV decomposition we define a non-minimal(NMS) subtraction scheme where

Definition

1 loop � © Z ª 1 «i � f Z ª 1 «i F 1/ 1 # M2R $t�

2 loops � © Z ª 2 «i � / 1

k -_/ 2f Z ª 2 «i " k F 2

k # M2R $t�

Page 53: Legs and Loops in Real Life

¬

The Tree

Renormalization constants

MS and beyond II

counter termsc.t. are fixed in order to remove order-by-order the poles atev� 0 for any Green function

Proper ty of NMS

The product of a one-loop c.t. with a one-loop diagram (i.e., aone-loop c.t. insertion) has the same UV decomposition of atwo-loop function thus simplifying two-loop renormalized Greenfunctions

The NMS scheme has the virtue of respecting the universal UVdecomposition

Page 54: Legs and Loops in Real Life

­

The Tree

Renormalization constants

The two facets of renormalization

Step 1

promote bare quantities p torenormalized ones pR

Step 2

fix the c.t. at 1 L c toremove the UV polesfrom all 1 L GF;

check that 2 L GFdevelop local UVresidues;

fix the 2 L c.t. to remove2 L local UV poles.

Finite renomalizationthe absorption of UV polesinto local c.t. does notexhaust the procedure; wehave to connect pR to POs,thus making the theorypredictive.

Page 55: Legs and Loops in Real Life

®

The Tree

Renormalization constants

The two facets of renormalization

Step 1

promote bare quantities p torenormalized ones pR

Step 2

fix the c.t. at 1 L c toremove the UV polesfrom all 1 L GF;

check that 2 L GFdevelop local UVresidues;

fix the 2 L c.t. to remove2 L local UV poles.

Finite renomalizationthe absorption of UV polesinto local c.t. does notexhaust the procedure; wehave to connect pR to POs,thus making the theorypredictive.

Page 56: Legs and Loops in Real Life

¯

The Tree

Renormalization constants

The two facets of renormalization

Step 1

promote bare quantities p torenormalized ones pR

Step 2

fix the c.t. at 1 L c toremove the UV polesfrom all 1 L GF;

check that 2 L GFdevelop local UVresidues;

fix the 2 L c.t. to remove2 L local UV poles.

Finite renomalizationthe absorption of UV polesinto local c.t. does notexhaust the procedure; wehave to connect pR to POs,thus making the theorypredictive.

Page 57: Legs and Loops in Real Life

°

The Tree

Consistency chec ks

WST identities

p ±W / ª 2²³« 4 i ip ´ Z 1 µ 2W Z P 1¶

W

p

· ª 2²³« 4i MZ 1 µ 2¸ Z 1 µ 2M Z ¶Q¹

Figure: Sources related to the gauge-fixing functions º¼»

Page 58: Legs and Loops in Real Life

½

The Tree

Consistency chec ks

WST identities

W W ¾ W· ¾ ·

W ¾ · · - 0

Figure: Doubly-contracted WST identity with two external º » sources

Page 59: Legs and Loops in Real Life

¿

The Tree

Consistency chec ks

Summar y

New

SU # 3 $ÁÀ SU # 2 $ÁÀ U # 1 $We have been able to verify that the SM can be made(two-loop) UV finite by adding local c.t.

Generalization of 1 L

The well-known one-loop result that self-energies suffice inperforming renormalization can be extended up to two loops.

Page 60: Legs and Loops in Real Life

Â

The Tree

Consistency chec ks

Overlapping diver gencies

à �m etc.

Figure: The arbitrary two-loop diagram G ÄÆÅÈÇL and one of theassociated subtraction sub-diagrams. Only in the sum we havecancellation of non-local residues

Page 61: Legs and Loops in Real Life

É

The Tree

Consistency chec ks

Overlapping diver gencies

à �m etc.

Figure: The arbitrary two-loop diagram G ÄÆÅÈÇL and one of theassociated subtraction sub-diagrams. Only in the sum we havecancellation of non-local residues

Page 62: Legs and Loops in Real Life

Ê

The Tree

Consistency chec ks

Example: ËRenormalizing g sÌIn extracting à from Thomson scattering at zero momentumtransfer we find four classes of two-loop diagrams:

(1, 2, 3, 4,)

1 irreducible two-loop vertices and wave-function factors,product of one-loop corrected vertices with one-loopwave-function factors;

2 one-loop vacuum polarization À one-loop vertices orone-loop wave-function factors;

3 irreducible two-loop AA � AZ � A Í 0 transitions;4 reducible two-loop AA � AZ � A Í 0 transitions.

Page 63: Legs and Loops in Real Life

Î

The Tree

Consistency chec ks

Example: ËRenormalizing g sÌIn extracting à from Thomson scattering at zero momentumtransfer we find four classes of two-loop diagrams:

(1, 2, 3, 4,)

1 irreducible two-loop vertices and wave-function factors,product of one-loop corrected vertices with one-loopwave-function factors;

2 one-loop vacuum polarization À one-loop vertices orone-loop wave-function factors;

3 irreducible two-loop AA � AZ � A Í 0 transitions;4 reducible two-loop AA � AZ � A Í 0 transitions.

Page 64: Legs and Loops in Real Life

Ï

The Tree

Consistency chec ks

Example: ËRenormalizing g sÌIn extracting à from Thomson scattering at zero momentumtransfer we find four classes of two-loop diagrams:

(1, 2, 3, 4,)

1 irreducible two-loop vertices and wave-function factors,product of one-loop corrected vertices with one-loopwave-function factors;

2 one-loop vacuum polarization À one-loop vertices orone-loop wave-function factors;

3 irreducible two-loop AA � AZ � A Í 0 transitions;4 reducible two-loop AA � AZ � A Í 0 transitions.

Page 65: Legs and Loops in Real Life

Ð

The Tree

Consistency chec ks

Example: ËRenormalizing g sÌIn extracting à from Thomson scattering at zero momentumtransfer we find four classes of two-loop diagrams:

(1, 2, 3, 4,)

1 irreducible two-loop vertices and wave-function factors,product of one-loop corrected vertices with one-loopwave-function factors;

2 one-loop vacuum polarization À one-loop vertices orone-loop wave-function factors;

3 irreducible two-loop AA � AZ � A Í 0 transitions;4 reducible two-loop AA � AZ � A Í 0 transitions.

Page 66: Legs and Loops in Real Life

Ñ

The Tree

Consistency chec ks

Example: ËRenormalizing g sÌIn extracting à from Thomson scattering at zero momentumtransfer we find four classes of two-loop diagrams:

(1, 2, 3, 4,)

1 irreducible two-loop vertices and wave-function factors,product of one-loop corrected vertices with one-loopwave-function factors;

2 one-loop vacuum polarization À one-loop vertices orone-loop wave-function factors;

3 irreducible two-loop AA � AZ � A Í 0 transitions;4 reducible two-loop AA � AZ � A Í 0 transitions.

Page 67: Legs and Loops in Real Life

Ò

The Tree

Consistency chec ks

Consistenc y

A matter of life 24242You can’t prove something by assuming it’s true

We have verified that the non-vanishing contribution originatesfrom III and IV only and, within these terms, only the reducibleand irreducible AA transition survives.

Bluntl y:

We have proven that the SM it’s only slightly more complexthan QED.

Page 68: Legs and Loops in Real Life

Ó

The Tree

Consistency chec ks

Example: GF

Renormalizing g � MIn extracting the Fermi coupling constant from the muon lifetimeall corrections to

GFÔ2

� g2

8 M2 # 1 1 f g $which do not originate from the W self-energy and that are UV(and IR) finite at one loop remain finite at two loops afterone-loop renormalization (i.e. two-loop counterterms are notneeded)

Page 69: Legs and Loops in Real Life

Õ

The Tree

Consistency chec ks

A sample of MS counter terms: I

an MS example

© Z ª 2 «i � 1e � f UV f Z ª 2 «i " 1e 1 f Z ª 2 «i " 2 1 f 2UV f Z ª 2 «i " 3 6

Higgs field renormalization

f Z ª 2 «H " 1 � 4 1 43

41c4Ì 1 5

4xt

c2Ì � 372

1c2Ì � 7

2xt � 9

4x2

t 1 24xtg2

S

g2 �

Page 70: Legs and Loops in Real Life

Ö

The Tree

Consistency chec ks

A sample of MS counter terms: II

Higgs field renormalization

f Z ª 2 «H " 2 � 7

6� 431

961c4Ì � 85

48xt

c2Ì 1 10112

1c2Ì � 25

24xt

1 2716

x2t � 3

32x2

H � 10xtg2

S

g2 �

f Z ª 2 «H " 3 � � 2 1 43

161c4Ì 1 5

16xt

c2Ì � 378

1c2Ì � 7

8xt � 9

16x2

t 1 6xtg2

S

g2 6

Page 71: Legs and Loops in Real Life

×

The Tree

Consistency chec ksØ 5 in a nutshell

HVBM schemeThe HVBM scheme breaks all WST identities (so-calledspurious or avoidable violations) which can be restoredafterwards by introducing suitable ultraviolet finite counterterms.The procedure, however is lengthy and cumbersome.

pseudo-regularization of chiral theories

After considerable wrangling one is lead to the conclusion thatthe only sensible solution is the one proposed by Jegerlehner:n-dimensional m -algebra with strictly anti-commuting m 5

together with 4-dimensional treatment of the hard anomalies.

Page 72: Legs and Loops in Real Life

Ù

The Tree

Consistency chec ksØ 5 in a nutshell

HVBM schemeThe HVBM scheme breaks all WST identities (so-calledspurious or avoidable violations) which can be restoredafterwards by introducing suitable ultraviolet finite counterterms.The procedure, however is lengthy and cumbersome.

pseudo-regularization of chiral theories

After considerable wrangling one is lead to the conclusion thatthe only sensible solution is the one proposed by Jegerlehner:n-dimensional m -algebra with strictly anti-commuting m 5

together with 4-dimensional treatment of the hard anomalies.

Page 73: Legs and Loops in Real Life

Ú

The Tree

Towards comple x poles

About gaug e independence I

Problem

ÛVV # s �ÝÜÞ$s� ß

n - 1

Û ª n «VV # s �ÝÜÞ$ g2n

On mass shell

Û ª 1 «VV # s �ÝÜÞ$à� Û ª 1 «VV " I # s $1 # s � M2V $¼á VV # s �ÝÜÞ$

Nielsen identityââ Ü Û VV # sP �ÝÜã$ä� 0

sP � M2V 1 Û

VV # sP $à� 0

Decomposition

Û ª n «VV # s �ÝÜã$å� Û ª n «VV " I # s $1 Û ª n «VV "çæ # s �ÝÜÞ$

Page 74: Legs and Loops in Real Life

è

The Tree

Towards comple x poles

About gaug e independence I

Problem

ÛVV # s �ÝÜÞ$s� ß

n - 1

Û ª n «VV # s �ÝÜÞ$ g2n

On mass shell

Û ª 1 «VV # s �ÝÜÞ$à� Û ª 1 «VV " I # s $1 # s � M2V $¼á VV # s �ÝÜÞ$

Nielsen identityââ Ü Û VV # sP �ÝÜã$ä� 0

sP � M2V 1 Û

VV # sP $à� 0

Decomposition

Û ª n «VV # s �ÝÜã$å� Û ª n «VV " I # s $1 Û ª n «VV "çæ # s �ÝÜÞ$

Page 75: Legs and Loops in Real Life

é

The Tree

Towards comple x poles

About gaug e independence I

Problem

ÛVV # s �ÝÜÞ$s� ß

n - 1

Û ª n «VV # s �ÝÜÞ$ g2n

On mass shell

Û ª 1 «VV # s �ÝÜÞ$à� Û ª 1 «VV " I # s $1 # s � M2V $¼á VV # s �ÝÜÞ$

Nielsen identityââ Ü Û VV # sP �ÝÜã$ä� 0

sP � M2V 1 Û

VV # sP $à� 0

Decomposition

Û ª n «VV # s �ÝÜã$å� Û ª n «VV " I # s $1 Û ª n «VV "çæ # s �ÝÜÞ$

Page 76: Legs and Loops in Real Life

ê

The Tree

Towards comple x poles

About gaug e independence I

Problem

ÛVV # s �ÝÜÞ$s� ß

n - 1

Û ª n «VV # s �ÝÜÞ$ g2n

On mass shell

Û ª 1 «VV # s �ÝÜÞ$à� Û ª 1 «VV " I # s $1 # s � M2V $¼á VV # s �ÝÜÞ$

Nielsen identityââ Ü Û VV # sP �ÝÜã$ä� 0

sP � M2V 1 Û

VV # sP $à� 0

Decomposition

Û ª n «VV # s �ÝÜã$å� Û ª n «VV " I # s $1 Û ª n «VV "çæ # s �ÝÜÞ$

Page 77: Legs and Loops in Real Life

ë

The Tree

Towards comple x poles

About gaug e independence II

Solution

Û ª n «VV "ìæ # sP �ÝÜÞ$`� Û ª n / 1 «

VV " I # sP $¼á VV # sP �ÝÜÞ$t�TheoremAs a result we can prove that all Ü -dependent parts cancel,

ÛVV # sP $0� ß

n - 1

Û ª n «VV " I # sP $ g2n 6However, this example shows how an all-order relation shouldbe carefully interpreted while working at some fixed order.

Page 78: Legs and Loops in Real Life

í

The Tree

Finite Renormalization

Renormalization equations

From ren. parameter s to an IPS

G M2 � g2

16 ( 2 FW # 0 $ � g2

8

4 ( Ã 1 � g2

16 ( 2 î QQ # 0 $ � g2s2ÌWarning

One of our renormalization equations will always be of the type

sV � M2V � g2

16 ( 2

ÛVV # sV � M2

V $ 6

Page 79: Legs and Loops in Real Life

ï

The Tree

Finite Renormalization

Options

(1, 2, 3,)

1 At k g4 inÛ

VV we keep p2 �i� sV with k g6 violation;2 we replace

ÛVV with

ÛVV " IÛ ª 2 «VV " I # sV $0� Û ª 2 «VV # sV � 1 $ð� Û ª 1 «VV " I # sV $¼á VV # sV � 1 $ 6

3 we expand,

sV � M2V � g2

16 ( 2

Û ª 1 «VV # M2V � M2

V $� g2

16 ( 2

2 Û ª 2 «VV # M2V � M2

V $� Û ª 1 «VV # M2

V � M2V $ Û ª 1 «VV " p # M2

V � M2V $

Page 80: Legs and Loops in Real Life

ñ

The Tree

Finite Renormalization

Options

(1, 2, 3,)

1 At k g4 inÛ

VV we keep p2 �i� sV with k g6 violation;2 we replace

ÛVV with

ÛVV " IÛ ª 2 «VV " I # sV $0� Û ª 2 «VV # sV � 1 $ð� Û ª 1 «VV " I # sV $¼á VV # sV � 1 $ 6

3 we expand,

sV � M2V � g2

16 ( 2

Û ª 1 «VV # M2V � M2

V $� g2

16 ( 2

2 Û ª 2 «VV # M2V � M2

V $� Û ª 1 «VV # M2

V � M2V $ Û ª 1 «VV " p # M2

V � M2V $

Page 81: Legs and Loops in Real Life

ò

The Tree

Finite Renormalization

Options

(1, 2, 3,)

1 At k g4 inÛ

VV we keep p2 �i� sV with k g6 violation;2 we replace

ÛVV with

ÛVV " IÛ ª 2 «VV " I # sV $0� Û ª 2 «VV # sV � 1 $ð� Û ª 1 «VV " I # sV $¼á VV # sV � 1 $ 6

3 we expand,

sV � M2V � g2

16 ( 2

Û ª 1 «VV # M2V � M2

V $� g2

16 ( 2

2 Û ª 2 «VV # M2V � M2

V $� Û ª 1 «VV # M2

V � M2V $ Û ª 1 «VV " p # M2

V � M2V $

Page 82: Legs and Loops in Real Life

ó

The Tree

Finite Renormalization

Options

(1, 2, 3,)

1 At k g4 inÛ

VV we keep p2 �i� sV with k g6 violation;2 we replace

ÛVV with

ÛVV " IÛ ª 2 «VV " I # sV $0� Û ª 2 «VV # sV � 1 $ð� Û ª 1 «VV " I # sV $¼á VV # sV � 1 $ 6

3 we expand,

sV � M2V � g2

16 ( 2

Û ª 1 «VV # M2V � M2

V $� g2

16 ( 2

2 Û ª 2 «VV # M2V � M2

V $� Û ª 1 «VV # M2

V � M2V $ Û ª 1 «VV " p # M2

V � M2V $

Page 83: Legs and Loops in Real Life

ô

The Tree

Finite Renormalization

Finite renormalization in running couplings

(intermediate) renormaliz ed theor y

1g2 # s $ � 1

g2 � 116 ( 2 î ª 1 «3Q # s $5� g2# 16 ( 2 $ 2 î ª 2 «3Q # s $ 6

theor y in terms of POs

1g2 # s $ � 1

8 G & 2W

� 116 ( 2 & 2

W

© g ª 1 « � G32 ( 4

© g ª 2 « �© g ª n « � & 2W î ª n «3Q # s $*13õF ª n «W # sW $ 6

Page 84: Legs and Loops in Real Life

ö

The Tree

Finite Renormalization

Finite renormalization in running couplings

(intermediate) renormaliz ed theor y

1g2 # s $ � 1

g2 � 116 ( 2 î ª 1 «3Q # s $5� g2# 16 ( 2 $ 2 î ª 2 «3Q # s $ 6

theor y in terms of POs

1g2 # s $ � 1

8 G & 2W

� 116 ( 2 & 2

W

© g ª 1 « � G32 ( 4

© g ª 2 « �© g ª n « � & 2W î ª n «3Q # s $*13õF ª n «W # sW $ 6

Page 85: Legs and Loops in Real Life

÷

The Tree

Comple x poles

Dressed propagator s

From finite order

f ª n « # p2 $`� f ª 0 « # p2 $ 1 � f ª 0 « # p2 $ Û ª n « p2 � f ª n / 1 « # p2 $ / 1 �To all orders

f # p2 $0� limn ø ß f ª n « # p2 $t�

f # p2 $0� f ª 0 « # p2 $ 1 � f ª 0 « # p2 $ Û p2 � f # p2 $ / 1 �

Page 86: Legs and Loops in Real Life

ù

The Tree

Comple x poles

Dressed propagator s

From finite order

f ª n « # p2 $`� f ª 0 « # p2 $ 1 � f ª 0 « # p2 $ Û ª n « p2 � f ª n / 1 « # p2 $ / 1 �To all orders

f # p2 $0� limn ø ß f ª n « # p2 $t�

f # p2 $0� f ª 0 « # p2 $ 1 � f ª 0 « # p2 $ Û p2 � f # p2 $ / 1 �

Page 87: Legs and Loops in Real Life

ú

The Tree

Comple x poles

Proper ties: I

all ordersWe assume that a dressed propagator obeys Kallen - Lehmannrepresentation; using the relation

Im f # p2 $0� ImÛ

p2 1 m2 � ReÛ 2 1 # Im Û $ 2 / 1

� (üû # � p2 $t�Kallen - Lehmannthe Kallen - Lehmann representation follows:

f # p2 $`� ß0

dsû # s $

p2 1 s � i © 6

Page 88: Legs and Loops in Real Life

ý

The Tree

Comple x poles

Proper ties: II

þ ÿ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � !

"

#$ % & ' ( ) * + , - . / % 0 & ) ( 1 2 3 4 5 0 ) 6 ' 7 8 % 5 0 9 5 ( 8 . ) 4 ) : 9 1 ) 0 ) ( & 3 ; : < . < 4 = < > 0 8 . ) ( < . < 4 < 8 . ) ( ) ? 5 @ 7 : % 4 8 . ) , 2 @ ) ( 8 ) A 7 0 ? 8 . )3 ) : : 5 / B 5 A % 4 8 . ) ? ( ) 4 4 ) ? C ( 5 C 7 & 7 8 5 ( D 4 5 : % ? : % 0 ) 4 ( ) C ( ) 4 ) 0 8 ; / % 8 . 5 ' 8 9 ' ( 8 . ) ( ? % 4 8 % 0 - 8 % 5 0 = 7 0 3 5 9 8 . ) C ) ( E % 4 4 % B : ) F ) : ? 45 9 8 . ) 4 8 7 0 ? 7 ( ? E 5 ? ) : <

G

H IJ K L M N O P Q R S T U K V L O N W X Y Z [ V O \ M ] ^ K [ V _ [ N ] ` N O Z Z O ` a O N ^ O b c d e T e Z f g K V ^ T O N e T e Z e U O T ] a O R X ^ T N O O W ] V ` _ [ M N W h [ K V ^a O N ^ K S O Z c N O ` [ a ] d Z f ] V ` ` N O Z Z O ` h N [ h ] L ] ^ [ N Z c Y O d d [ U i [ b O Z f g Z [ d K ` d K V O Z N O h N O Z O V ^ c U K ^ T [ M ^ _ M N ^ T O N ` K Z ^ K V S ^ K [ V f ] V Y [ _^ T O j O d ` Z [ _ ^ T O Z ^ ] V ` ] N ` k [ ` O d ] V ` a O N ^ K S O Z k M Z ^ i O M V ` O N Z ^ [ [ ` ] Z ] V Y [ _ ^ T O h O N k K Z Z K i d O Z ^ ] V ` ] N ` k [ ` O d a O N ^ K S O Z e

l�

Figure: Cutting equation for a dressed propagator; the red circle isthe (all-orders) cut self-energy.

Page 89: Legs and Loops in Real Life

m no p q r s t u v w x y z p { q t s | } ~ � � { t � r � � p � { � � s � { ~ � t s � p � � p � � t � � � � { � � s � � � � t � � � s t � � t � � s � � � q � � � s � ~ t � � � z � � � � � � y t s t �� � � � p � � y t w } � t � � | t { t s q ~ � � � � p � � p { t � s t � s t � t { � � z p � y � r � � r s � y t s � p � � p { x � p � { � � { ~ � � � y t � t s � p � � p � � t � t � � � � � � y t� � � { � � s � � � � t � � �� �� �

Figure: Cutting equation for a dressed propagator; the red circle isthe (all-orders) cut self-energy.

Page 90: Legs and Loops in Real Life

�� � � � � � � � �   ¡ ¢ � £ � � � ¤ ¥ ¦ § ¨ £ � © � ª « � ¨ £ ¬ ¨ � « ¡ � § � ­ ¬ ¤ � £ � � � ¦ ® ­ ¯ ¡ ¯ § ° ¯ ± £ « ¡ � � ¯ ¡ ¯ § ¯ « ¡ � � � ² ¨ ³ ª ­ � § « ¡ � � ¥ ³ � � « � ´ ª £ ² « ¡ �¦ � ­ ­ ¨ ¢ µ ¨ ´ � § « ¡ � ² � � § § � ² ¶ � ¨ ¶ ª � ª « ¨ � · § ¨ ­ � ² ­ � £ � § � � ¶ � � § � £ « ® ¢ � « ¡ ¨ � « ¬ � � « ¡ � � ² � § « � £   « � ¨ £ ° ª £ ¦ ¨ ¬ « ¡ � ¶ � � ¸ � § § � µ ­ � ¹ � ­ ² §¨ ¬ « ¡ � § « ª £ ² ª � ² ¸ ¨ ² � ­ ¯

Figure: Cutting equation for a dressed propagator; the red circle isthe (all-orders) cut self-energy.

Page 91: Legs and Loops in Real Life

º »¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç ½ È ¾ Á À É Ê Ë Ì Í È Á Î ¿ Ï Ð ½ Í È Ñ Í À Ï Ò À Á Ì Ì Á Ò Ó Á À Ð Á Ô Õ Ö × Æ × Ì Ø Ù ½ È Ð Æ Á À × Æ × Ì × Ç Á Æ Ï Ó Á Ä Ê Ð Æ À Á Á É Ï È Ò Ñ Í ¿ À É Ú Í ½ È ÐÓ Á À Ð ½ Å Á Ì Õ À Á Ò Í Ó Ï Ö Ì Ø Ï È Ò Ò À Á Ì Ì Á Ò Ú À Í Ú Ï ¾ Ï Ð Í À Ì Õ Ë Á Ö Ö Í Ç Û Í Ô Á Ì Ø Ù Ì Í Ö ½ Ò Ö ½ È Á Ì À Á Ú À Á Ì Á È Ð Õ Ç ½ Ð Æ Í ¿ Ð Ñ ¿ À Ð Æ Á À Ò ½ Ì Ð ½ È Å Ð ½ Í È Ø Ï È Ë Í ÑÐ Æ Á Ü Á Ö Ò Ì Í Ñ Ð Æ Á Ì Ð Ï È Ò Ï À Ò Ý Í Ò Á Ö Ï È Ò Ó Á À Ð ½ Å Á Ì Ý ¿ Ì Ð Û Á ¿ È Ò Á À Ì Ð Í Í Ò Ï Ì Ï È Ë Í Ñ Ð Æ Á Ú Á À Ý ½ Ì Ì ½ Û Ö Á Ì Ð Ï È Ò Ï À Ò Ý Í Ò Á Ö Ó Á À Ð ½ Å Á Ì ×

Figure: Cutting equation for a dressed propagator; the red circle isthe (all-orders) cut self-energy.

Page 92: Legs and Loops in Real Life

Þ

The Tree

Comple x poles

Unitarity

all ordersßUnitarity follows if we add all possible ways in which adiagram with given topology can be cut in two.

The shaded line separates S from Sà.

For a stable particle the cut line, proportional to á¾

,contains a pole term 2 i âäãæå p0 çéè å p2 ê m2 ç ,whereas there is no such contribution for an unstableparticle.

TheoremWe express Im

Ûin terms of cut self-energy diagrams and

repeat the procedure ad libidum, therefore proving thatunstable particles contribute to the unitarity of theS ë matrix only via their stable decay products.

Page 93: Legs and Loops in Real Life

ì

The Tree

Comple x poles

Unitarity

all ordersßUnitarity follows if we add all possible ways in which adiagram with given topology can be cut in two.

The shaded line separates S from Sà.

For a stable particle the cut line, proportional to á¾

,contains a pole term 2 i âäãæå p0 çéè å p2 ê m2 ç ,whereas there is no such contribution for an unstableparticle.

TheoremWe express Im

Ûin terms of cut self-energy diagrams and

repeat the procedure ad libidum, therefore proving thatunstable particles contribute to the unitarity of theS ë matrix only via their stable decay products.

Page 94: Legs and Loops in Real Life

í

The Tree

Comple x poles

Unitarity

all ordersßUnitarity follows if we add all possible ways in which adiagram with given topology can be cut in two.

The shaded line separates S from Sà.

For a stable particle the cut line, proportional to á¾

,contains a pole term 2 i âäãæå p0 çéè å p2 ê m2 ç ,whereas there is no such contribution for an unstableparticle.

TheoremWe express Im

Ûin terms of cut self-energy diagrams and

repeat the procedure ad libidum, therefore proving thatunstable particles contribute to the unitarity of theS ë matrix only via their stable decay products.

Page 95: Legs and Loops in Real Life

î

The Tree

Comple x poles

Unitarity

all ordersßUnitarity follows if we add all possible ways in which adiagram with given topology can be cut in two.

The shaded line separates S from Sà.

For a stable particle the cut line, proportional to á¾

,contains a pole term 2 i âäãæå p0 çéè å p2 ê m2 ç ,whereas there is no such contribution for an unstableparticle.

TheoremWe express Im

Ûin terms of cut self-energy diagrams and

repeat the procedure ad libidum, therefore proving thatunstable particles contribute to the unitarity of theS ë matrix only via their stable decay products.

Page 96: Legs and Loops in Real Life

ï

The Tree

Comple x poles

WSTI

WSTI with dressed propagator s/ver tices

We assume that WST identities hold at any fixed order inperturbation theory for diagrams that contain barepropagators and vertices;

they again form dressed propagators and vertices whensummed.

butAny arbitrary truncation that preferentially resums specifictopologies will lead to violations of WST identities.

Page 97: Legs and Loops in Real Life

ð

The Tree

Comple x poles

WSTI

WSTI with dressed propagator s/ver tices

We assume that WST identities hold at any fixed order inperturbation theory for diagrams that contain barepropagators and vertices;

they again form dressed propagators and vertices whensummed.

butAny arbitrary truncation that preferentially resums specifictopologies will lead to violations of WST identities.

Page 98: Legs and Loops in Real Life

ñ

The Tree

Comple x poles

Finite renormalization with unstab le par tic les

Give up unitarity (a quizzical approach)

Use

m2 ò smê Û å sm çôó

At one loop

m2 õ sm everywhere;

At two loops

2 L noÛ

insertions:m2 ò sm;

1 L: m2 ò smê Û å sm ç

and the factorÛ å s ç ë Û å sm çs ë sm ö

expanded to first order;

vertices: m2 ò sm in 2 L,m2 ò sm

ê Û å sm ç in 1 L

Page 99: Legs and Loops in Real Life

÷

The Tree

Comple x poles

Finite renormalization with unstab le par tic les

Give up unitarity (a quizzical approach)

Use

m2 ò smê Û å sm çôó

At one loop

m2 õ sm everywhere;

At two loops

2 L noÛ

insertions:m2 ò sm;

1 L: m2 ò smê Û å sm ç

and the factorÛ å s ç ë Û å sm çs ë sm ö

expanded to first order;

vertices: m2 ò sm in 2 L,m2 ò sm

ê Û å sm ç in 1 L

Page 100: Legs and Loops in Real Life

ø

The Tree

Comple x poles

Finite renormalization with unstab le par tic les

Give up unitarity (a quizzical approach)

Use

m2 ò smê Û å sm çôó

At one loop

m2 õ sm everywhere;

At two loops

2 L noÛ

insertions:m2 ò sm;

1 L: m2 ò smê Û å sm ç

and the factorÛ å s ç ë Û å sm çs ë sm ö

expanded to first order;

vertices: m2 ò sm in 2 L,m2 ò sm

ê Û å sm ç in 1 L

Page 101: Legs and Loops in Real Life

ù

New integral representations

Part III

Computing MI

Page 102: Legs and Loops in Real Life

ú

New integral representations

Beyond Nielsen - Gonc harov

New Apprû oach

New integral representations for diagrams

TheoremDiagrams ü

dCk åþý x ÿ ç 1A

ln 1 ê AB

or dCk åþý x ÿ ç 1A

LinAB

where A ö B are multivariate polynomials in the Feynmanparameters. One-(Two-) loop diagrams are always reducible tocombinations of integrals of this type where the usualmonomials that appear in the integral representation of Nielsen- Goncharov generalized polylogarithms are replaced bymultivariate polynomials of arbitrary degree.

Page 103: Legs and Loops in Real Life

New integral representations

Example

General C0: definitions

C0ò dS2 V

� 1 � ��� 2 å x1 ö x2 ç öV å x1 ö x2 ç ò x t H x ê 2 K t x ê L ò Q å x1 ö x2 ç ê B ö

Hijò ë pi � pj ö L ò m2

1 öK1

ò 12å p1 � p1

ê m22 ë m2

1 ç öK2

ò 12å P � P ë p1 � p1

ê m23 ë m2

2 ç ö

Page 104: Legs and Loops in Real Life

New integral representations

General C0: result

C0ò 1

2

2

i � 0

å Xi ë Xi � 1 ç

1

0

dx

Q å i i ê 1 çln 1 ê Q å i i ê 1 ç

B

Q å 0 1ç ò Q å 1 ö x ç ö Q å 1 2 ç ò Q å x ö x ç ö Q å 2 3 ç ò Q å x ö 0 ç

X t ò ë K t H� 1

ö X0ò 1 ö X3

ò 0

Page 105: Legs and Loops in Real Life

New integral representations

How to construct it

Basics

Define

�n å z ç ò zn Ln å z ç ò zn dCn

n

i � 1

yi

n � 1

1 ê n

j � 1

yj z� n

ò zn

n

n � 1 Fn å å n ç n � 1 ó å n ê 1 ç n ó ë z ç ö

�1 å z ç ò ë S0 � 1 åþë z ç ö�2 å z ç ò S0 � 1 åþë z ç ë S1 � 1 åþë z ç ö�3 å z ç ò ë 1

2S0 � 1 åþë z ç ê 3

2S1 � 1 åþë z ç ë S2 � 1 åþë z ç ö

Page 106: Legs and Loops in Real Life

New integral representations

How to construct it

Problem

For any quadratic form in n-variables

V å x ç ò å x ë X ç t H å x ë X ç ê B ò Q å x ç ê B öwe want to compute

I å n ö� ç ò dCn V

��� ò dCn Q å x ç ê B��� �

DefinitionConsider the operator

� ò å x ë X ç t �ö satisfying

�Q ò 2 Q

Page 107: Legs and Loops in Real Life

New integral representations

How to construct it

Solution

Intr oduce MT of y -shifte quadratic

J å�� ö � ç ò 1

0dy y � � 1 W

��� å y ç ö W å y ç ò Q å x ç y ê B �

Use integration-b y-par ts

12� ë y �

y W��� ò 0 õ V

��� ò � ê 12�

J å�� ö � ç öI å n ö

� ç ò dCn � ê 12�

J å�� ö � ç ö

Page 108: Legs and Loops in Real Life

New integral representations

How to construct it

Fur ther definitions

Define

f å�� x � ç ò f å x1 ö ����� ö xn ç öf å i � x � ç ò f å x1 ö ����� ö xi

ò 0 ö xn ç öf å�� x � i ç ò f å x1 ö ����� ö xi

ò 1 ö xn ç ödCn

ò 1

0

n

i � 1

dxi ö dCn � j ò 1

0

n

i � 1 � i �� j

dxi �

Page 109: Legs and Loops in Real Life

New integral representations

How to construct it

Results I

Example

For � ò 1 it is convenient to choose � ò 1, to obtain

I å n ö 1 çò n

2ë 1 dCn L1 å�� x � ç

ë 12

n

i � 1

dCn � i Xi L1 å i � x � ç ë å 1 ë Xi ç L1 å�� x � i ç

Page 110: Legs and Loops in Real Life

New integral representations

How to construct it

Results II

Example

For � ò 2 it is more convenient to write

V� 2 ò 2 ê 1

2� 2

J å 2 ö 2 çò 2 ê 1

2� 2

L2 �integration-by-parts follows

additional work (along the same lines) is needed to dealwith surface terms �����

Page 111: Legs and Loops in Real Life

New integral representations

[GeV]hM100 110 120 130 140 150 160 170

[%

-3

-2

-1

0!1

2"3#4

5$

EWδ%

QCDδ%

QCDδ%

+&EWδ%

(GeV)h

M160.8 161 161.2 161.4 161.6 161.8

(%

)E

3.1

3.2

3.3

3.4

3.5

3.6

Page 112: Legs and Loops in Real Life

'

New integral representations

1 (*) MS + s ,

mtò 174 � 3 GeV MH

ò 150 GeV-s � GeV � MZ 200 500

one-loop 128 � 104 127 � 734 127 � 305

two-loop 128 � 040 127 � 831 127 � 586. ë 0 � 05 ê 0 � 08 ê 0 � 22

mtò 174 � 3 GeV MH

ò 300 GeV-s � GeV � MZ 200 500

one-loop 128 � 104 127 � 734 127 � 305

two-loop 128 � 046 127 � 689 127 � 272. ë 0 � 05 ë 0 � 04 ê 0 � 03

Page 113: Legs and Loops in Real Life

/

New integral representations

1 (*) MS + s ,

mtò 174 � 3 GeV MH

ò 150 GeV-s � GeV � MZ 200 500

one-loop 128 � 104 127 � 734 127 � 305

two-loop 128 � 040 127 � 831 127 � 586. ë 0 � 05 ê 0 � 08 ê 0 � 22

mtò 174 � 3 GeV MH

ò 300 GeV-s � GeV � MZ 200 500

one-loop 128 � 104 127 � 734 127 � 305

two-loop 128 � 046 127 � 689 127 � 272. ë 0 � 05 ë 0 � 04 ê 0 � 03

Page 114: Legs and Loops in Real Life

0

New integral representations

1 (*) MS + s ,

mtò 174 � 3 GeV MH

ò 150 GeV-s � GeV � MZ 200 500

one-loop 128 � 104 127 � 734 127 � 305

two-loop 128 � 040 127 � 831 127 � 586. ë 0 � 05 ê 0 � 08 ê 0 � 22

mtò 174 � 3 GeV MH

ò 300 GeV-s � GeV � MZ 200 500

one-loop 128 � 104 127 � 734 127 � 305

two-loop 128 � 046 127 � 689 127 � 272. ë 0 � 05 ë 0 � 04 ê 0 � 03

Page 115: Legs and Loops in Real Life

1

New integral representations

1 (*) MS + s ,

mtò 174 � 3 GeV MH

ò 150 GeV-s � GeV � MZ 200 500

one-loop 128 � 104 127 � 734 127 � 305

two-loop 128 � 040 127 � 831 127 � 586. ë 0 � 05 ê 0 � 08 ê 0 � 22

mtò 174 � 3 GeV MH

ò 300 GeV-s � GeV � MZ 200 500

one-loop 128 � 104 127 � 734 127 � 305

two-loop 128 � 046 127 � 689 127 � 272. ë 0 � 05 ë 0 � 04 ê 0 � 03

Page 116: Legs and Loops in Real Life

2

New integral representations

1 (*) + s ,

-s ò 200 GeV

mt ö MH [Gev] 1L ê 2L 2L 3 1L perturbative only

169 � 3 ö 150 126 � 774 å 3 ç 14 � 64.

174 � 3 ö 150 126 � 688 å 2 ç 16 � 27.

179 � 3 ö 150 126 � 598 å 3 ç 17 � 97.

169 � 3 ö 300 127 � 300 å 3 ç 4 � 35.

174 � 3 ö 300 127 � 313 å 2 ç 1 � 51.

179 � 3 ö 300 127 � 122 å 3 ç 7 � 73.

Page 117: Legs and Loops in Real Life

4

New integral representations

1 (*) + s ,

-s ò 200 GeV

mt ö MH [Gev] 1L ê 2L 2L 3 1L perturbative only

169 � 3 ö 150 126 � 774 å 3 ç 14 � 64.

174 � 3 ö 150 126 � 688 å 2 ç 16 � 27.

179 � 3 ö 150 126 � 598 å 3 ç 17 � 97.

169 � 3 ö 300 127 � 300 å 3 ç 4 � 35.

174 � 3 ö 300 127 � 313 å 2 ç 1 � 51.

179 � 3 ö 300 127 � 122 å 3 ç 7 � 73.

Page 118: Legs and Loops in Real Life

5

New integral representations

1 (*) + s ,

-s ò 200 GeV

mt ö MH [Gev] 1L ê 2L 2L 3 1L perturbative only

169 � 3 ö 150 126 � 774 å 3 ç 14 � 64.

174 � 3 ö 150 126 � 688 å 2 ç 16 � 27.

179 � 3 ö 150 126 � 598 å 3 ç 17 � 97.

169 � 3 ö 300 127 � 300 å 3 ç 4 � 35.

174 � 3 ö 300 127 � 313 å 2 ç 1 � 51.

179 � 3 ö 300 127 � 122 å 3 ç 7 � 73.

Page 119: Legs and Loops in Real Life

6

New integral representations

Conc lusions

C7 C

Conc lusions

All toolsfor a two-loopcalculationin theSMhavebeenassembledin one, stand-alone, code

Numbers for (pseudo)observablesarepoppingup �����

Page 120: Legs and Loops in Real Life

8

New integral representations

Conc lusions

C7 C

Conc lusions

All toolsfor a two-loopcalculationin theSMhavebeenassembledin one, stand-alone, code

Numbers for (pseudo)observablesarepoppingup �����