lesson 5: continuity

85
. . . . . . Section 1.5 Continuity V63.0121.006/016, Calculus I February 2, 2010 Announcements I Office Hours: M,W 1:30–2:30, R 9–10 (CIWW 726) I Written Assignment #2 due Thursday I First Quiz: Friday February 12 in recitation (§§1.1–1.4)

Upload: matthew-leingang

Post on 30-Nov-2014

1.879 views

Category:

Education


0 download

DESCRIPTION

Continuous function have an important property that small changes in input do not produce large changes in output. The Intermediate Value Theorem shows that a continuous function takes all values between any two values. From this we know that your height and weight were once the same, and right now there are two points on opposite sides of the world with the same temperature!

TRANSCRIPT

Page 1: Lesson 5: Continuity

. . . . . .

Section1.5Continuity

V63.0121.006/016, CalculusI

February2, 2010

Announcements

I OfficeHours: M,W 1:30–2:30, R 9–10(CIWW 726)I WrittenAssignment#2dueThursdayI FirstQuiz: FridayFebruary12inrecitation(§§1.1–1.4)

Page 2: Lesson 5: Continuity

. . . . . .

Hatsumon

Herearesomediscussionquestionstostart.

TrueorFalseAtsomepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtsomepointinyourlifeyourheight(ininches)wasequaltoyourweight(inpounds).

TrueorFalseRightnowthereareapairofpointsonoppositesidesoftheworldmeasuringtheexactsametemperature.

Page 3: Lesson 5: Continuity

. . . . . .

Hatsumon

Herearesomediscussionquestionstostart.

TrueorFalseAtsomepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtsomepointinyourlifeyourheight(ininches)wasequaltoyourweight(inpounds).

TrueorFalseRightnowthereareapairofpointsonoppositesidesoftheworldmeasuringtheexactsametemperature.

Page 4: Lesson 5: Continuity

. . . . . .

Hatsumon

Herearesomediscussionquestionstostart.

TrueorFalseAtsomepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtsomepointinyourlifeyourheight(ininches)wasequaltoyourweight(inpounds).

TrueorFalseRightnowthereareapairofpointsonoppositesidesoftheworldmeasuringtheexactsametemperature.

Page 5: Lesson 5: Continuity

. . . . . .

Outline

Continuity

TheIntermediateValueTheorem

BacktotheQuestions

Page 6: Lesson 5: Continuity

. . . . . .

Recall: DirectSubstitutionProperty

Theorem(TheDirectSubstitutionProperty)If f isapolynomialorarationalfunctionand a isinthedomainoff, then

limx→a

f(x) = f(a)

Thispropertyissousefulit’sworthnaming.

Page 7: Lesson 5: Continuity

. . . . . .

DefinitionofContinuity

Definition

I Let f beafunctiondefinednear a. Wesaythat f is continuousat aif

limx→a

f(x) = f(a).

I A function f iscontinuous ifitiscontinuousateverypointinitsdomain.

. .x

.y

.

.a

.f(a)

Page 8: Lesson 5: Continuity

. . . . . .

DefinitionofContinuity

Definition

I Let f beafunctiondefinednear a. Wesaythat f is continuousat aif

limx→a

f(x) = f(a).

I A function f iscontinuous ifitiscontinuousateverypointinitsdomain.

. .x

.y

.

.a

.f(a)

Page 9: Lesson 5: Continuity

. . . . . .

Scholium

DefinitionLet f beafunctiondefinednear a. Wesaythat f is continuousata if

limx→a

f(x) = f(a).

Therearethreeimportantpartstothisdefinition.I Thefunctionhastohavealimitat a,I thefunctionhastohaveavalueat a,I andthesevalueshavetoagree.

Page 10: Lesson 5: Continuity

. . . . . .

FreeTheorems

Theorem

(a) Anypolynomialiscontinuouseverywhere; thatis, itiscontinuouson R = (−∞,∞).

(b) Anyrationalfunctioniscontinuouswhereveritisdefined;thatis, itiscontinuousonitsdomain.

Page 11: Lesson 5: Continuity

. . . . . .

Showingafunctioniscontinuous

ExampleLet f(x) =

√4x+ 1. Showthat f iscontinuousat 2.

SolutionWewanttoshowthat lim

x→2f(x) = f(2). Wehave

limx→a

f(x) = limx→2

√4x+ 1 =

√limx→2

(4x+ 1) =√9 = 3 = f(2).

Eachstepcomesfromthelimitlaws.

QuestionAtwhichotherpointsis f continuous?

AnswerThefunction f iscontinuouson (−1/4,∞). Itis rightcontinuousat −1/4 since lim

x→−1/4+f(x) = f(−1/4).

Page 12: Lesson 5: Continuity

. . . . . .

Showingafunctioniscontinuous

ExampleLet f(x) =

√4x+ 1. Showthat f iscontinuousat 2.

SolutionWewanttoshowthat lim

x→2f(x) = f(2). Wehave

limx→a

f(x) = limx→2

√4x+ 1 =

√limx→2

(4x+ 1) =√9 = 3 = f(2).

Eachstepcomesfromthelimitlaws.

QuestionAtwhichotherpointsis f continuous?

AnswerThefunction f iscontinuouson (−1/4,∞). Itis rightcontinuousat −1/4 since lim

x→−1/4+f(x) = f(−1/4).

Page 13: Lesson 5: Continuity

. . . . . .

Showingafunctioniscontinuous

ExampleLet f(x) =

√4x+ 1. Showthat f iscontinuousat 2.

SolutionWewanttoshowthat lim

x→2f(x) = f(2). Wehave

limx→a

f(x) = limx→2

√4x+ 1 =

√limx→2

(4x+ 1) =√9 = 3 = f(2).

Eachstepcomesfromthelimitlaws.

QuestionAtwhichotherpointsis f continuous?

AnswerThefunction f iscontinuouson (−1/4,∞). Itis rightcontinuousat −1/4 since lim

x→−1/4+f(x) = f(−1/4).

Page 14: Lesson 5: Continuity

. . . . . .

Atwhichotherpoints?

Forreference: f(x) =√4x+ 1

I If a > −1/4, then limx→a

(4x+ 1) = 4a+ 1 > 0, so

limx→a

f(x) = limx→a

√4x+ 1 =

√limx→a

(4x+ 1) =√4a+ 1 = f(a)

and f iscontinuousat a.

I If a = −1/4, then 4x+ 1 < 0 totheleftof a, whichmeans√4x+ 1 isundefined. Still,

limx→a+

f(x) = limx→a+

√4x+ 1 =

√limx→a+

(4x+ 1) =√0 = 0 = f(a)

so f iscontinuousontherightat a = −1/4.

Page 15: Lesson 5: Continuity

. . . . . .

Atwhichotherpoints?

Forreference: f(x) =√4x+ 1

I If a > −1/4, then limx→a

(4x+ 1) = 4a+ 1 > 0, so

limx→a

f(x) = limx→a

√4x+ 1 =

√limx→a

(4x+ 1) =√4a+ 1 = f(a)

and f iscontinuousat a.I If a = −1/4, then 4x+ 1 < 0 totheleftof a, whichmeans√

4x+ 1 isundefined. Still,

limx→a+

f(x) = limx→a+

√4x+ 1 =

√limx→a+

(4x+ 1) =√0 = 0 = f(a)

so f iscontinuousontherightat a = −1/4.

Page 16: Lesson 5: Continuity

. . . . . .

Showingafunctioniscontinuous

ExampleLet f(x) =

√4x+ 1. Showthat f iscontinuousat 2.

SolutionWewanttoshowthat lim

x→2f(x) = f(2). Wehave

limx→a

f(x) = limx→2

√4x+ 1 =

√limx→2

(4x+ 1) =√9 = 3 = f(2).

Eachstepcomesfromthelimitlaws.

QuestionAtwhichotherpointsis f continuous?

AnswerThefunction f iscontinuouson (−1/4,∞).

Itis rightcontinuousat −1/4 since lim

x→−1/4+f(x) = f(−1/4).

Page 17: Lesson 5: Continuity

. . . . . .

Showingafunctioniscontinuous

ExampleLet f(x) =

√4x+ 1. Showthat f iscontinuousat 2.

SolutionWewanttoshowthat lim

x→2f(x) = f(2). Wehave

limx→a

f(x) = limx→2

√4x+ 1 =

√limx→2

(4x+ 1) =√9 = 3 = f(2).

Eachstepcomesfromthelimitlaws.

QuestionAtwhichotherpointsis f continuous?

AnswerThefunction f iscontinuouson (−1/4,∞). Itis rightcontinuousat −1/4 since lim

x→−1/4+f(x) = f(−1/4).

Page 18: Lesson 5: Continuity

. . . . . .

TheLimitLawsgiveContinuityLaws

TheoremIf f(x) and g(x) arecontinuousat a and c isaconstant, thenthefollowingfunctionsarealsocontinuousat a:

I (f+ g)(x)I (f− g)(x)I (cf)(x)I (fg)(x)

Ifg(x) (if g(a) ̸= 0)

Page 19: Lesson 5: Continuity

. . . . . .

Whyasumofcontinuousfunctionsiscontinuous

Wewanttoshowthat

limx→a

(f+ g)(x) = (f+ g)(a).

Wejustfollowournose:

limx→a

(f+ g)(x) = limx→a

[f(x) + g(x)] (defof f+ g)

= limx→a

f(x) + limx→a

g(x) (iftheselimitsexist)

= f(a) + g(a) (theydo; f and g arects.)

= (f+ g)(a) (defof f+ g again)

Page 20: Lesson 5: Continuity

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan .sec

.cot .csc

Page 21: Lesson 5: Continuity

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan .sec

.cot .csc

Page 22: Lesson 5: Continuity

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan

.sec

.cot .csc

Page 23: Lesson 5: Continuity

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan .sec

.cot .csc

Page 24: Lesson 5: Continuity

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan .sec

.cot

.csc

Page 25: Lesson 5: Continuity

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan .sec

.cot .csc

Page 26: Lesson 5: Continuity

. . . . . .

ExponentialandLogarithmicfunctionsarecontinuous

Foranybase a > 1,

I thefunction x 7→ ax iscontinuouson R

I thefunction loga iscontinuousonitsdomain: (0,∞)

I Inparticular ex andln = loge arecontinuousontheirdomains

.

.ax

.loga x

Page 27: Lesson 5: Continuity

. . . . . .

ExponentialandLogarithmicfunctionsarecontinuous

Foranybase a > 1,

I thefunction x 7→ ax iscontinuouson R

I thefunction loga iscontinuousonitsdomain: (0,∞)

I Inparticular ex andln = loge arecontinuousontheirdomains

.

.ax

.loga x

Page 28: Lesson 5: Continuity

. . . . . .

ExponentialandLogarithmicfunctionsarecontinuous

Foranybase a > 1,

I thefunction x 7→ ax iscontinuouson R

I thefunction loga iscontinuousonitsdomain: (0,∞)

I Inparticular ex andln = loge arecontinuousontheirdomains

.

.ax

.loga x

Page 29: Lesson 5: Continuity

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1

.

.

.cos−1.sec−1

.

..csc−1

.

.

.tan−1

.cot−1

Page 30: Lesson 5: Continuity

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1.

.

.cos−1

.sec−1

.

..csc−1

.

.

.tan−1

.cot−1

Page 31: Lesson 5: Continuity

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1.

.

.cos−1.sec−1

.

.

.csc−1

.

.

.tan−1

.cot−1

Page 32: Lesson 5: Continuity

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1.

.

.cos−1.sec−1

.

..csc−1

.

.

.tan−1

.cot−1

Page 33: Lesson 5: Continuity

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1.

.

.cos−1.sec−1

.

..csc−1

.

.

.tan−1

.cot−1

Page 34: Lesson 5: Continuity

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1.

.

.cos−1.sec−1

.

..csc−1

.

.

.tan−1

.cot−1

Page 35: Lesson 5: Continuity

. . . . . .

Whatcouldgowrong?

Inwhatwayscouldafunction f failtobecontinuousatapoint a?Lookagainatthedefinition:

limx→a

f(x) = f(a)

Page 36: Lesson 5: Continuity

. . . . . .

ContinuityFAIL

:Thelimitdoesnotexist

ExampleLet

f(x) =

{x2 if 0 ≤ x ≤ 1

2x if 1 < x ≤ 2

Atwhichpointsis f continuous?

SolutionAtanypoint a in [0, 2] besides 1, lim

x→af(x) = f(a) because f is

representedbyapolynomialnear a, andpolynomialshavethedirectsubstitutionproperty. However,

limx→1−

f(x) = limx→1−

x2 = 12 = 1

limx→1+

f(x) = limx→1+

2x = 2(1) = 2

So f hasnolimitat 1. Therefore f isnotcontinuousat 1.

Page 37: Lesson 5: Continuity

. . . . . .

ContinuityFAIL:Thelimitdoesnotexist

ExampleLet

f(x) =

{x2 if 0 ≤ x ≤ 1

2x if 1 < x ≤ 2

Atwhichpointsis f continuous?

SolutionAtanypoint a in [0, 2] besides 1, lim

x→af(x) = f(a) because f is

representedbyapolynomialnear a, andpolynomialshavethedirectsubstitutionproperty. However,

limx→1−

f(x) = limx→1−

x2 = 12 = 1

limx→1+

f(x) = limx→1+

2x = 2(1) = 2

So f hasnolimitat 1. Therefore f isnotcontinuousat 1.

Page 38: Lesson 5: Continuity

. . . . . .

GraphicalIllustrationofPitfall#1

. .x

.y

..−1

..1

..2

..−1

..1

..2

..3

..4

.

.

.

.

Page 39: Lesson 5: Continuity

. . . . . .

ContinuityFAIL

:Thefunctionhasnovalue

ExampleLet

f(x) =x2 + 2x+ 1

x+ 1

Atwhichpointsis f continuous?

SolutionBecause f isrational, itiscontinuousonitswholedomain. Notethat −1 isnotinthedomainof f, so f isnotcontinuousthere.

Page 40: Lesson 5: Continuity

. . . . . .

ContinuityFAIL:Thefunctionhasnovalue

ExampleLet

f(x) =x2 + 2x+ 1

x+ 1

Atwhichpointsis f continuous?

SolutionBecause f isrational, itiscontinuousonitswholedomain. Notethat −1 isnotinthedomainof f, so f isnotcontinuousthere.

Page 41: Lesson 5: Continuity

. . . . . .

GraphicalIllustrationofPitfall#2

. .x

.y

...−1

. .1

f cannotbecontinuouswhereithasnovalue.

Page 42: Lesson 5: Continuity

. . . . . .

ContinuityFAIL

:functionvalue ̸= limit

ExampleLet

f(x) =

{7 if x ̸= 1

π if x = 1

Atwhichpointsis f continuous?

Solutionf isnotcontinuousat 1 because f(1) = π but lim

x→1f(x) = 7.

Page 43: Lesson 5: Continuity

. . . . . .

ContinuityFAIL:functionvalue ̸= limit

ExampleLet

f(x) =

{7 if x ̸= 1

π if x = 1

Atwhichpointsis f continuous?

Solutionf isnotcontinuousat 1 because f(1) = π but lim

x→1f(x) = 7.

Page 44: Lesson 5: Continuity

. . . . . .

GraphicalIllustrationofPitfall#3

. .x

.y

..π

..7

..1

.

.

Page 45: Lesson 5: Continuity

. . . . . .

Specialtypesofdiscontinuites

removablediscontinuity Thelimit limx→a

f(x) exists, but f isnot

definedat a oritsvalueat a isnotequaltothelimitat a.

Byre-defining f(a) = limx→a

f(x), f canbemade

continuousat a

jumpdiscontinuity Thelimits limx→a−

f(x) and limx→a+

f(x) exist, but

aredifferent.

Thefunctioncannotbemadecontinuousbychangingasinglevalue.

Page 46: Lesson 5: Continuity

. . . . . .

Graphicalrepresentationsofdiscontinuities

. .x

.y

..π

..7

..1

.

.

..Presto! continuous!

removable

. .x

.y

..1

..1

..2

.

.

.

.

. .continuous?.

. .continuous?

. .continuous?

jump

Page 47: Lesson 5: Continuity

. . . . . .

Graphicalrepresentationsofdiscontinuities

. .x

.y

..π

..7

..1

.

.

..Presto! continuous!

removable

. .x

.y

..1

..1

..2

.

.

.

.

. .continuous?.

. .continuous?

. .continuous?

jump

Page 48: Lesson 5: Continuity

. . . . . .

Graphicalrepresentationsofdiscontinuities

. .x

.y

..π

..7

..1

.

.

..Presto! continuous!

removable

. .x

.y

..1

..1

..2

.

.

.

.

. .continuous?

.

. .continuous?

. .continuous?

jump

Page 49: Lesson 5: Continuity

. . . . . .

Graphicalrepresentationsofdiscontinuities

. .x

.y

..π

..7

..1

.

.

..Presto! continuous!

removable

. .x

.y

..1

..1

..2

.

.

.

.

. .continuous?

.

. .continuous?

. .continuous?

jump

Page 50: Lesson 5: Continuity

. . . . . .

Graphicalrepresentationsofdiscontinuities

. .x

.y

..π

..7

..1

.

.

..Presto! continuous!

removable

. .x

.y

..1

..1

..2

.

.

.

.

. .continuous?

.

. .continuous?

. .continuous?

jump

Page 51: Lesson 5: Continuity

. . . . . .

Specialtypesofdiscontinuites

removablediscontinuity Thelimit limx→a

f(x) exists, but f isnot

definedat a oritsvalueat a isnotequaltothelimitat a. Byre-defining f(a) = lim

x→af(x), f canbemade

continuousat a

jumpdiscontinuity Thelimits limx→a−

f(x) and limx→a+

f(x) exist, but

aredifferent.

Thefunctioncannotbemadecontinuousbychangingasinglevalue.

Page 52: Lesson 5: Continuity

. . . . . .

Specialtypesofdiscontinuites

removablediscontinuity Thelimit limx→a

f(x) exists, but f isnot

definedat a oritsvalueat a isnotequaltothelimitat a. Byre-defining f(a) = lim

x→af(x), f canbemade

continuousat a

jumpdiscontinuity Thelimits limx→a−

f(x) and limx→a+

f(x) exist, but

aredifferent. Thefunctioncannotbemadecontinuousbychangingasinglevalue.

Page 53: Lesson 5: Continuity

. . . . . .

Thegreatestintegerfunction

[[x]] isthegreatestinteger ≤ x.

x [[x]]0 01 1

1.5 11.9 12.1 2

−0.5 −1−0.9 −1−1.1 −2

. .x

.y

..−2

..−2

..−1

..−1

..1

..1

..2

..2

..3

..3

. .

. .

. .

. .

. ..y = [[x]]

Thisfunctionhasajumpdiscontinuityateachinteger.

Page 54: Lesson 5: Continuity

. . . . . .

Thegreatestintegerfunction

[[x]] isthegreatestinteger ≤ x.

x [[x]]0 01 1

1.5 11.9 12.1 2

−0.5 −1−0.9 −1−1.1 −2

. .x

.y

..−2

..−2

..−1

..−1

..1

..1

..2

..2

..3

..3

. .

. .

. .

. .

. ..y = [[x]]

Thisfunctionhasajumpdiscontinuityateachinteger.

Page 55: Lesson 5: Continuity

. . . . . .

Outline

Continuity

TheIntermediateValueTheorem

BacktotheQuestions

Page 56: Lesson 5: Continuity

. . . . . .

A BigTimeTheorem

Theorem(TheIntermediateValueTheorem)Supposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

Page 57: Lesson 5: Continuity

. . . . . .

IllustratingtheIVT

Supposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

..

.c1

.

.c2

.

.c3

Page 58: Lesson 5: Continuity

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b]

andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

..

.c1

.

.c2

.

.c3

Page 59: Lesson 5: Continuity

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b]

andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

..

.c1

.

.c2

.

.c3

Page 60: Lesson 5: Continuity

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b).

Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

..

.c1

.

.c2

.

.c3

Page 61: Lesson 5: Continuity

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

.

.

.c1

.

.c2

.

.c3

Page 62: Lesson 5: Continuity

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

..

.c1

.

.c2

.

.c3

Page 63: Lesson 5: Continuity

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

.

.

.c1

.

.c2

.

.c3

Page 64: Lesson 5: Continuity

. . . . . .

WhattheIVT doesnotsay

TheIntermediateValueTheoremisan“existence”theorem.I Itdoesnotsayhowmanysuch c exist.I Italsodoesnotsayhowtofind c.

Still, itcanbeusediniterationorinconjunctionwithothertheoremstoanswerthesequestions.

Page 65: Lesson 5: Continuity

. . . . . .

UsingtheIVT

ExampleSupposeweareunawareofthesquarerootfunctionandthatit’scontinuous. Provethatthesquarerootoftwoexists.

Proof.Let f(x) = x2, acontinuousfunctionon [1, 2]. Note f(1) = 1 andf(2) = 4. Since 2 isbetween 1 and 4, thereexistsapoint c in(1, 2) suchthat

f(c) = c2 = 2.

Infact, wecan“narrowin”onthesquarerootof 2 by themethodofbisections.

Page 66: Lesson 5: Continuity

. . . . . .

UsingtheIVT

ExampleSupposeweareunawareofthesquarerootfunctionandthatit’scontinuous. Provethatthesquarerootoftwoexists.

Proof.Let f(x) = x2, acontinuousfunctionon [1, 2].

Note f(1) = 1 andf(2) = 4. Since 2 isbetween 1 and 4, thereexistsapoint c in(1, 2) suchthat

f(c) = c2 = 2.

Infact, wecan“narrowin”onthesquarerootof 2 by themethodofbisections.

Page 67: Lesson 5: Continuity

. . . . . .

UsingtheIVT

ExampleSupposeweareunawareofthesquarerootfunctionandthatit’scontinuous. Provethatthesquarerootoftwoexists.

Proof.Let f(x) = x2, acontinuousfunctionon [1, 2]. Note f(1) = 1 andf(2) = 4. Since 2 isbetween 1 and 4, thereexistsapoint c in(1, 2) suchthat

f(c) = c2 = 2.

Infact, wecan“narrowin”onthesquarerootof 2 by themethodofbisections.

Page 68: Lesson 5: Continuity

. . . . . .

UsingtheIVT

ExampleSupposeweareunawareofthesquarerootfunctionandthatit’scontinuous. Provethatthesquarerootoftwoexists.

Proof.Let f(x) = x2, acontinuousfunctionon [1, 2]. Note f(1) = 1 andf(2) = 4. Since 2 isbetween 1 and 4, thereexistsapoint c in(1, 2) suchthat

f(c) = c2 = 2.

Infact, wecan“narrowin”onthesquarerootof 2 by themethodofbisections.

Page 69: Lesson 5: Continuity

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

Page 70: Lesson 5: Continuity

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

Page 71: Lesson 5: Continuity

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

Page 72: Lesson 5: Continuity

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

Page 73: Lesson 5: Continuity

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

Page 74: Lesson 5: Continuity

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

Page 75: Lesson 5: Continuity

. . . . . .

UsingtheIVT

ExampleLet f(x) = x3 − x− 1. Showthatthereisazerofor f.

Solutionf(1) = −1 and f(2) = 5. Sothereisazerobetween 1 and 2.

(Morecarefulanalysisyields 1.32472.)

Page 76: Lesson 5: Continuity

. . . . . .

UsingtheIVT

ExampleLet f(x) = x3 − x− 1. Showthatthereisazerofor f.

Solutionf(1) = −1 and f(2) = 5. Sothereisazerobetween 1 and 2.(Morecarefulanalysisyields 1.32472.)

Page 77: Lesson 5: Continuity

. . . . . .

Outline

Continuity

TheIntermediateValueTheorem

BacktotheQuestions

Page 78: Lesson 5: Continuity

. . . . . .

BacktotheQuestions

TrueorFalseAtonepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtonepointinyourlifeyourheightininchesequaledyourweightinpounds.

TrueorFalseRightnowtherearetwopointsonoppositesidesoftheEarthwithexactlythesametemperature.

Page 79: Lesson 5: Continuity

. . . . . .

Question1: True!

I Let h(t) beheight, whichvariescontinuouslyovertime.I Then h(birth) < 3 ft and h(now) > 3 ft.I SobytheIVT thereisapoint c in (birth, now) where

h(c) = 3.

Page 80: Lesson 5: Continuity

. . . . . .

BacktotheQuestions

TrueorFalseAtonepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtonepointinyourlifeyourheightininchesequaledyourweightinpounds.

TrueorFalseRightnowtherearetwopointsonoppositesidesoftheEarthwithexactlythesametemperature.

Page 81: Lesson 5: Continuity

. . . . . .

Question2: True!

I Let h(t) beheightininchesand w(t) beweightinpounds,bothvaryingcontinuouslyovertime.

I Let f(t) = h(t)−w(t).I Formostofus(callyourmom), f(birth) > 0 and f(now) < 0.I SobytheIVT thereisapoint c in (birth, now) where

f(c) = 0.I Inotherwords,

h(c)−w(c) = 0 ⇐⇒ h(c) = w(c).

Page 82: Lesson 5: Continuity

. . . . . .

BacktotheQuestions

TrueorFalseAtonepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtonepointinyourlifeyourheightininchesequaledyourweightinpounds.

TrueorFalseRightnowtherearetwopointsonoppositesidesoftheEarthwithexactlythesametemperature.

Page 83: Lesson 5: Continuity

. . . . . .

Question3

I Let T(θ) bethetemperatureatthepointontheequatoratlongitude θ.

I Howcanyouexpressthestatementthatthetemperatureonoppositesidesisthesame?

I Howcanyouensurethisistrue?

Page 84: Lesson 5: Continuity

. . . . . .

Question3: True!

I Let f(θ) = T(θ)− T(θ + 180◦)I Then

f(0) = T(0)− T(180)

whilef(180) = T(180)− T(360) = −f(0)

I Sosomewherebetween 0 and 180 thereisapoint θ wheref(θ) = 0!

Page 85: Lesson 5: Continuity

. . . . . .

Whathavewelearnedtoday?

I Definition: afunctioniscontinuousatapointifthelimitofthefunctionatthatpointagreeswiththevalueofthefunctionatthatpoint.

I Weoftenmakeafundamentalassumptionthatfunctionswemeetinnaturearecontinuous.

I TheIntermediateValueTheoremisabasicpropertyofrealnumbersthatweneedandusealot.