lic lab manual_beccec407r01

73
8/13/2019 Lic Lab Manual_beccec407r01 http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 1/73  SHANMUGHA ARTS, SCIENCE, TECHNOLOGY AND RESEARCH ACADEMY (SASTRA University) TIRUMALAISAMUDRAM THANJAVUR – 613 401. COURSE CODE : BECCEC 407 R01 / MCSCEC 407 COURSE NAME : LINEAR INTEGRATED CIRCUITS LABORATORY BRANCH: ELECTRONICS AND COMMUNICATION ENGINEERING SEMESTER: IV 2013 - 14

Upload: elamaranvlsi

Post on 04-Jun-2018

227 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 1/73

SHANMUGHA

ARTS, SCIENCE, TECHNOLOGY AND RESEARCH ACADEMY

(SASTRA University)

TIRUMALAISAMUDRAM

THANJAVUR – 613 401.

COURSE CODE : BECCEC 407 R01 / MCSCEC 407

COURSE NAME : LINEAR INTEGRATED CIRCUITS

LABORATORY

BRANCH: ELECTRONICS AND COMMUNICATION

ENGINEERING

SEMESTER: IV

2013 - 14

Page 2: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 2/73

LIST OF EXPERIMENTS

1. Inverting and non- inverting and differential amplifier using op-amp

2. Applications of op-amp: Summer, Subtractor, integrator and differentiator

3. Inverting and non-inverting Zero crossing detector and Schmitt trigger using

op-amp

4. Precision half wave and full wave rectifier and clippers using op-amp

5. Wein bridge oscillator and RC phase shift oscillator using op-amp

6. Astable and Monostable multivibrator using op-amp

7. Triangular wave generation using

(i) minimum number of components

(ii) astable multivibrator and integrator

8. Second order low pass and high pass filter and notch filter for the given cutoff

frequency using op-amp

9. Astable and Monostable multivibrator using IC 555 timer

10. Design of PLL using discrete components

11. Construction of D/A and A/D converter using op-amp

(using standard 8-bit IC)

12. Voltage regulator using IC723 (load and line regulation)

Page 3: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 3/73

Expt. No: 1 Dt:

INVERTING AMPLIFIER, NON-INVERTING AMPLIFIER AND

DIFFERENTIAL AMPLIFIER USING OP-AMP

AIM:

i) To design an inverting amplifier using op-amp for a gain of -------------------

ii) To design a non-inverting amplifier using op-amp for a gain of -------------------

iii) To design a differential amplifier using op-amp for a gain of -------------------,V1= -

------- and V2= ---------

APPARATUS REQUIRED:

PIN DIAGRAM:

SPECIFICATIONS:

Page 4: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 4/73

CIRCUIT DIAGRAM:

Inverting amplifier

Non inverting amplifier:

Differential amplifier:

Page 5: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 5/73

DESIGN:

Inverting amplifier

Given gain =V A , Let =2 R

⎟⎟ ⎠ ⎞

⎜⎜⎝ ⎛ −=

1

2

R

R AV

=1 R

Non-Inverting amplifier

Given gain =V A , Let =2 R

⎟⎟

⎞⎜⎜

⎛ +=

1

21 R

R AV

=1 R

Differential amplifier

Given =V A , =1V , =2V

⎤⎢

+⎟⎟

⎞⎜⎜

⎛ ⎟⎟

⎞⎜⎜

⎛ ++⎟⎟

⎞⎜⎜

⎛ −=

34

4

1

22

1

21 1

R R

R

R

RV

R

RV V

O

If f R R R == 42 and R R R == 31

( )12

1

2 V V R

RV O −⎟⎟

⎞⎜⎜⎝

⎛ =

Let =1 R

=2 R

Page 6: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 6/73

MODEL GRAPH:

Inverting amplifier

PROCEDURE:

1. Wire the circuit in the breadboard as shown in the diagram

2. Give the ac input signal Vin from the AFO

3. Note the output signal Vo from the CRO and calculate the practical gain using the

formulain

O

V V

V A =

4. Calculate the theoretical gain using the formula ⎟⎟ ⎠

⎜⎜⎝

−= 1

2

R

R

AV for inverting

amplifier and ⎟⎟ ⎠

⎞⎜⎜⎝

⎛ +=

1

21 R

R AV for non-inverting amplifier

5. Compare the practical gain and the theoretical gain

6. Draw the input and output waveform in the graph for inverting and non-inverting

amplifier

Page 7: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 7/73

TABULATION:

Inverting amplifier

Waveform

Numberof

divisions

in X axis

Numberof

divisions

in Y axis

Volts/divisionin V

Time/divisionin ms

Totalamplitude

in volts

Totaltime

in ms

Frequencyin Hz

Input

Output

Non inverting amplifier

Wave

form

Number

of

divisions

in X axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Input

Output

Differential amplifier

Input 1

V1

Input 2

V2

Output

Vo (Theoretical)=(R f /R)[V1-V2]

Output

Vo (Practical)

Page 8: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 8/73

RESULT & INFERENCE:

Post questions

1. List the ideal characteristics f op-amp

2. How the op-amp gets its name?

3. What circuit is used to check the working of the 741 op-amp?

4. Give the other name for differential amplifier?

5. State the basic assumptions of op-amp.

Page 9: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 9/73

Expt. No: 2 Dt:

APPLICATIONS OF OP-AMP: SUMMER, SUBTRACTOR, INTEGRATOR

AND DIFFERENTIATOR

AIM:

i) To design a summer using op-amp for V1= ---------- and V2= ------------- to get an

output of Vo = -(V1+V2)

ii) To design a subtractor using op-amp for V1= ---------- and V2= ------------- to get an

output of Vo = V1-V2

iii) To construct an integrator and differentiator using op-amp for a gain of -------------

-

APPARATUS REQUIRED:

PIN DIAGRAM:

CIRCUIT DIAGRAM:

Inverting summer

Page 10: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 10/73

Non inverting summer Amplifier

Subtractor

Integrator

Page 11: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 11/73

Differentiator

DESIGN: Summer (inverting)

Given =1V and =2V , Let = f R

⎥⎦

⎤⎢⎣

⎡⎟⎟ ⎠

⎞⎜⎜⎝

⎛ +⎟⎟

⎞⎜⎜⎝

⎛ −= 2

2

1

1

0 V R

RV

R

RV

f f

If f R R R ==

21 then ( )21 V V V o +−=

Summer (Non-inverting)

Given =1V and =2V , Let = f R

⎥⎥⎥⎥

⎢⎢⎢⎢

⎟⎟⎟⎟

⎜⎜⎜⎜

+

+

⎟⎟ ⎠

⎞⎜⎜⎝

⎛ +=

21

2

2

1

1

0 111

R R

R

V

R

V

R

RV

f

If f R R R R === 21 ( )21 V V V o +=

Subtractor

Given =1

V and =2

V , Let = R

⎥⎦

⎤⎢⎣

⎡⎟⎟ ⎠

⎞⎜⎜⎝

⎛ −⎟⎟

⎞⎜⎜⎝

+⎟⎟ ⎠

⎞⎜⎜⎝

⎛ += 2

1

21

43

4

1

20 1 V

R

RV

R R

R

R

RV

If R R R R R ==== 4321 then ( )21 V V V o −=

Page 12: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 12/73

Integrator

Choose RC T π 2= where T is the time period of the input signal

Let =C Then = R

∫ −⎟ ⎠

⎞⎜⎝

⎛ −=2

0

)(0

1

π

dt V RC

V p pin

Differentiator

Select given frequency fa = 1/(2πRC), Assume C and find R( output)

MODEL GRAPH:

Integrator

Page 13: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 13/73

Differentiator

PROCEDURE:

Summer and subtractor

1. Wire the circuit in the breadboard as shown in the diagram

2. Give the dc input signal V1and V2 using the variable DC power supply

3. Note the output signal Vo from the CRO or multimeter

4. Calculate the theoretical Vo using the formula )(210 V V V +−= for summer and

210 V V V −= for subtractor

5. Compare the practical Vo and the theoretical Vo

6. Draw the input and output waveforms in the graph

Page 14: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 14/73

Integrator and differentiator

1. Wire the circuit as shown in the diagram

2. Give the ac input signal Vin using AFO

3. Note the output signal Vo from the CRO

4. Draw the input and output waveforms in the graph

TABULATION:

Inverting summer

Input 1

V1

Input 2

V2

Output

Vo (Theoretical)=-(V1+V2)

Output

Vo (Practical)

Non Inverting Summer

Input 1

V1

Input 2

V2

Output

Vo (Theoretical)=(V1+V2)

Output

Vo (Practical)

Page 15: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 15/73

Subtractor

Input 1

V1

Input 2

V2

Output

Vo (Theoretical)=V1-V2

Output

Vo (Practical)

Integrator

Wave

form

Number

of

divisions

in X axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude in

volts

Total

time in

ms

Frequency

in Hz

Input

Output

Page 16: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 16/73

Differentiator

Wave

form

Number

of

divisions

in X axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude in

volts

Total

time in

ms

Frequency

in Hz

Input

Output

RESULT and INFERENCE:

Post questions

1. What is the difference between summer and summing amplifier?

2. How can you convert a differential amplifier to a subtractor?

3. What are the limitations of ordinary op-amp differentiator?

4. Give two differences between integrator and differentiator.

5. List a few applications of integrator and differentiator

Page 17: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 17/73

Expt. No: 3 Dt:

INVERTING AND NON-INVERTING ZERO CROSSING DETECTOR AND

SCHMITT TRIGGER USING OP-AMP

AIM:

i) To construct an inverting zero crossing detector using op-amp

ii) To construct a non-inverting zero crossing detector using op-amp

iii) To design a Schmitt trigger using op-amp for VUT= ------------- and VLT= --------

APPARATUS REQUIRED:

PIN DIAGRAM:

CIRCUIT DIAGRAM:

Inverting zero crossing detector

Page 18: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 18/73

Non inverting zero crossing detector

Schmitt trigger

DESIGN:

Schmitt trigger

Given =UT V , = LT V , Let =)( CC sat V V , Assume =2 R

( ) ⎥⎦

⎤⎢⎣

++=

21

2

R R

RV V sat UT

( ) ⎥⎦

⎤⎢⎣

+−=

21

2

R R

RV V sat LT

=1 R

Page 19: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 19/73

GRAPH:

Inverting zero crossing detector

Non Inverting zero crossing detector

Schmitt trigger

Page 20: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 20/73

PROCEDURE:

1. Wire the circuit in the breadboard as shown in the diagram

2. Give the ac input signal Vin from the AFO

3. Note the output signal Vo from the CRO

4. Compare the practical VUT, VLT and the theoretical VUT, VLT for Schmitt trigger.

5. Draw the input and output waveform in the graph

TABULATION:

Inverting zero crossing detector

Wave

form

Numbe

r of

division

s in X

axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Input

Output

Page 21: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 21/73

Non inverting zero crossing detector

Wave

form

Numbe

r of

division

s in X

axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Input

Output

Schmitt trigger

Wave

form

Number

of

divisionsin X axis

Number

of

divisionsin Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Input

Output

Page 22: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 22/73

RESULT and INFERENCE:

Post questions

1. What is a comparator?

2. What is the other name for zero crossing detector?

3. Define hysteresis.

4. What is the other name for Schmitt trigger? Why it is called so?

Page 23: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 23/73

Expt. No: 4 Dt:

PRECISION HALF WAVE RECTIFIER, FULL WAVE RECTIFIER AND

CLIPPERS USING OP-AMP

AIM:

i) To construct a precision half wave rectifier using op-amp

ii) To construct a precision full wave rectifier using op-amp

iii) To construct a clipper circuit using op-amp to clip the given input

APPARATUS REQUIRED:

PIN DIAGRAM:

CIRCUIT DIAGRAM:

Half wave rectifier

Page 24: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 24/73

Full wave rectifier

Positive clipper

GRAPH: Half wave rectifier

Page 25: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 25/73

Full wave rectifier

Positive clipper

PROCEDURE:

1. Wire the circuit in the breadboard as shown in the diagram

2. Give the ac input signal Vi from the AFO

3. Note the output signal Vo from the CRO

4. Draw the input and output waveform in the graph

Page 26: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 26/73

TABULATION:

Half wave rectifier

Wave

form

Number

of

divisionsin X axis

Number

of

divisionsin Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Input

Output

Full wave rectifier

Wave

form

Number

of

divisions

in X axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Input

Output

Page 27: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 27/73

Clipper

Wave

form

Number

of

divisions

in X axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Input

Output

RESULT and INFERENCE:

Post questions

1. What is the difference between ordinary rectifier and precision rectifier?

2. What is the function of rectifier?

3. Give two uses of rectifier and clipper.

4. How is clamper different from clipper?

Page 28: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 28/73

Expt. No: 5 Dt:

WEIN BRIDGE OSCILLATOR AND RC PHASE SHIFT OSCILLATOR

USING

OP-AMP

AIM

i) To design a Wein bridge oscillator using op-amp for f o = -------------------

ii) To design a RC phase shift oscillator using op-amp for f o = -------------------

APPARATUS REQUIRED

PIN DIAGRAM

CIRCUIT DIAGRAM:

Wein bridge oscillator

Page 29: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 29/73

RC phase shift oscillator

DESIGN:

Wein bridge oscillator

Given =o f , Let C C C == 21 and R R R == 21 ,

( )21212

1

C C R R f o

π = ,

122211

12

C RC RC R

C R

++= β 432 R R =

RC f

oπ 2

1= ,

3

1= β

= R

Let =4 R

=3 R

RC phase shift oscillator

Given =o f , Let C C C C === 321 , R R R R === 321

62

1

RC f o

π =

= R

Page 30: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 30/73

GRAPH :

Wein bridge and RC phase shift oscillator

PROCEDURE: 1. Wire the circuit in the breadboard as shown in the diagram

2. Note the output signal Vo from the CRO and calculate the practical frequency

of oscillation using the formula f o= 1/T for wein bridge and RC phase shiftoscillator

3. Calculate the theoretical frequency of oscillation using the formula

RC f o

π 2

1= for Wein bridge and

62

1

RC f o

π = for RC phase shift oscillator

4. Compare the practical frequency of oscillation and the theoretical frequency of

oscillation for both Wein bridge and RC phase shift oscillator

5. Draw the output waveform in the graph

TABULATION:

Wein bridge oscillator

Wave

form

Number

of

divisions

in X axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Input

Output

Page 31: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 31/73

RC phase shift oscillator

Wave

form

Number

of

divisions

in X axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Input

Output

RESULT and INFERENCE:

Post questions

1. What is an oscillator?

2. State Barkhausen criterion

3. Name two audio frequency oscillators.

4. What sort of feedback does RC phase shift and Wein bridge oscillator employ?

Page 32: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 32/73

Expt. No: 6 Dt:

ASTABLE AND MONOSTABLE MULTIVIBRATOR USING OP-AMP

AIM:

i) To design an Astable multivibrator using op-amp for f o = -------------------

ii) To design a monostable multivibrator using op-amp for f o = -------------------

APPARATUS REQUIRED:

PIN DIAGRAM:

CIRCUIT DIAGRAM:

Astable multivibrator

Page 33: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 33/73

Monostable multivibrator

DESIGN:

Astable multivibrator

Given =o f , Let =C , Assume21 R R =

⎥⎦

⎤⎢⎣

⎡ +=

2

212ln2

1

R

R R RC

f o

= R

Monostable multivibrator

Given =o f , Let =C ,

β −

⎟⎟ ⎠

⎞⎜⎜⎝

⎛ +

=1

1

ln sat

D

V

V

RC T ,23

3

R R

R

+= β

Assume 32 R R = , If Dsat V V ⟩⟩ then RC T 69.0= and

RC

f o

69.0

1= , hence = R

Page 34: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 34/73

GRAPH:

Astable multivibrator

Monostable multivibrator

PROCEDURE:

1. Wire the circuit in the breadboard as shown in the diagram

3. Note the output signal Vo from the CRO and calculate the practical frequency using

the formula f o=1/T

4. Calculate the theoretical frequency using the formula f o=

5. Compare the practical frequency and the theoretical frequency

Page 35: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 35/73

6. Draw the output waveform in the graph

TABULATION:

Astable multivibrator

Waveform

Numberof

divisions

in X axis

Numberof

divisions

in Y axis

Volts/divisionin V

Time/divisionin ms

Totalamplitude

in volts

Totaltime

in ms

Frequencyin Hz

Output

voltage

Voltage

across the

capacitor

Monostable multivibrator

Wave

form

Number

of

divisions

in X axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Trigger

Input Tp

Output

voltage

Voltage

across the

capacitor

Page 36: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 36/73

RESULT and INFERENCE:

Post questions

1. What is a multivibrator?

2. Give the difference between astable and monostable multivibrator.

3. List two applications of astable and monostable multivibrator.

4. How can you generate a variable amplitude signal from astable multivibrator?

Page 37: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 37/73

Expt. No: 7 Dt:

TRIANGULAR WAVE GENERATOR

AIM:

i) To design a triangular wave generator using op-amp for f o = ----------- and =)(0 PPV ----------without using astable multivibrator.

ii) To design a triangular wave generator using op-amp for f o = ------------------- using

astable multivibrator and integrator

APPARATUS REQUIRED:

PIN DIAGRAM:

CIRCUIT DIAGRAM:

Triangular wave generator using minimum number of components

Page 38: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 38/73

Triangular wave generator using astable multivibrator and integrator

DESIGN:

Triangular wave generator using astable multivibrator and integrator

Square wave Generator:

⎟⎟ ⎠

⎞⎜⎜⎝

⎛ +=

1

122ln2

R

R RC RT f

, Assume 21 16.1 R R =

C RT f 2=

Given =0 f

Let =C and =1 R

= f R , =2 R

Integrator:

Take T C R ⟩⟩13

T C R 1013 =

Let =1C , =3 R

34 10 R R = Therefore =4 R

Triangular wave generator using minimum number of components

Given =0 f and =)(0 PPV , V V sat 12=

Page 39: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 39/73

Let =1 R and =C

sat PP V R

RV

1

2)(0 2=

=2

R

1

234

R

CR RT = Therefore =3 R

MODEL GRAPH:

Triangular wave generator using astable multivibrator and integrator

Triangular wave generator using minimum number of components

PROCEDURE:

1. Wire the circuit in the breadboard as shown in the diagram

2. Note the output signal Vo from the CRO and calculate the practical frequency using

the formula f o=1/T

Page 40: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 40/73

3. Calculate the theoretical frequency fo = 1/T

5. Compare the practical frequency and the theoretical frequency

6. Draw the input and output waveform in the graph

TABULATION:

Triangular wave generator using astable multivibrator and integrator

Wave

form

Number

of

divisions

in X axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Output

VO1

VO2

Triangular wave generator using minimum number of components

Wave

form

Number

of

divisions

in X axis

Number

of

divisions

in Y axis

Volts/division

in V

Time/division

in ms

Total

amplitude

in volts

Total

time

in ms

Frequency

in Hz

Output

VO1

VO2

RESULT and INFERENCES:

Post questions

1. Give two differences between triangular waves and saw tooth wave.

2. How can you convert triangular wave to saw tooth wave?

Page 41: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 41/73

Expt. No: 8 Dt:

SECOND ORDER LOW PASS FILTER, HIGH PASS FILTER AND NOTCH

FILTER

AIM:

i) To design a second order Butterworth low pass filter for a upper cut- off frequency

of -------------------

ii) To design a second order Butterworth high pass filter for a lower cut- off frequency

of -----------------

iii) To design a notch filter for a notch frequency of -------------------

APPARATUS REQUIRED:

PIN DIAGRAM:

CIRCUIT DIAGRAM:

Low pass filter

Page 42: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 42/73

High pass filter

Notch filter

Or

DESIGN:

Low pass filter

Given =0 f , Let =C

R R R == 21 and C C C == 21

RC f

π 2

10 =

Page 43: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 43/73

= R

For 2=n 414.1=α 586.13 =−= α o A

3

41 R

R A

o +=

Let =4 R

=3 R

High pass filter

Given =0 f , Let =C

R R R == 21 and C C C == 21

RC f

π 2

10 =

= R

For 2=n 414.1=α 586.13 =−= α o A

3

41 R

R A

o +=

Let =4 R

=3 R

Notch filter

RC f

π 2

10 =

Let =C

= R

1 R and 2 R are for adjustment of gain

Page 44: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 44/73

MODEL GRAPH:

Low pass filter

High pass filter

Notch filter

PROCEDURE:

1. Wire the circuit as shown in the diagram

2. Give the ac input signal Vin from the AFO

3. Note the output signal Vo from the CRO for different frequencies and calculate the

practical gain in dB using the formula AV= 20 log (Vo/Vin)

4. Compare the practical gain and the theoretical gain

6. Draw the frequency response in the semi log graph for all the filters

Page 45: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 45/73

TABULATION:

Low pass filter

Vin =

Frequency in Hz Output voltage

Vo in volts

Gain AV= Vo/Vin Gain in dB

20log(Vo/Vin)

Page 46: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 46/73

High pass filter

Vin =

Frequency in Hz Output voltage

Vo in volts

Gain AV= Vo/Vin Gain in dB

20log(Vo/Vin)

Page 47: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 47/73

Notch filter

Vin =

Frequency in Hz Output voltage

Vo in volts

Gain AV= Vo/Vin Gain in dB

20log(Vo/Vin)

Page 48: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 48/73

RESULT and INFERENCE:

Post questions

1. What is the need for active filters?

2. Why Butterworth filters are widely used?

3. What is sallen key filter?

4. How can you get a response closer to ideal characteristics?

5. Give one application for notch filter.

Page 49: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 49/73

Expt. No: 9 Dt:

ASTABLE AND MONOSTABLE MULTIVIBRATOR USING IC 555 Timer

AIM:

i) To design an astable multivibrator using IC 555 Timer for a = HIGH T -------- and= LOW T ---------

ii) To design a monostable multivibrator using IC 555 Timer for =ON T --------

APPARATUS REQUIRED:

PIN DIAGRAM:

Internal circuit of IC 555

Page 50: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 50/73

CIRCUIT DIAGRAM: Astable multivibrator

Monostable multivibrator

Page 51: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 51/73

DESIGN:

Astable multivibrator

Given = HIGH T and = LOW T

( )C R RT ba HIGH += 69.0 and C RT b LOW 69.0=

Let =C

=b R

=a R

Monostable multivibrator

111.1 C RT =

Let =1C

Therefore =1 R

MODEL GRAPH:

Astable multivibrator

Page 52: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 52/73

Monostable multivibrator

PROCEDURE:

Astable multivibator

1. Wire the circuit as shown in the diagram

2. Note the output signal Vo and voltage across the capacitor VC from the CRO and

calculate the HIGH T and LOW T .

4. Calculate the theoretical HIGH T and LOW T using the formula ( )C R RT ba HIGH += 69.0

and C RT b LOW 69.0= .

5. Compare the practical HIGH T and LOW T and theoretical HIGH T and LOW T .

6. Draw the output waveform and voltage across the capacitor in the graph.

Monostable multivibator

1. Wire the circuit as shown in the diagram

2. Give the input trigger pulse and note the output signal Vo and voltage across the

capacitor VC from the CRO .Calculate the pulse width T .

4. Calculate the theoretical T using the formula111.1 C RT = .

5. Compare the practical T and theoretical T .

6. Draw the trigger input, output waveform and voltage across the capacitor in the

graph.

Page 53: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 53/73

TABULATION:

Astable multivibrator

Wave

form

Number of

divisions in

X axis

Number of

divisions in

Y axis

Time/division

in ms

Volts/division

in V

Total

time in

ms

Total

amplitude in

volts

Output

Vo THIGH =

TLOW =

THIGH =

TLOW =

Vc

Monostable multivibrator

Wave

form

Number

of

divisions

in X axis

Number

of

divisions

in Y axis

Time/division

in ms

Volts/division

in V

Total

time in

ms

Total

amplitude in

volts

TriggerInput

Output

Voltage

across the

capacitor

VC

Page 54: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 54/73

RESULT and INFERENCES:

Post questions

1. What is a multivibrator?

2. What is the function of reset pin in IC555?

3. Define duty cycle

4. Give two applications of astable multivibrator.

5. List two applications of monostable multivibrator.

Page 55: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 55/73

Expt. No: 10 Dt:

DESIGN OF PLL USING DISCRETE COMPONENTS

AIM:

To design a PLL for calculating output frequency, lock range and capture range

APPARATUS REQUIRED:

PIN DIAGRAM:

Voltage Controlled Oscillator and IC741

Block diagram of PLL

Page 56: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 56/73

CIRCUIT DIAGRAM:

Digital phase detector

Low pass filter

Page 57: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 57/73

Voltage controlled oscillator

PLL using IC 565

DESIGN:

Low pass filter

RC

f oπ 2

1= ;

Let R=3.6K Ω and C=0.01uf

VCO

T T

oC R

f 25.0

= ;

Page 58: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 58/73

Let R T=12K Ω and CT=0.001uf

MODEL GRAPH:

PROCEDURE:

Page 59: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 59/73

RESULT and INFERENCES:

Post questions

1. Define PLL

2. Define lock range and capture range

3. What do you mean by pull in time?

4. List few application of PLL

5. What is the function of VCO?

Page 60: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 60/73

Expt. No: 11 Dt:

D/A AND A/D CONVERTER USING OP-AMP

AIM:

i) To design a Digital to Analog Converter using op-amp.

ii) To design a Analog to Digital Converter using op-amp

APPARATUS REQUIRED:

PIN DIAGRAM:

IC741

IC0808

Page 61: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 61/73

LM747

CIRCUIT DIAGRAM: Digital to Analog Converter

Page 62: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 62/73

Analog to Digital converter

Internal diagram of IC0808

Pin details for IC 0808

S.No Pin name function

1. IN0-IN7 Inputs

2. SC Start of Conversion

3. EOC End Of Conversion

Page 63: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 63/73

4. D0-D7 Outputs

5. OE Output enable

6. Clock 10 KHz -1280KHz

7. VCC 5V

8. Vref(+) 5V

9. Vref(-) 0V

10. ALE Address Latch Enable

Logic for multiplexer channels of ADC 0808

Analog

channel

Address

A B C

IN0 0 0 0

IN1 0 0 1

IN2 0 1 0

IN3 0 1 1

IN4 1 0 0

IN5 1 0 1

IN6 1 1 0

IN7 1 1 1

Page 64: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 64/73

Circuit for Vref

+12V

2.7k

6.9VZener

1k 1.3k 747

5k

5uf

Output

MODEL GRAPH:

PROCEDURE:

D/A Converter

1. Give the connections as given in circuit diagram.

2. Put the switches in all possible 3-bit binary positions and note the correspondinganalog digital values.

3. Verify the output to satisfy the corresponding given input.

A/D Converter

1. Give the connections as given in circuit diagram.

2. Give the input to IN1 by selecting add A=0, add B=0, add C=0.

3. Give the clock signal having a frequency of 680KHz and other control signals for

the operation.The minimum start pulse width and ALE pulse width must be

100ns.

4. Take the output at D0-D7 (8 bit).

Page 65: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 65/73

TABULATION:

Digital to analog converter

SNo Bit positions Corresponding voltage

Analog to digital converter

S.No Analog input Digital output

Page 66: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 66/73

RESULT and INFERENCES:

Post questions:

1. What do you mean by resolution?

2. Define linearity

3. Name the essential parts of DAC.

4. Why successive approximation type is superior to all other types of circuits?

5. Define monotonicity.

Page 67: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 67/73

Expt. No: 12 Dt:

VOLTAGE REGULATOR USING IC 723

AIM:

i) To design a high current, low voltage and high voltage linear variable dc regulated power supply and test its line and load regulation.

APPARATUS REQUIRED:

PIN DIAGRAM:

CIRCUIT DIAGRAM: Low Voltage Regulator

430

1k

0.52N3055Unr egul at ed

DC PowerSuppl y 12 11

6

5

R1

R2

V+ VcVo

CL

CS

I NV

COMPV-

NI

Vr ef

0. 1

UF

TI P122

100pF

Rsc

10

23

4

137

Load

A+ -

V

+

-

Page 68: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 68/73

High Voltage Regulator :

DESIGN:

Low voltage regulator

Output voltage → VO

Reference voltage→ Vref

Rprotect → Minimum Resistance to protect the output from short

circuit.

Given : Vo=5V, Vref = 7.15 V

To calculate R1, R2 ,R3 and Rsc.

Vo = Vref ( R2 / ( R1 + R2 ) )

5 / 7.15 = ( R2 / ( R1 + R2 ) )

( R1 + R2 ) 0.699= R2

0.699R1 = 0.301 R2 , R1 = 0.4306 R2

Select R2 = 1 K R1 = 1 K Ω * 0.4306 = 430Ω

R1 = 430 R3 = R1 * R2 / ( R1 + R2) , R3 = 430.6 *1000 /(430.6+1000 )

R3 = 300 Rsc = Vsense / Ilimit = 0.5 /1A = 0.5Ω , Rsc = 0.5

Page 69: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 69/73

High voltage regulator

Given : Vo=12V, Vref = 7.15 V

To calculate R1, R2 ,R3 and Rsc.

Vo = Vref ( 1 + (R1 / R2) )

12 / 7.15 = 1+ (R1 / R2)

(12 / 7.15) - 1 = (R1 / R2)

(R1 / R2) = 0.678

Select R2 = 1 K R1 = 1 K Ω * 0.678 = 678Ω

R1= 678 Rsc = Vsense / Ilimit = 0.5 /1A = 0.5Ω

Rsc = 0.5

MODEL GRAPH: Line Regulation : Load Regulation :

Input Voltage Vs Output Voltage : Output Current Vs Output Voltage

PROCEDURE: Low voltage regulator :

Line Regulation :

1. Give the circuit connection as per the circuit diagram shown in Fig 1.1.

2. Set the load Resistance to give load current of 0.25A.

Page 70: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 70/73

3. Vary the input voltage from 7V to 18V and note down the corresponding

output voltages.

4. Similarly set the load current ( IL ) to 0.5A & 0.9A and make two more sets of

measurements.

Load Regulation :

1. Set the input voltage to 10V.

2. Vary the load resistance in equal steps from 350Ω to 5Ω and note down the

corresponding output voltage and load current.

3.Similarly set the input voltage ( Vin ) to 14V & 18V and make two more sets of

measurements.

4.Plot the line regulation by taking Input Voltage (Vin) along X-axis and Output

Voltage (VL) along Y-axis for various load currents.

5.Plot the load regulation by taking load current (IL) along X-axis and Output

Voltage (VL) along Y-axis for various input voltages.

6.Calculate its % Voltage Regulation using the formula.

Hign voltage regulator :

Line Regulation :

1.Give the circuit connection as per the circuit diagram shown in Fig 1.2.

2.Set the load Resistance to give load current IL of 0.25A.

3.Vary the input voltage from 7V to 18V and note down the corresponding output

voltages.

4.Similarly set the load current ( IL ) to 0.5A & 0.9A and make two more sets of

measurements.

Load Regulation :

1. Set the input voltage to 10V.

2. Vary the load resistance in equal steps from 350Ω to 15Ω and note down the

corresponding output voltage and load current.

3.Similarly set the input voltage ( Vin ) to 14V & 18V and make two more sets of

measurements.

4. Plot the line regulation by taking Input Voltage (Vin) along X-axis and Output

Voltage (VL) along Y-axis for various load currents.

Page 71: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 71/73

5. Plot the load regulation by taking load current (IL) along X-axis and Output

Voltage (VL) along Y-axis for various input voltages.

6. Calculate its % Voltage Regulation using the formula.

TABULATION:

Low voltage regulator :

Line Regulation :

S.No. Load Resistance R L1 = Load Resistance R L2 = Load Resistance R L3 =

Input

Voltage

Vin(Volts)

Output

Voltage

VL(Volts)

Input

Voltage

Vin(Volts)

Output

Voltage

VL (Volts)

Input

Voltage

Vin(Volts)

Output

Voltage

VL (Volts)

Load Regulation :

S.No. Input Voltage Vin1 = Input Voltage Vin2 = Input Voltage Vin3 =

Output

Current

IL ( A )

Output

Voltage

VL (Volts)

Output

Current

IL ( A )

Output

Voltage

VL (Volts)

Output

Current

IL ( A )

Output

Voltage

VL (Volts)

Page 72: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 72/73

High voltage regulator :

Line Regulation :

S.No. Load Resistance R L1 = Load Resistance R L2 = Load Resistance R L3 =

Input

Voltage

Vin(Volts)

Output

Voltage

VL(Volts)

Input

Voltage

Vin(Volts)

Output

Voltage

VL (Volts)

Input

Voltage

Vin(Volts)

Output

Voltage

VL(Volts)

Load Regulation :

S.No. Input Voltage Vin1 = Input Voltage Vin2 = Input Voltage Vin3 =

Output

Current

IL ( A )

Output

Voltage

VL(Volts)

Output

Current

IL ( A )

Output

Voltage

VL(Volts)

Output

Current

IL ( A )

Output

Voltage

VL(Volts)

Page 73: Lic Lab Manual_beccec407r01

8/13/2019 Lic Lab Manual_beccec407r01

http://slidepdf.com/reader/full/lic-lab-manualbeccec407r01 73/73

Calculation of % Voltage Regulation :

% Voltage Regulation = ( Vdc ( NL ) - Vdc ( FL ) ) / Vdc ( FL )

Vdc ( NL ) = D.C. output voltage on no load

Vdc ( FL ) = D.C. output voltage on full load

RESULT and INFERENCES:

Post questions:

1. What is the function of voltage regulator?

2. Define line and load regulation

3 What is drop out voltage?