lifante frank cavitation mpf07 final

30
© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils C. Lifante, T. Frank, M. Kuntz ANSYS Germany, 83624 Otterfing [email protected] C. Lifante, T. Frank, M. Kuntz ANSYS Germany, 83624 Otterfing [email protected]

Upload: yasemin

Post on 10-Oct-2014

82 views

Category:

Documents


0 download

TRANSCRIPT

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils

Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils

C. Lifante, T. Frank, M. KuntzANSYS Germany, 83624 [email protected]

C. Lifante, T. Frank, M. KuntzANSYS Germany, 83624 [email protected]

© 2006 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary

OverviewOverview

• Introduction

• Cavitation project

– Goals

– Cavitation model

– Testcases

• Results

– Testcase set-up

– Validation studies

• Summary

© 2006 ANSYS, Inc. All rights reserved. 3 ANSYS, Inc. Proprietary

Cavitation on Pumps, Propellers

& Hydrofoils

Cavitation on Pumps, Propellers

& Hydrofoils

• Cavitation phenomena

• Propeller

– Tip vortex cavitation

• Hydrofoil

– Sheet & cloud cavitation

© 2006 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary

Cavitation ProjectCavitation Project

• Title– Investigation of higher order pressure fluctuations

and its influence on ship stern, taking into account cavitation at propeller blades

• Project partners– SVA Potsdam, ANSYS Germany

• Duration– July 2005 to June 2008

• Funded by German Ministry of Education and Research (BMBF)

• Main issues– CFD & experiments for ship propeller cavitation– Cavitation including transient effects– Cavitation induced pressure fluctuations and

interaction with ship stern

© 2006 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary

Cavitation Model-Rayleigh-Plesset

Equation

Cavitation Model-Rayleigh-Plesset

Equation

• Interfacial mass transfer

lv lv lvm AΓ = ɺ

vlv v

dm dRm

dt dt= = ρɺ

R, dR/dt

N

v

l

dR 2 P P

dt 3

−=

ρ

© 2006 ANSYS, Inc. All rights reserved. 6 ANSYS, Inc. Proprietary

Cavitation Model-Rayleigh-Plesset

Equation

Cavitation Model-Rayleigh-Plesset

Equation

( )nuc v vlv vap v v

l

v vvl con v v

l

3 1 P P2F if P P

R 3

3 P P2F if P P

R 3

α − α −Γ = ρ <

ρ

α −Γ = − ρ >

ρ

• Modified interfacial area density for vapourisation

• Fvap = 50, Fcon = 0.01

• ααααnuc = 5 ×××× 10-4

© 2006 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary

Turbulent Pressure FluctuationsTurbulent Pressure Fluctuations

Pressure fluctuations in the (U)RANS equations:

Where

Therefore:

P P p′= +

2 2 2 2(1 ) (1 )1

( )2

coef coefv vp p CAV k CAV u v wρ ρα α′ ′ ′ ′= = + +− −ɶ ∼

2( )

3

v

l

dR P P p

dt ρ

− −=

ɶ0.39coefCAV =

© 2006 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary

Project TestcasesProject Testcases

Arndt: 3D profile

Le: 2D profile

© 2006 ANSYS, Inc. All rights reserved. 9 ANSYS, Inc. Proprietary

Le ProfileLe Profile

• Measurements of Le et al. (1993) & Franc (2001)

– Two-dimensional profile

– Different cavitation phenomena

20.5

vP P

ρ∞

−=

© 2006 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

Set-up: Boundary ConditionsSet-up: Boundary Conditions

• Inlet: Specified velocity (from Reynolds number)

• Walls: Free slip

• Outlet: Static pressure for entrainment

inlet outletsymmetry planes

b

1.9 m0.5 m

wall

wall

b

© 2006 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

Meshing: Grid HierarchyMeshing: Grid Hierarchy

893,986224,26456,452Number of nodes

2

5

38°

111,360

Medium(3)

2.510First layer distance

y [µµµµm]

14Average y+

43°41°Minimum grid angle

445,44027,840Number of elements

Fine(4)Coarse(2)Grid

• ICEM CFD HEXA

– Geometry rotation for different angle of attack

• 2d refinement between grids by scale factor 2××××2

© 2006 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

Validation: Cavitation LengthValidation: Cavitation Length

α=4°

σ=0.5

α=0°

σ=0.4

α=-4°

σ=0.3

• Transient simulations,

time averaged data

C0=0.198m

© 2006 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

Validation: Cavitation LengthValidation: Cavitation Length

• Transient simulation , α=α=α=α=4°, σ=σ=σ=σ=0.5

© 2006 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

Validation: Pressure DistributionValidation: Pressure Distribution

• Pressure coefficient distribution on foil upper side

• Angle of attack: α=α=α=α=2.5°and α=α=α=α=3.5°

• Transient simulations, time averaged data

20.5p

P Pc

vρ∞

−=

© 2006 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary

• Pressure coefficient distribution on foil upper side• Angle of attack: α=3.5°, σ=0.55

• Transient simulations, time averaged data

Validation: Pressure DistributionValidation: Pressure Distribution

0.0p =ɶ

0.39p kρ=ɶ

(1 )0.39v

p r kρ= −ɶ

© 2006 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary

Arndt ProfileArndt Profile

• Measurements by Arndt, R.E.A. and Dugue (1992)

© 2006 ANSYS, Inc. All rights reserved. 17 ANSYS, Inc. Proprietary

Set-up: Boundary ConditionsSet-up: Boundary Conditions

• Inlet

– Computed from Re number

• Outlet

– Static pressure for entrainment

• Walls

– No slip

Inlet

Outlet

No slip walls

Profile

© 2006 ANSYS, Inc. All rights reserved. 18 ANSYS, Inc. Proprietary

Meshing: TopologyMeshing: Topology

• ICEM CFD structured meshes

– C-Grid type grid around foil surface

– Quarter O-Grid between C and O-Block connection at blade tip

© 2006 ANSYS, Inc. All rights reserved. 19 ANSYS, Inc. Proprietary

Meshing: Grid HierarchyMeshing: Grid Hierarchy

• Boundary layer resolution

– Relation of first cell spacing to y+ value

+−∆=∆ yLy L

14/13Re80

21°21°21°Minimum grid angle

5,442,4591,394,862358,519Number of nodes

7.1

15

1,352,603

Medium (2)

7.530First layer distance y [µµµµm]

3.614.3Average y+

5,337,217341,596Number of elements

Fine (3)Coarse (1)Grid

• Scaling factor between grids ~3 3 34 4 4× ×

© 2006 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary

Set-up: Physical ModelsSet-up: Physical Models

• Spatial discretization

– High Resolution for hydrodynamic system

– Upwind / High Resolution for k-ωωωω equations

• Time integration

– 2nd order Backward Euler

• Two-phase flow

– Water, water vapour

• Mass transfer

– Rayleigh-Plesset cavitation model

• Turbulence

– SST, SST with Curvature Correction, BSL-RSM

© 2006 ANSYS, Inc. All rights reserved. 21 ANSYS, Inc. Proprietary

Validation: Tip Vortex TrajectoryValidation: Tip Vortex Trajectory

• Multiple measurements:

Various Re numbers

Various angle of attack

y/b

x/c0

© 2006 ANSYS, Inc. All rights reserved. 22 ANSYS, Inc. Proprietary

Validation: Lift CurveValidation: Lift Curve

• Lift coefficients vs. Effective angle of attack (αααα-αααα0)

• Experiments: Rec=9.2×105, Simulation: various Rec

© 2006 ANSYS, Inc. All rights reserved. 23 ANSYS, Inc. Proprietary

• Measurement planes

– Evaluation of vortex velocity at plane perpendicular to flow at x/c=0.5, 1.0, 2.0 behind hydrofoil

Validation: Tip Vortex VelocityValidation: Tip Vortex Velocity

x/c0=1

x/c0=2

x/c0=0.5

© 2006 ANSYS, Inc. All rights reserved. 24 ANSYS, Inc. Proprietary

Validation: Tip Vortex VelocityValidation: Tip Vortex Velocity

Experiment x/c0=1.0Coarse(1) x/c0=1.0Medium(2) x/c0=1.0Fine(3) x/c0=1.0

Vortex velocity

distributions

Cavitation inception in

core of tip vortex

αeff=12°, Re=5.2××××105

© 2006 ANSYS, Inc. All rights reserved. 25 ANSYS, Inc. Proprietary

Validation: Tip Vortex VelocityValidation: Tip Vortex Velocity

Turbulence model variation:

• Standard SST model

• Spatial discretization

– High Resolution for all equations except turbulence

– High Resolution for all equations

• Curvature correction

– Turbulence strongly affected by swirl and streamline curvature

– Effects are not accounted for in standard 2-equation model

– Additional terms in SST turbulence equations

• BSL-RSM model

– One equation for each stress tensor component

© 2006 ANSYS, Inc. All rights reserved. 26 ANSYS, Inc. Proprietary

SST (Fine)

SST High Res (Fine)

SST High Res CC (Fine)

RSM (Medium)

RSM (Coarse)

Experiment

Vel

oci

ty w

/u∞

_

Validation: Tip Vortex VelocityValidation: Tip Vortex Velocity

αeff=12°, Re=5.2××××105

SST

+ High Resolution for turbulence equations

+ Curvature correction terms

BSL-RSM

© 2006 ANSYS, Inc. All rights reserved. 27 ANSYS, Inc. Proprietary

Tip Vortex Tip Vortex Tip Vortex Tip Vortex VapourVapourVapourVapour volume fractionvolume fractionvolume fractionvolume fractionTip Vortex Tip Vortex Tip Vortex Tip Vortex VapourVapourVapourVapour volume fractionvolume fractionvolume fractionvolume fraction

• Medium grid

• Re=5.2x105

• αeff=12°, σ=0.58

SST RSM

αeff=9.5°, σ=0.58, Re=5.2x105

© 2006 ANSYS, Inc. All rights reserved. 28 ANSYS, Inc. Proprietary

Validation: Cavitation InceptionValidation: Cavitation Inception

• Arndt & Dugue (1992), Arndt et al. (1991) ⇒⇒⇒⇒

– Cavitation inception vs. lift, correlation for model scaling: 4.02 Re063.0 li c∝σ

Ca

vit

ati

on

nu

mb

er σ

i

ExperimentCoarse GridMedium GridFine GridRegression (Coarse)

Regression (Medium)

© 2006 ANSYS, Inc. All rights reserved. 29 ANSYS, Inc. Proprietary

SummarySummary

• SVA Potsdam & ANSYS Germany cavitation project (BMBF)

• ANSYS CFX cavitation model

• Validation test cases for hydrofoil cavitation:

– Le et al. ���� 2d hydrofoil cavitation

– Arndt et al. ���� tip vortex cavitation

• Work in progress

– Isolated propeller P1356

– Non condensible gas cavitation

– Ship propeller with ship stern.

• Rotor-Stator interface

• Influence of the turbulence model

© 2006 ANSYS, Inc. All rights reserved. 30 ANSYS, Inc. Proprietary

Thank You!