lemma ii.1 (baire)

53
Lemma II.1 (Baire) 1 n n X n IntX Let X be a complete metric space and a seq. of closed sets. Assume that for each n . Then 1 ) ( n n X Int

Upload: vance

Post on 12-Feb-2016

78 views

Category:

Documents


3 download

DESCRIPTION

Lemma II.1 (Baire). Let X be a complete metric space and a seq. of closed sets. Assume that for each n . Then. Remark 1. Baire’s Category Theorem. Baire’s Lemma is usually used in the following form. Let X be a nonempty complete metric space - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lemma II.1 (Baire)

Lemma II.1 (Baire) 1nnX

nIntX

Let X be a complete metric space and a seq. of closed sets. Assume that for each n . Then

1)(

nnXInt

Page 2: Lemma II.1 (Baire)

Remark 1

1nnX

1nnXX

0nIntX

Baire’s Lemma is usually used inthe following form. Let X be a nonempty complete metric space and a seq. of closed setssuch that . Then there is such that 0n

Baire’s Category Theorem

Page 3: Lemma II.1 (Baire)

First Category

M

nn

n XXM ,

XM

X: metric space

, M is nonwhere dence in X i.e. has no ball in X.

is nonwhere dense in X.M is called of first category.

Page 4: Lemma II.1 (Baire)

By Baire’s Category TheoremNo complement metric space is of first Category.

is nonwhere dence in X.nn

n XXX ,1

Page 5: Lemma II.1 (Baire)

Theorem II.1(Banach Steinhaus)Let E and F be two Banach spaces and a family of linear continuous operators from E to FSuppose (1)

then (2)

IiiT

ExxTiIi

)(sup

iIiTsup

IiExxcxTi ,)(

In other words, there is c such that

Page 6: Lemma II.1 (Baire)

Application of Banach Steinhaus

Page 7: Lemma II.1 (Baire)

)()(,,ˆ ffCfCE

)(max

,xff

x

kxikxexeZk ikxk sincos)(,

,Cf

dxexfkf ikx)(

21)(ˆ

Page 8: Lemma II.1 (Baire)

Fourier Series ik

n

nkn ekffS )(ˆ),(

k

ikekff )(ˆ~)(

is called Fourier series of f

is called Fourier nth partial sum of f),( fSn

Page 9: Lemma II.1 (Baire)

If f is real valued, then

where

10 sincos

21)(ˆ

kkk

k

ik kbkaaekf

,2,1,0cos)(1 kdxkxxfak

,2,1sin)(1 kdxkxxfbk

n

kkkn kbkaafS

10 sincos

21),(

proved in next page

Page 10: Lemma II.1 (Baire)

11

11

11

0

)(21)(

21

)(21

)(21)(

21

)(21

)(21)(

21

)(21

)(21

)(ˆ

k

ikikx

k

ikikx

k

ikikx

k

ikikx

k

ikikx

k

ikikx

xi

k

ikikx

k

ik

edxexfedxexf

dxxf

edxexfedxexf

dxxf

edxexfedxexf

dxexf

edxexf

ekf

Page 11: Lemma II.1 (Baire)

1

)()(

11

))((21

)(21

)(21)(

21

)(21

k

xikxik

k

ikikx

k

ikikx

dxeexf

dxxf

edxexfedxexf

dxxf

Page 12: Lemma II.1 (Baire)

1

1

1

sin)sin)((cos)cos)((21

)(21

)sinsincos)(cos(1

)(21

)(cos2)(21

)(21

k

k

k

kxkxdxxfkxkxdxxf

dxxf

dxkxkkxkxf

dxxf

dxxkxf

dxxf

Page 13: Lemma II.1 (Baire)

Lebesque Theorem],[ˆ Cf

such that

)0,(suplim fSnn

Page 14: Lemma II.1 (Baire)

dxxkxf

dxexf

dxexf

edxexf

ekffS

n

k

n

nk

xik

n

nk

xik

n

nk

ikikx

n

nk

ikn

1

)(

)(

)(cos21)(21

)(21

)(21

)(21

)(ˆ),(

Page 15: Lemma II.1 (Baire)

t

ttnth

ttn

tktk

ktttht

thenktthLet

n

k

n

k

n

k

21sin2

21sin)

21sin(

)(

21sin)

21sin(

21

)21sin()

21sin(

21

cos21sin)(

21sin

,cos)(

1

1

1

Page 16: Lemma II.1 (Baire)

2sin

)21sin(

21)(

2sin

)21sin(

2sin

2sin)

21sin(

1

)(21cos211

t

tntDLet

t

tn

t

ttn

thkt

n

n

k

Dirichlet kernel

Page 17: Lemma II.1 (Baire)

dxxD

dxxDf

dxxDxfT

EfxDxffSfT

NneachforwhereETsequenceaconsiderCEOn

dxxDxffS

n

n

fEf

n

fEf

n

nnn

n

nn

)(

)(sup

)()(sup

)()()0,()(

,],,[ˆ

)()(),(

1

1

Page 18: Lemma II.1 (Baire)

)0,(sup

)(sup

sup

ln~)(:

fS

EfsomeforfTThmSteinhausBanachBy

T

ndxxDTClaim

nn

nn

nn

nn

Page 19: Lemma II.1 (Baire)

II.4 Topological Complementoperators invertible on right(resp. on left)

Page 20: Lemma II.1 (Baire)

Theorem II.8Let E be a Banach space and let G andL be two closed vector subspacessuch that G+L is closed . Then there exists constant

such that0c

Page 21: Lemma II.1 (Baire)

(13) any element z of G+L admits a decomposition of the form z=x+y with

zcyandzcxLyGx ,,,

GL x

yz

Page 22: Lemma II.1 (Baire)

TheoremmappingOpensurjectiveandlinearcontinuousisTHence

yxyxyxyxTyxyxTLGLGT

LG

yxyxLG

E

,,,,

),(:

,

Page 23: Lemma II.1 (Baire)

zCyandzCx

thenc

CLet

zc

yxyxLyGxwhere

yxzasressedbecanzallumentogeneityBy

yxyxLyGxwhereyxzasressedbecanzthen

czwithLGziftsoc

,1

1,,,

exparghom

1,,,exp

..

Page 24: Lemma II.1 (Baire)

Corollary II.9Let E be a Banach space and let G andL be two closed vector subspacessuch that G+L is closed . Then there exists constant

such that0c

Page 25: Lemma II.1 (Baire)

(14)

ExLxdisGxdiscLGxdis ,),(),(),(

GL

x

Page 26: Lemma II.1 (Baire)

LGbbaabacbandbacababatscandLbGaexiststhere

baztoApplyLxdisbxGxdisax

tsLbandGathenandExLet

,..0,,

;)13(),(,),(

..,0

Page 27: Lemma II.1 (Baire)

bxaxcLGxdis

axcbxcLGxdishaveweSimilarly

bxcaxcLGxdis

bxcaxc

bxaxcax

bacax

aax

aaxLGxdis

221),(

)1(),(,

)1(),(

)1(

)(),(

Page 28: Lemma II.1 (Baire)

),(),(),(

0,221

2),(),(221

),(),(221),(

LxdisGxdisCLGxdis

havewelettingbycCLet

LxdisGxdisc

LxdisGxdiscLGxdis

Page 29: Lemma II.1 (Baire)

Remark

0csomefor

Let E be a Banach space and let G andL be two closed vector subspaces with

Then G+L is closed.

ExLxdisGxdiscLGxdis ,),(),(),(

Exercise

Page 30: Lemma II.1 (Baire)

Topological ComplementLet G be a closed vector subspace ofa Banach space E. A vector subspace L of E is calleda topological complement of G if

(i)L is closed.(ii)G∩L={0} and G+L=E

see next page

Page 31: Lemma II.1 (Baire)

In this case, all

can be expressed uniquely as z=x+ywith

It follows from Thm II.8 that theprojections z→x and z→y are linearcontinuous and surjective.

Ez

LyGx ,

Page 32: Lemma II.1 (Baire)

Example forTopological Complement

E: Banach spaceG:finite dimensional subspace of E; hence is closed.Find a topological complement of G

see next page

Page 33: Lemma II.1 (Baire)

ExxxtsREextensionanhas

ThmBanachHahnby

sublinearisxxpSince

GxxxcontinuouslinearisRG

niForexexxGx

GofbasisabeeeeLet

Gii

ii

Gi

Gii

i

nn

n

)(ˆ..:ˆ

,)(

)(:

,,1)()(

.,,,

11

21

Page 34: Lemma II.1 (Baire)

0

ˆkersin,00)(ˆ

sin,)(

,0)2(

.ˆker

,ˆker)1(:

.log:

.ˆker

111

1

1

1

LGHence

Lxceeex

Gxceexx

thenLGxIfLGthatshowTo

closedisL

closedisSincePf

GofcomplementicaltopoaisLClaim

LLet

n

iii

n

ii

n

ii

i

n

ii

n

ii

i

n

ii

Page 35: Lemma II.1 (Baire)

LGEHence

LGyxyzLyzthen

zz

ezz

ezzyz

niFor

ezzyz

thenGezylet

EzanyForLGEthatshowTo

ii

n

iiiii

n

iiiii

n

iii

n

iii

)(

0)(ˆ)(ˆ

)(ˆ)(ˆ)(ˆ

)(ˆˆ)(ˆ

,,1

)(ˆ

,)(ˆ

.)3(

00

00

00

1

1

0

1

1

Page 36: Lemma II.1 (Baire)

Remark

On finite dimensional vector space, linear functional is continuous.

Prove in next page

Page 37: Lemma II.1 (Baire)

continuousisboundedis

exexx

exexx

EexxFor

EonfunctionallinearabeandEforbasisabeeeeLet

nEwithspacevectorabeELet

n

ii

n

ii

n

iii

n

iiii

n

ii

i

n

ii

n

.

)(

)(

.,,,

.dim

21

1

221

1

2

1

11

1

21

Page 38: Lemma II.1 (Baire)

Remark

Let E be a Banach space. Let G be a closed v.s.s of E with codimG < ∞, thenany algebraic complement is topological complement of G

Typial example in next page

Page 39: Lemma II.1 (Baire)

Let

then

be a closed vector subspace of E and

codimG=p

pNEN dim,

NfxfExG ,0,

Prove in next page證明很重要

Page 40: Lemma II.1 (Baire)

)()(\,

,,,,)(

::

,1,

..,,,:

.,,,

0

1

21

21

FormGeometricSecondThmBanachHahnbyandERxnotSuppose

surjectiveisthatshowTo

Exxfxfx

bydefinedREmaptheConsiderpf

pjief

tsEeeearethereClaim

NforbasisabefffLet

p

p

p

ijji

p

p

Page 41: Lemma II.1 (Baire)

dependentlinearareff

f

Exxfxf

Exx

Exxx

tsfindcanwe

p

p

iii

p

iiii

p

ii

p

,,

0

,,0

0)(

)(

..0,,,

1

1

11

0

21

Page 42: Lemma II.1 (Baire)

.log

,,

,,

,1,

1,,,0)(

0,,1,0)(

0,,0,1)(

..,,

1

1

2

1

1

Gofcomplementicaltopotheis

eebygeneratedspacethe

tindependenlinearareee

pjief

e

e

e

tsEeeThen

p

p

ijji

p

p

Page 43: Lemma II.1 (Baire)

Question

FET :

Does there exist linear continuousmap from F to E such that FidST

Let E and F be two Banach spacesis linear continuous surjective

S is called an inverse on right of T

Page 44: Lemma II.1 (Baire)

Theorem II.10

FET :

The folloowing properties are equivalent :

Let E and F be two Banach spacesis linear continuous surjective

Page 45: Lemma II.1 (Baire)

)0()( 1TTN

(i) T admits an inverse on right

(ii)

admits a topological complement

Prove in next page

Page 46: Lemma II.1 (Baire)

0)()(0)0()(

)())(()(0)(

)()(0)()()1(:

)(log)()(:

.)()(

TNSRHenceSfSx

TNxffSTxTFfsomeforfSx

TNSRxTNSRthatshowTopf

TNofcomplementicaltopoaisFSSRClaimTofrightoninverseanbeSLet

iii

Page 47: Lemma II.1 (Baire)

.)()())((

))(()()(

)())((,)(,)()(.)()2(

closedisSRHenceSRxTSx

xTSfSxTf

xTfSTthenxfSSRfSIf

closedisSRthatshowTo

n

n

n

nn

Page 48: Lemma II.1 (Baire)

)(log)()3(~)1(

)()()()())(())((

)())((0)))(((

)()))(((

)()()3(

TNofcomplementicaltopoaisSRby

TNSREHenceSRTNxTSxTSxx

TNxxTSxxTSTxTxTST

ExanyForTNSREthatshowTo

Page 49: Lemma II.1 (Baire)

FidSTandcontinuouslinearisSthatverifytoeasyisitandcontinuousisS

fPcxPxPfSxofchoicetheoftindependenisSthatNote

xPfSLetfcxwithfxTtsEx

FfFortsc

TheoremmappingopenByoperatorsurjectivecontinuouslinearaisP

thenLontoprojectionthebePLetTNofcomplementicaltopoabeLLet

iii

)()(.

)()()(..

..0

.,

).(log)()(

Page 50: Lemma II.1 (Baire)

inverse on left

FET :

If S is a linear continuousoperator from F onto E such that

EidTS

Let E and F be two Banach spacesis linear continuous injective

S is called an inverse on left of T

Page 51: Lemma II.1 (Baire)

Theorem II.11

FET :

The following properties are equivalent :

Let E and F be two Banach spacesis linear continuous injective

Page 52: Lemma II.1 (Baire)

)()( ETTR

(i) T admits an inverse on left

(ii)

is closed and admits a topological complement.

Prove in next page

Page 53: Lemma II.1 (Baire)

continuousisSHence

fPTfPTxfS

continuousisT

IIcorollaryByidTSthenxfSlet

fPxTtsExFfPFfForTRontoFfrom

projectivecontinuousthebePLetiii

vertifytoeasyisItiii

TRTR

TR

E

)(1

)(1

)(1

))(()(

,6.,)(

)()(..!)(,

).(

)()(.)()(