lesson 27: integration by substitution (section 4 version)

61
. . . . . . Section 5.5 Integration by Substitution V63.0121, Calculus I April 28, 2009 Announcements I Quiz 6 this week covering 5.1–5.2 I Practice finals on the website. Solutions Friday . . Image credit: kchbrown

Upload: matthew-leingang

Post on 12-May-2015

916 views

Category:

Education


0 download

DESCRIPTION

The method of substitution is the chain rule in reverse. At first it looks magical, then logical, and then you realize there's an art to choosing the right substitution. We try to demystify with many worked-out examples and graphics.

TRANSCRIPT

Page 1: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Section5.5IntegrationbySubstitution

V63.0121, CalculusI

April28, 2009

Announcements

I Quiz6thisweekcovering5.1–5.2I Practicefinalsonthewebsite. SolutionsFriday

..Imagecredit: kchbrown

Page 2: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Outline

Announcements

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegralsTheoryExamples

SubstitutionforDefiniteIntegralsTheoryExamples

Page 3: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

OfficeHoursandotherhelp

Day Time Who/What WhereinWWHM 1:00–2:00 LeingangOH 624

5:00–7:00 CurtoPS 517T 1:00–2:00 LeingangOH 624

4:00–5:50 CurtoPS 317W 2:00–3:00 LeingangOH 624R 9:00–10:00am LeingangOH 624F 2:00–4:00 CurtoOH 1310

Page 4: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Finalstuff

I FinalisMay8, 2:00–3:50pmin19W4101/102I Oldfinalsonline, includingFall2008I Reviewsessions: May5and6, 6:00–8:00pm, SILV 703

.

.Imagecredit: Pragmagraphr

Page 5: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

ResurrectionPolicyIfyourfinalscorebeatsyourmidtermscore, wewilladd10%toitsweight, andsubtract10%fromthemidtermweight.

..Imagecredit: ScottBeale/LaughingSquid

Page 6: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Outline

Announcements

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegralsTheoryExamples

SubstitutionforDefiniteIntegralsTheoryExamples

Page 7: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

DifferentiationandIntegrationasreverseprocesses

Theorem(TheFundamentalTheoremofCalculus)

1. Let f becontinuouson [a,b]. Then

ddx

∫ x

af(t)dt = f(x)

2. Let f becontinuouson [a,b] and f = F′ forsomeotherfunction F. Then ∫ b

af(x)dx = F(b) − F(a).

Page 8: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Techniquesofantidifferentiation?

Sofarweknowonlyafewrulesforantidifferentiation. Somearegeneral, like∫

[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx

Someareprettyparticular, like∫1

x√x2 − 1

dx = arcsec x + C.

Whatarewesupposedtodowiththat?

Page 9: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Techniquesofantidifferentiation?

Sofarweknowonlyafewrulesforantidifferentiation. Somearegeneral, like∫

[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx

Someareprettyparticular, like∫1

x√x2 − 1

dx = arcsec x + C.

Whatarewesupposedtodowiththat?

Page 10: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Techniquesofantidifferentiation?

Sofarweknowonlyafewrulesforantidifferentiation. Somearegeneral, like∫

[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx

Someareprettyparticular, like∫1

x√x2 − 1

dx = arcsec x + C.

Whatarewesupposedtodowiththat?

Page 11: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Sofarwedon’thaveanywaytofind∫2x√x2 + 1

dx

or ∫tan x dx.

Luckily, wecanbesmartandusethe“anti”versionofoneofthemostimportantrulesofdifferentiation: thechainrule.

Page 12: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Sofarwedon’thaveanywaytofind∫2x√x2 + 1

dx

or ∫tan x dx.

Luckily, wecanbesmartandusethe“anti”versionofoneofthemostimportantrulesofdifferentiation: thechainrule.

Page 13: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Outline

Announcements

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegralsTheoryExamples

SubstitutionforDefiniteIntegralsTheoryExamples

Page 14: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

SubstitutionforIndefiniteIntegrals

ExampleFind ∫

x√x2 + 1

dx.

SolutionStareatthislongenoughandyounoticethetheintegrandisthederivativeoftheexpression

√1 + x2.

Page 15: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

SubstitutionforIndefiniteIntegrals

ExampleFind ∫

x√x2 + 1

dx.

SolutionStareatthislongenoughandyounoticethetheintegrandisthederivativeoftheexpression

√1 + x2.

Page 16: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Saywhat?

Solution(Moreslowly, now)Let g(x) = x2 + 1.

Then g′(x) = 2x andso

ddx

√g(x) =

1

2√g(x)

g′(x) =x√

x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√g(x) + C =

√1 + x2 + C.

Page 17: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Saywhat?

Solution(Moreslowly, now)Let g(x) = x2 + 1. Then g′(x) = 2x andso

ddx

√g(x) =

1

2√g(x)

g′(x) =x√

x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√g(x) + C =

√1 + x2 + C.

Page 18: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Saywhat?

Solution(Moreslowly, now)Let g(x) = x2 + 1. Then g′(x) = 2x andso

ddx

√g(x) =

1

2√g(x)

g′(x) =x√

x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√g(x) + C =

√1 + x2 + C.

Page 19: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Leibniziannotationwinsagain

Solution(Sametechnique, newnotation)Let u = x2 + 1.

Then du = 2x dx and√1 + x2 =

√u. Sothe

integrandbecomescompletelytransformedinto∫x√

x2 + 1dx =

∫1√u

(12du

)=

∫1

2√udu

=

∫12u

−1/2 du

=√u + C =

√1 + x2 + C.

Page 20: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Leibniziannotationwinsagain

Solution(Sametechnique, newnotation)Let u = x2 + 1. Then du = 2x dx and

√1 + x2 =

√u.

Sotheintegrandbecomescompletelytransformedinto∫

x√x2 + 1

dx =

∫1√u

(12du

)=

∫1

2√udu

=

∫12u

−1/2 du

=√u + C =

√1 + x2 + C.

Page 21: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Leibniziannotationwinsagain

Solution(Sametechnique, newnotation)Let u = x2 + 1. Then du = 2x dx and

√1 + x2 =

√u. Sothe

integrandbecomescompletelytransformedinto∫x√

x2 + 1dx =

∫1√u

(12du

)=

∫1

2√udu

=

∫12u

−1/2 du

=√u + C =

√1 + x2 + C.

Page 22: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Leibniziannotationwinsagain

Solution(Sametechnique, newnotation)Let u = x2 + 1. Then du = 2x dx and

√1 + x2 =

√u. Sothe

integrandbecomescompletelytransformedinto∫x√

x2 + 1dx =

∫1√u

(12du

)=

∫1

2√udu

=

∫12u

−1/2 du

=√u + C =

√1 + x2 + C.

Page 23: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Leibniziannotationwinsagain

Solution(Sametechnique, newnotation)Let u = x2 + 1. Then du = 2x dx and

√1 + x2 =

√u. Sothe

integrandbecomescompletelytransformedinto∫x√

x2 + 1dx =

∫1√u

(12du

)=

∫1

2√udu

=

∫12u

−1/2 du

=√u + C =

√1 + x2 + C.

Page 24: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

TheoremoftheDay

Theorem(TheSubstitutionRule)If u = g(x) isadifferentiablefunctionwhoserangeisaninterval Iand f iscontinuouson I, then∫

f(g(x))g′(x)dx =

∫f(u)du

or ∫f(u)

dudx

dx =

∫f(u)du

Page 25: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A polynomialexample

Example

Usethesubstitution u = x2 + 3 tofind∫

(x2 + 3)34x dx.

SolutionIf u = x2 + 3, then du = 2x dx, and 4x dx = 2du. So∫

(x2 + 3)34x dx =

∫u3 2du = 2

∫u3 du

=12u4 =

12(x2 + 3)4

Page 26: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A polynomialexample

Example

Usethesubstitution u = x2 + 3 tofind∫

(x2 + 3)34x dx.

SolutionIf u = x2 + 3, then du = 2x dx, and 4x dx = 2du. So∫

(x2 + 3)34x dx =

∫u3 2du = 2

∫u3 du

=12u4 =

12(x2 + 3)4

Page 27: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A polynomialexample, thehardway

Comparethistomultiplyingitout:∫(x2 + 3)34x dx =

∫ (x6 + 9x4 + 27x2 + 27

)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Page 28: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Compare

Wehave∫(x2 + 3)34x dx =

12(x2 + 3)4

+ C

∫(x2 + 3)34x dx =

12x8 + 6x6 + 27x4 + 54x2

+ C

Now

12

(x2 + 3)4 =12

(x8 + 12x6 + 54x4 + 108x2 + 81

)=

12x8 + 6x6 + 27x4 + 54x2 +

812

Isthisaproblem?

No, that’swhat +C means!

Page 29: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Compare

Wehave∫(x2 + 3)34x dx =

12(x2 + 3)4 + C∫

(x2 + 3)34x dx =12x8 + 6x6 + 27x4 + 54x2 + C

Now

12

(x2 + 3)4 =12

(x8 + 12x6 + 54x4 + 108x2 + 81

)=

12x8 + 6x6 + 27x4 + 54x2 +

812

Isthisaproblem? No, that’swhat +C means!

Page 30: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx.

(Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 31: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 32: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx.

So∫tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 33: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 34: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 35: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 36: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Outline

Announcements

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegralsTheoryExamples

SubstitutionforDefiniteIntegralsTheoryExamples

Page 37: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Theorem(TheSubstitutionRuleforDefiniteIntegrals)If g′ iscontinuousand f iscontinuousontherangeof u = g(x),then ∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(u)du.

Page 38: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution(SlowWay)

Firstcomputetheindefiniteintegral∫

cos2 x sin x dx andthen

evaluate. Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x + C.

Therefore ∫ π

0cos2 x sin x dx = −1

3 cos3 x

∣∣π0 = 2

3 .

Page 39: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution(SlowWay)

Firstcomputetheindefiniteintegral∫

cos2 x sin x dx andthen

evaluate.

Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x + C.

Therefore ∫ π

0cos2 x sin x dx = −1

3 cos3 x

∣∣π0 = 2

3 .

Page 40: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution(SlowWay)

Firstcomputetheindefiniteintegral∫

cos2 x sin x dx andthen

evaluate. Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x + C.

Therefore ∫ π

0cos2 x sin x dx = −1

3 cos3 x

∣∣π0 = 2

3 .

Page 41: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Solution(FastWay)Doboththesubstitutionandtheevaluationatthesametime.

Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du

=

∫ 1

−1u2 du

= 13u

3∣∣1−1 =

23

.

Page 42: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Solution(FastWay)Doboththesubstitutionandtheevaluationatthesametime. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1.

So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du

=

∫ 1

−1u2 du

= 13u

3∣∣1−1 =

23

.

Page 43: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Solution(FastWay)Doboththesubstitutionandtheevaluationatthesametime. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du

=

∫ 1

−1u2 du

= 13u

3∣∣1−1 =

23

.

Page 44: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Anexponentialexample

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. Wehave∫ ln

√8

ln√3

e2x√e2x + 1dx =

12

∫ 8

3

√u + 1du

Nowlet y = u + 1, dy = du. So

12

∫ 8

3

√u + 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94

=13

(27− 8) =193

Page 45: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Anexponentialexample

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. Wehave∫ ln

√8

ln√3

e2x√e2x + 1dx =

12

∫ 8

3

√u + 1du

Nowlet y = u + 1, dy = du. So

12

∫ 8

3

√u + 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94

=13

(27− 8) =193

Page 46: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Anexponentialexample

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. Wehave∫ ln

√8

ln√3

e2x√e2x + 1dx =

12

∫ 8

3

√u + 1du

Nowlet y = u + 1, dy = du. So

12

∫ 8

3

√u + 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94

=13

(27− 8) =193

Page 47: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Anotherwaytoskinthatcat

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u = e2x + 1

, sothat du = 2e2x dx. Then∫ ln√8

ln√3

e2x√e2x + 1dx =

12

∫ 9

4

√udu

=13u3/2

∣∣∣∣94

=13

(27− 8) =193

Page 48: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Anotherwaytoskinthatcat

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u = e2x + 1, sothat du = 2e2x dx.

Then∫ ln√8

ln√3

e2x√e2x + 1dx =

12

∫ 9

4

√udu

=13u3/2

∣∣∣∣94

=13

(27− 8) =193

Page 49: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Anotherwaytoskinthatcat

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u = e2x + 1, sothat du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√e2x + 1dx =

12

∫ 9

4

√udu

=13u3/2

∣∣∣∣94

=13

(27− 8) =193

Page 50: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Anotherwaytoskinthatcat

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u = e2x + 1, sothat du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√e2x + 1dx =

12

∫ 9

4

√udu

=13u3/2

∣∣∣∣94

=13

(27− 8) =193

Page 51: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Anotherwaytoskinthatcat

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u = e2x + 1, sothat du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√e2x + 1dx =

12

∫ 9

4

√udu

=13u3/2

∣∣∣∣94

=13

(27− 8) =193

Page 52: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A thirdskinnedcat

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u =

√e2x + 1, sothat

u2 = e2x + 1

=⇒ 2udu = 2e2x dx

Thus ∫ ln√8

ln√3

=

∫ 3

2u · udu =

13u3

∣∣∣∣32

=193

Page 53: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A thirdskinnedcat

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u =

√e2x + 1, sothat

u2 = e2x + 1 =⇒ 2udu = 2e2x dx

Thus ∫ ln√8

ln√3

=

∫ 3

2u · udu =

13u3

∣∣∣∣32

=193

Page 54: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

A thirdskinnedcat

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u =

√e2x + 1, sothat

u2 = e2x + 1 =⇒ 2udu = 2e2x dx

Thus ∫ ln√8

ln√3

=

∫ 3

2u · udu =

13u3

∣∣∣∣32

=193

Page 55: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

ExampleFind ∫ 3π/2

πcot5

6

)sec2

6

)dθ.

Beforewedivein, thinkabout:I What“easy”substitutionsmighthelp?I Whichofthetrigfunctionssuggestsasubstitution?

Page 56: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

ExampleFind ∫ 3π/2

πcot5

6

)sec2

6

)dθ.

Beforewedivein, thinkabout:I What“easy”substitutionsmighthelp?I Whichofthetrigfunctionssuggestsasubstitution?

Page 57: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

SolutionLet φ =

θ

6. Then dφ =

16dθ.

∫ 3π/2

πcot5

6

)sec2

6

)dθ = 6

∫ π/4

π/6cot5 φ sec2 φdφ

= 6∫ π/4

π/6

sec2 φdφ

tan5 φ

Nowlet u = tanφ. So du = sec2 φdφ, and

6∫ π/4

π/6

sec2 φdφ

tan5 φ= 6

∫ 1

1/√3u−5 du

= 6(−14u−4

)∣∣∣∣11/

√3

=32

[9− 1] = 12.

Page 58: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

SolutionLet φ =

θ

6. Then dφ =

16dθ.

∫ 3π/2

πcot5

6

)sec2

6

)dθ = 6

∫ π/4

π/6cot5 φ sec2 φdφ

= 6∫ π/4

π/6

sec2 φdφ

tan5 φ

Nowlet u = tanφ. So du = sec2 φdφ, and

6∫ π/4

π/6

sec2 φdφ

tan5 φ= 6

∫ 1

1/√3u−5 du

= 6(−14u−4

)∣∣∣∣11/

√3

=32

[9− 1] = 12.

Page 59: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Graphs

. .θ

.y

.

.

.3π

2

.∫ 3π/2

πcot5

6

)sec2

6

)dθ

.y

.

6

.

4

.∫ π/4

π/66 cot5 φ sec2 φdφ

Page 60: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Graphs

. .φ

.y

.

6

.

4

.∫ π/4

π/66 cot5 φ sec2 φdφ

.u

.y

.∫ 1

1/√36u−5 du

.

.1√3

.

.1

Page 61: Lesson 27: Integration by Substitution (Section 4 version)

. . . . . .

Summary: Whatdowesubstitute?

I Linearfactors (ax + b) areeasysubstitutions: u = ax + b,du = a dx

I Lookfor function/derivativepairs intheintegrand, onetomake u andonetomake du:

I xn and xn−1 (fudgethecoefficient)I sineandcosine(fudgetheminussign)I ex and exI ax and ax (fudgethecoefficient)

I√x and

1√x(fudgethefactorof 2)

I ln x and1x