lesson 21: surface area

33
. . . . . . Section 12.6 Surface Area Math 21a March 31, 2008 Announcements Office hours Tuesday, Wednesday 2–4pm SC 323 Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b . . Image: Flickr user Tracy O

Upload: matthew-leingang

Post on 26-Dec-2014

1.974 views

Category:

Education


1 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Lesson 21: Surface Area

. . . . . .

Section 12.6Surface Area

Math 21a

March 31, 2008

Announcements

◮ Office hours Tuesday, Wednesday 2–4pm SC 323◮ Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b

..Image: Flickr user Tracy O

Page 2: Lesson 21: Surface Area

. . . . . .

Announcements

◮ Office hours Tuesday, Wednesday 2–4pm SC 323◮ Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b

Page 3: Lesson 21: Surface Area

. . . . . .

Outline

Last time: Integration over polar regionsIntegration in Polar Coordinates

Easy AreaRectangles and Parallelograms in the planeParallelograms in space

Area of curved surfacesDivideApproximateTake the Limit

Special casesGraphsSurfaces of Revolution

Worksheet

Next Time

Page 4: Lesson 21: Surface Area

. . . . . .

Polar slicing

.

Here the boundaries of x and yare complicated

.

Here the boundary r is afunction of θ

Page 5: Lesson 21: Surface Area

. . . . . .

Integration in Polar Coordinates

FactIf f is continuous on a polar region of the form

D = { (r, θ) | α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ) }

then ∫∫D

f(x, y) dA =

∫ β

α

∫ h2(θ)

h1(θ)f(r cos θ, r sin θ) r dr dθ.

◮ Notice the “area element” is r dr dθ, not dr dθ!

Page 6: Lesson 21: Surface Area

. . . . . .

Outline

Last time: Integration over polar regionsIntegration in Polar Coordinates

Easy AreaRectangles and Parallelograms in the planeParallelograms in space

Area of curved surfacesDivideApproximateTake the Limit

Special casesGraphsSurfaces of Revolution

Worksheet

Next Time

Page 7: Lesson 21: Surface Area

. . . . . .

Rectangles and Parallelograms in the plane

.

.

.ℓ

.w

.

.

.b

.a .h = a sin θ

. .θ

A = ℓw A = bh = ab sin θ

Page 8: Lesson 21: Surface Area

. . . . . .

Parallelograms in space

The magnitude of the cross product a× b is the area of theparallelogram with sides a and b.

. .a

.b .|b| sin θ

A = |a| |b| sin θ = |a× b|

Page 9: Lesson 21: Surface Area

. . . . . .

Outline

Last time: Integration over polar regionsIntegration in Polar Coordinates

Easy AreaRectangles and Parallelograms in the planeParallelograms in space

Area of curved surfacesDivideApproximateTake the Limit

Special casesGraphsSurfaces of Revolution

Worksheet

Next Time

Page 10: Lesson 21: Surface Area

. . . . . .

Parametrizing a surface

A parametric surface S is defined by a vector-valued function of twoparameters

r(u, v) = x(u, v)i+ y(u, v)j+ z(u, v)k

where (u, v) varies throughout a region D in the plane.

..u

.v

.D .r

.x .y

.z

.S

Page 11: Lesson 21: Surface Area

. . . . . .

Divide and Conquer

Suppose D is a rectangle [a, b] × [c, d]. Divide [a, b] into m pieces and[c, d] into n pieces.The area of the surface is the sum of areas of pieces of the surface:

A =∑

i,j

∆Ai,j

where ∆Aij is the area of the surface restricted to the subdomain[ui, ui+1] × [vi, vi+1]

Page 12: Lesson 21: Surface Area

. . . . . .

ApproximateThe vectors representing the sides of a small rectangle “pushforward” to vectors tangent to the surface.

..u

.v

.∆u i

.∆v j.D

.x .y

.z

.∆u ru.∆v rv .S

They span a parallelogram approximating this piece of the surface. Sothe area of that piece is

∆A ≈ |∆u ru × ∆v rv| = |ru × rv| ∆v ∆u

Page 13: Lesson 21: Surface Area

. . . . . .

Take the Limit

So

A ≈m∑

i=1

n∑j=1

∣∣ru(uij, vij) × rv(uij, vij)∣∣ ∆v ∆u

Taking the limit we get

A =

∫ b

a

∫ d

c|ru × rv| dv du

More generally, if D is any region (not necessarily a rectangle), thesurface area is ∫∫

D

|ru × rv| dA

Remembering the dA is over the domain (u, v) space.

Page 14: Lesson 21: Surface Area

. . . . . .

Outline

Last time: Integration over polar regionsIntegration in Polar Coordinates

Easy AreaRectangles and Parallelograms in the planeParallelograms in space

Area of curved surfacesDivideApproximateTake the Limit

Special casesGraphsSurfaces of Revolution

Worksheet

Next Time

Page 15: Lesson 21: Surface Area

. . . . . .

Surface areas of GraphsNotation as in Stewart, p. 869ff.

Suppose f(x, y) is a function oftwo variables with domain D.The graph of f over D is thesurface in space given by

S = { (x, y, z) | (x, y) ∈ D, z = f(x, y) } .

.D.x

.y

.z

.S

Page 16: Lesson 21: Surface Area

. . . . . .

To find the surface area of S, use the parametrization

r(x, y) = ⟨x, y, f(x, y)⟩

Then

rx =

⟨1, 0,

∂f∂x

⟩ry =

⟨0, 1,

∂f∂y

⟩rx × ry =

⟨− ∂f

∂x,− ∂f

∂y, 1

⟩So

A =

∫∫D

√1 +

(∂f∂x

)2

+

(∂f∂y

)2

dA

Page 17: Lesson 21: Surface Area

. . . . . .

Surfaces of Revolution

A surface of revolution can be described by rotating the graph ofy = f(x) over the interval [a, b] around the x-axis.

..x

.y

.z

Page 18: Lesson 21: Surface Area

. . . . . .

Choose the parametrization

r(x, θ) = ⟨u, f(u) cos θ, f(u) sin θ⟩

where a ≤ x ≤ b, 0 ≤ θ ≤ 2π. Then

rx =⟨1, f′(x) cos θ, f′(x) sin θ

⟩rθ = ⟨0,−f(x) sin θ, f(x) cos θ⟩

rx × rθ =⟨f′(x)f(x),−f(x) cos θ,−f(x) sin θ

⟩|ru × rv| = f(x)

√1 + f′(x)2

So

A =

∫ 2π

0

∫ b

af(x)

√1 + f′(x)2 dx dθ = 2π

∫ b

af(x)

√1 + f′(x)2 dx

Page 19: Lesson 21: Surface Area

. . . . . .

Outline

Last time: Integration over polar regionsIntegration in Polar Coordinates

Easy AreaRectangles and Parallelograms in the planeParallelograms in space

Area of curved surfacesDivideApproximateTake the Limit

Special casesGraphsSurfaces of Revolution

Worksheet

Next Time

Page 20: Lesson 21: Surface Area

. . . . . .

Worksheet #1

ProblemFind the surface area of the part of the plane z = 2 + 3x + 4y that liesabove the rectangle [0, 5] × [1, 4].

SolutionThis is a graph. So

A =

∫ 5

0

∫ 4

1

√1 + 9 + 16 dy dx = 15

√26

Page 21: Lesson 21: Surface Area

. . . . . .

Worksheet #1

ProblemFind the surface area of the part of the plane z = 2 + 3x + 4y that liesabove the rectangle [0, 5] × [1, 4].

SolutionThis is a graph. So

A =

∫ 5

0

∫ 4

1

√1 + 9 + 16 dy dx = 15

√26

Page 22: Lesson 21: Surface Area

. . . . . .

Worksheet #2

ProblemFind the surface area of theparameterized surface

x(u, v) = u2

y(u, v) = uv

z(u, v) =12

v2

where 0 ≤ u ≤ 1 and0 ≤ v ≤ 2.

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Page 23: Lesson 21: Surface Area

. . . . . .

SolutionWe have

ru = ⟨2u, v, 0⟩rv = ⟨0, u, v⟩

ru × rv =⟨

v2,−2uv, 2u2⟩

|ru × rv| = 2u2 + v2

So

A =

∫ 1

0

∫ 2

0(2u2 + v2) dv du = 4

Page 24: Lesson 21: Surface Area

. . . . . .

Worksheet #3

ProblemFind the area of the part of thesurface y = 4x + z2 that liesbetween the planes x = 0,x = 1, z = 0, and z = 1.

0.0

0.5

1.0

0

2

4

0.0

0.5

1.0

Page 25: Lesson 21: Surface Area

. . . . . .

SolutionUse the parametrization

r(u, v) =⟨

u, 4u + v2, v⟩

where 0 ≤ u ≤ 1, 0 ≤ v ≤ 1. Then

ru = ⟨1, 4, 0⟩rv = ⟨0, 2v, 1⟩

ru × rv = ⟨4,−1, 2v⟩

So

A =

∫ 1

0

∫ 1

0

√17 + 4v2 dv du =

∫ 1

0

√17 + 4v2 dv

Page 26: Lesson 21: Surface Area

. . . . . .

About the integral

To find∫ 1

0

√17 + 4v2 dv, use the substitution 2v =

√17 tan θ. Then

2 dv =√

17 sec2 θ dθ and√

17 + 4v2 =√

17 sec θ. So∫ 1

0

√17 + 4v2 dv =

172

∫ arctan(2/√

17)

0sec3 θ dθ

=174

[sec θ tan θ + ln | sec θ + tan θ|]θ=arctan(2/√

17)θ=0

=174

[sec

(arctan

(2√17

))tan

(arctan

(2√17

))+ ln

∣∣∣∣sec(

arctan(

2√17

))+ tan

(arctan

(2√17

))∣∣∣∣]

Page 27: Lesson 21: Surface Area

. . . . . .

Now sec(

arctan(

2√17

))=

√2117

. So this simplifies (a little) to

174

[√21√17

2√17

+ ln

∣∣∣∣∣√

2117

+2√17

∣∣∣∣∣]

or+ √212

+174

ln

(2 +

√21√

17

)

Page 28: Lesson 21: Surface Area

. . . . . .

Worksheet #4

ProblemFind the area of the part of the sphere x2 + y2 + z2 = 4z that lies insidethe paraboloid z = x2 + y2.

First find a better descriptionof the surface. The twosurfaces intersect when

z + z2 = 4z =⇒ z = 0, 3

So we want the portion of thesphere where z ≥ 3.

..x

.z

Page 29: Lesson 21: Surface Area

. . . . . .

Solving the sphere equation gives

z = 2 +√

4 − x2 − y2

So we want

A =

∫∫D

√1 +

(∂z∂x

)2

+

(∂z∂y

)2

dA

where D is the circle of radius√

3 in the xy-plane.

Page 30: Lesson 21: Surface Area

. . . . . .

The integrand becomes2√

4 − x2 − y2, which makes it good for

integration in polar coordinates!

A =

∫ 2π

0

∫ √3

0

2√4 − x2 − y2

r dr dθ = 4π

∫ √3

0

r dr√4 − r2

Regular u-substitution u = 4 − r2, du = −2r dr gives

A = 4π

Page 31: Lesson 21: Surface Area

. . . . . .

Second parametrization

Use a version of spherical coordinates to get

r(u, v) = ⟨2 sin u cos v, 2 sin u sin v, 2 cos u + 2⟩

where 0 ≤ u ≤ π

3, 0 ≤ v ≤ 2π. Then

ru = ⟨2 cos u cos v, 2 cos u sin v,−2 sin u⟩rv = ⟨−2 sin u sin v, 2 sin u cos v, 0⟩

ru × rv =⟨

4 sin2 u cos v, 4 sin2 u sin v, 4 sin u cos 4⟩

|ru × rv| = 4 sin u.

So

A =

∫ π/3

0

∫ 2π

04 sin u dv du = 4 · 2π [− cos u]u=π/3

u=0 = 4π

Page 32: Lesson 21: Surface Area

. . . . . .

Outline

Last time: Integration over polar regionsIntegration in Polar Coordinates

Easy AreaRectangles and Parallelograms in the planeParallelograms in space

Area of curved surfacesDivideApproximateTake the Limit

Special casesGraphsSurfaces of Revolution

Worksheet

Next Time

Page 33: Lesson 21: Surface Area

. . . . . .

Next time:Triple Integrals