life cycle aspects of nanomaterials

97
Life cycle aspects of nanomaterials David Lazarevic and Göran Finnveden Environmental Strategies Research KTH - Royal Institute of Technology Stockholm, Sweden

Upload: others

Post on 13-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Life cycle aspects of nanomaterials

Life cycle aspects of nanomaterials

David Lazarevic and Göran Finnveden

Environmental Strategies Research

KTH - Royal Institute of Technology

Stockholm, Sweden

Page 2: Life cycle aspects of nanomaterials

Title:

Life cycle aspects of nanomaterials

Authors:

David Lazarevic and Göran Finnveden

ISSN: 978-91-7501-821-8

TRITA‐INFRA‐FMS 2013:4

Division of Environmental Strategies Research

Department of Sustainable Development, Environmental Science and Engineering

School of Architecture and the Built Environment

KTH - Royal Institute of Technology

Stockholm, Sweden

https://www.kth.se/abe/om-skolan/organisation/inst/see/om/avd/fms

Printed by: US AB, Stockholm, 2013

Page 3: Life cycle aspects of nanomaterials

FORWARD

This report consists of two parts, a comprehensive compilation of published and ongoing

research on nanomaterials from a lifecycle perspective, and an extended summary written in

Swedish.

The report is funded by the Swedish Governmental Commission charged with developing "A

national action plan for the safe use and handling of nanomaterials" (Dir. 2012:89). The

authors are grateful for the feedback received during this work from the investigator, Ethel

Forsberg, and the commission secretary. The authors have received valuable comments

during the work from Eva Hellsten, who has been the contact person in the investigation. The

authors are responsible for the content of this report and the views expressed herein are

those of the authors. The summary report in Swedish is also published by the Governmental

Commission in their report.

Page 4: Life cycle aspects of nanomaterials

SUMMARY

Nanotechnology and nanomaterials have been promoted as having the potential to bring

benefits to many areas of research, and to positively contribute to sustainable development.

As such, this rapidly growing field is increasing attracting investments from governments and

businesses worldwide. At the same time, it is recognised that the application of

nanomaterials may pose a risk to human health and the environment.

The Swedish Government, therefore, released a Committee Directive (Dir. 2012:89) to

produce a National Action Plan for the Safe Use and Handling of Nanomaterials. KTH was

commissioned by the Governmental Commission, charged with developing this action plan,

to review the current state of knowledge on the environmental aspects of nanomaterials from

a life cycle perspective. The remit of this study was to: clarify the models best suited to

highlight issues related to the safe use of nanomaterials; summarize the results of current life

cycle research and difficulties in applying life cycle approaches to nanomaterials; identify on-

going research initiatives; propose priorities to achieve the level of knowledge required to

understand risks and opportunities of nanomaterials and nano-products; provide suggestions

for images to explain the importance of the life cycle perspective in the field of

nanomaterials.

There is a general consensus that the potential health and environmental risks of

nanomaterial should be evaluated over their entire life cycle. This report reviews the literature

on the application of life cycle assessment (LCA), risk assessment (RA) and substance flow

analysis (SFA) to nanomaterials and nanoproducts.

Whilst there is plenty of literature promoting the application of LCA, there are few studies

that apply LCA to the area of nanotechnology. Twenty five LCA studies of nanomaterials were

identified, including nanomaterial such as cadmium telluride, calcium carbonate, carbon

black, carbon nanofibres, carbon nanotubes, nanoclay, nanoscale platinum-group metals,

silica, silver, silicon, titanium and titanium oxide. Product systems studied include: auto-body

panels, biopolymers, coatings, electronic displays, electronic sensors, lithium-ion batteries,

photo voltaic systems, packaging and agriculture polymer films, nanomaterial production

processes, textiles and wind turbine blades. These studies only looked at parts of the life

cycle, with no quantitative studies addressing the impact of nanomaterials to human health

and the environment from the cradle to the grave. Results from these studies showed the

potential for a significant cumulative energy demand in the production of nanomaterials such

as carbon nanotubes and carbon nanofibres. However, this is reduced when taking into

consideration the small amounts of nanomaterials in products and the potential benefits

during the use phase, such as weight reduction.

It has been shown that the goal and scope definition is of vital importance to get meaningful

results, as the different properties and functions of nanomaterials need to be considered

when nano-enabled products are compared to conventional products. The life cycle

inventories of current LCA studies cannot be classified as comprehensive as they often lack

nanomaterial specific data related to the outputs of processes. Hence, populating life cycle

inventory databases with nanomaterial specific information, such as size and shape, is of

critical importance. Although the UNEP/SETAC framework for toxic impacts can in principle

be used for specific impacts causes by nanoparticles, life cycle impact assessment methods

Page 5: Life cycle aspects of nanomaterials

currently lack characterisation factors for the release of nanoparticles indoors and outdoors.

Hence, no LCA studies to date have considered the human toxicity and eco-toxicity of

nanomaterials from a life cycle perspective with consideration of the nano-specific properties.

There is a consensus that the RA framework is applicable to nanomaterials. However, many of

the methodological steps with RA require further refinement or development. Although some

RAs have been conducted for nanomaterial according to standard RA protocols, studies have

concluded that, due to limited data and the presence of large uncertaitintites, it has not been

possible to complete full RAs for regulatory decicion making. There is a lack of measured

exposure data for nanomaterials, lack of validated exposure estimation models, extensive

uncertainties when characterizing nanomaterials and a lack of (eco)toxicological studies in a

variety of species. Hence, it is difficult to complete hazard identification, dose–response and

exposure assessments for most nanomaterials. Two approached to RA from a life cycle

perspective have been identified: ‘LC-based RA’ and ‘RA-complemented LCA’. RA-

complemented LCA combines life cycle and RA based methods and most publications and

risk analysis frameworks utilise this method.

SFA is occasionally applied prior to RA to estimate emissions, and has become the point of

departure for the development of emission assessment methods. SFA traditionally uses mass

as a measure of the stocks and flows of materials. Such an approach has been used to study

the flow of nanomaterials such as nano titanium dioxide, nano zinc oxide, nanosilver and

carbon nanotubes during waste incineration and landfilling of municipal solid waste and

construction waste. Furthermore, particle flow analysis has been used to account for the

relevant properties of nanomaterials such as particle size, and the processes that change the

number of nanoparticles such as agglomeration and disassociation of particles into ions. This

approach has been used to study the flows and stocks of nanosilver (in wound dressings,

textiles and electronic circuitry) and nano titanium dioxide (in sunscreens, paints and self-

cleaning cement) during the use phase.

In light of this review of LCA, RA and SFA studies of nanomaterials, the following suggestions

identify some potential ways forward:

Improved information concerning the use of engineered nanomaterials (ENMs)s. In order

to assess risk, information is needed on the volumes society uses, in which applications,

and in what forms.

Improved information on emissions is required in order to assess the risks of ENMs. As a

first step, information is required on where emissions occur, which can be achieved

through undertaking simplified SFAs of ENMs. Methods for this need to be developed

where the reasonable worst-case assumptions can be made to assess whether further

detailed analysis is required. Those who place a material on the market should be able to

describe how the material will be disposed of or emitted to the environment.

In depth SFA in specific cases. These cases can be selected for several reasons:

environmentally relevant ENMs, ENMs used in large quantities or ENMs that can be

considered representative of larger groups and thus can be used to develop and verify

the simplified models.

Measurements. SFA is based upon existing and available data which in turn need to

come from actual measurements or model calculations, which in turn needs to be based

on measurements. Examples of important situations where actual measurements are

Page 6: Life cycle aspects of nanomaterials

required include exposure in the work environment, flows in waste water treatment

plants and flows associated with recovery processes and other waste management

activities.

Methods for the characterization of nanoparticles. The properties of nanoparticles can

change according to their shape and size. Nanoparticles need to be characterised in

ways that are relevant for emission measurements, exposure analysis and toxic effects.

Toxicological and eco-toxicological dose-response data are needed.

Models for exposure analysis require further development and need to be adapted for

nanoparticles.

Environmental impact assessment methods in LCA require further development and

need to be adapted for nanoparticles. As the methods for risk assessment of

nanoparticles are developed, there is a need for LCA methodology to follow and adapt.

Life-cycle inventory data for ENMs. LCA is heavily dependent on databases which have

been developed over the past decade. However, these databases are limited with regards

to ENM data. Life cycle inventory data is essential for the assessment of the potential

benefits and impacts of ENMs in a life cycle perspective.

Methods to develop life cycle data for emerging technologies. Nanotechnology is a field

experiencing rapid development; this also applies to manufacturing processes and their

environmental performance.

International cooperation with a Swedish perspective. Much of the data and methods

that are required for LCA should be developed in the context of international

cooperation. However, it may be important to develop life cycle data for products

manufactured in Sweden as some conditions may be country specific (for example, raw

materials and energy). Furthermore, other processes such as waste management may

have specific Swedish conditions.

The collaboration of industry, governmental agencies and research. Much of the data

which is required should be produced by industry. It is also important that governmental

agencies and researcher are involved in such work to ensure credibility and transparency.

Credible information to users. The safe use of ENMs and nanoproducts requires

informed users. Labelling and other forms information is needed to be designed so that

users in businesses, organizations, government agencies and consumers can make their

own informed decisions.

Avoid locking in a risk paradigm. Full risk assessments require copious amounts of data

and take a significant amount of time to complete. It would be expensive and inefficient

to complete risk assessments on every ENM and its specific application that is placed on

the market. Hence, one must be able to make effective decisions about the safe use of

ENMs without full risk assessments.

Avoid a ‘material for material’ paradigm. The number of ENMs can be vast. In order to

have effective processes, decisions can be taken without the complete data that is

require for each individual material. Decisions can be made for groups of materials, or

based on more simple criteria.

Resources for research in several fields. There is need for research on data and methods

that can be used for SFA, RA and LCA. Research is also needed on the use of ENMs,

policy instruments and decision theory.

Page 7: Life cycle aspects of nanomaterials

i

SVENSK SAMMANFATTNING

1 INLEDNING .......................................................................................................................... I

2 ANVÄNDNING .................................................................................................................... I

3 LIVSCYKELPERSPEKTIV OCH METODER ........................................................................... II

4 EMISSIONER AV NANOPARTIKLAR ............................................................................... VI

5 RISKBEDÖMNINGAR I LIVSCYKELPERSPEKTIV ........................................................... VIII

6 LIVSCYKELANALYSER AV NANOMATERIAL ................................................................ VIII

7 OM VAL AV METODER, BEGRÄNSNINGAR OCH UTVECKLINGSBEHOV ...................... X

8 PÅGÅENDE FORSKNING ................................................................................................. XII

9 REKOMMENDATIONER ................................................................................................. XIII

10 SLUTSATSER ................................................................................................................... XIV

11 REFERENSER ................................................................................................................... XVI

1 Inledning

Nanomaterial kan definieras på olika sätt, men gemensamt för de flesta definitioner är att det

handlar om material som innehåller partiklar som i någon dimension har en storlek på mellan

1 och 100 nm (se t.ex. European Commission, 2011). Partiklarna kan förekomma i fasta

material, på en fast yta, i en gasfas eller suspenderade i en vätska. Jämfört med traditionella

partiklar innebär den lilla storleken att ytan är mycket stor i förhållande till volymen.

Nanopartiklar kan också ha annorlunda egenskaper än större partiklar och egenskaperna kan

bestämmas av storleken och formen, inte bara av den kemiska sammansättningen.

Nanopartiklar kan transporteras på annat sätt än större partiklar eller lösta ämnen. Storleken

och formen på nanopartiklarna, och därmed egenskaperna, kan ändras under partiklarnas

olika faser i sina livscykler, från tillverkning till slutanvändning och efter emission till naturen.

Nanopartiklar kan förekomma naturligt och tillverkas. Nanomaterial har mött ett stort

intresse och det finns förväntningar om innovationer inom många områden och stark tillväxt.

Samtidigt finns det en oro att nanomaterial också kan vara miljö- och hälsofarliga. En del

ämnen i nanomaterial har dokumenterade miljö- och/eller hälsorisker. Dessutom finns en oro

att nanomaterial, genom sina speciella egenskaper, lättare kan exponera känsliga organismer

och organ.

2 Användning

Begreppet nanomaterial är vitt och täcker ett stort antal material och tillämpningar. Det finns

ingen samlad offentlig statistik om användning av nanomaterial. I termer av marknadsvolym

så är de viktigaste nanomaterialen enligt Europeiska kommissionen (European Commission,

2012) icke-metalliska oorganiska material (såsom kiseloxider, aluminiumoxid och titandioxid),

kolbaserade nanomaterial (såsom kimrök (eng: carbon black) och ”kolnanorör”), metaller

(t.ex. silver) och organiska makromolekyler och polymera material. Dessutom finns ett stort

antal material som är under utveckling eller används i mindre kvantiteter.

Page 8: Life cycle aspects of nanomaterials

ii

Nanomaterial finns i en stor mängd produkter, från vardagliga konsumentvaror till högt

specialiserade produkter inom biomedicinsk teknik och IKT (Informations och

Kommunikationsteknologi). De största tillämpningarna av nanomaterial är i däck (kimrök,

eng: carbon black) och i polymera material (huvudsakligen kiseloxid men också metaller),

inom elektronik, kosmetika och biomedicinska tillämpningar (European Commission, 2012).

Inom elektronik används nanomaterial bland annat som kiseldioxid vid tillverkning och

bariumtitanat som används för kondensatorer. Inom kosmetika används bland andra

nanomaterial kiseldioxid, titandioxid och zinkoxid. Inom biomedicin är guld och silver bland

de viktigaste nanomaterialen (European Commission, 2012). Dessutom används ett stort antal

nanomaterial i bland annat färger och bestrykningsmaterial, katalysatorer, solceller,

bränsleceller osv. Användningsområden är som synes flera och det finns unika egenskaper

som gör att nya funktioner och produkter kan utvecklas.

I termer av kvantiteter av nanomaterial så dominerar ”carbon black” (9,6 miljoner ton per år)

och kiseloxid (1,5 miljoner ton) (European Commission, 2012). Andra nanomaterial med

signifikanta mängder är aluminiumoxid (200 000 ton), bariumtitanat (20 000 ton), titan dioxid

(10 000 ton), ceriumoxid (10 000 ton) och zinkoxid (8 000 ton). Kolnanorör och kolnanofibrer

marknadsförs i storleksordningen upp till några tusen ton. Försäljning av nanosilver

uppskattas till 20 ton per år. Alla dessa uppgifter kommer från en rapport från Europeiska

kommissionen (European Commission, 2012) som i sin tur refererar till rapporter från

konsultföretag.

Framtidens nanomaterial och dess användning kan förväntas utvecklas i en mängd olika

riktningar. Exempel på intressanta områden är inom IKT och för läkemedelsdistribution. I

dessa fall kan det handla om väldigt specifika material och tillämpningar. Man kan också

tänka sig en utveckling mot mer förnybara nanomaterial exempelvis baserade på cellulosa.

Produkter med nanopartiklar på ytan som katalysatorer kan få många tillämpningar.

Kompositmaterial där nanofibrer ingår är ytterligare ett område som kan få en bred

användning. Ur miljösynpunkt kan man notera att flera av dessa tillämpningar ingår i

området miljöteknik, d.v.s. teknik som i ett livscykelperspektiv kan ge mindre miljöpåverkan, t

ex i termer av minskade koldioxidutsläpp, än traditionella produkter. Det kan handla om

energiteknik, katalysatorer och lättare material.

3 Livscykelperspektiv och metoder

För att bedöma miljöpåverkan av produkter, kemikalier och material är ett livscykelperspektiv

viktigt. Detta för att undvika att man missar viktiga aspekter eller väljer lösningar som innebär

att man flyttar miljöproblem från en livscykelfas till en annan, eller från en plats eller

tidsperiod till en annan, eller minskar ett hälso eller miljöproblem samtidigt som man skapar

ett nytt.

I den här rapporten används orden kemikalie, substans och ämne som synonymer. I

kemikalielagstiftningen definieras en vara som ”ett föremål som under produktion får en

särskild form, yta eller design, vilket i större utsträckning än dess kemiska sammansättning

bestämmer dess funktion” (se t.ex. Kemikalieinspektionen, 2011). Ordet produkt används i

den här rapporten såsom det används i samband med livscykelanalyser (se nedan) så att det

omfattar både varor, kemiska produkter och tjänster.

Page 9: Life cycle aspects of nanomaterials

iii

Ett livscykelperspektiv kan användas för både produkter, kemikalier och material. Livscykeln

kan dock se lite olika ut beroende på vad det är man studerar. För kemikalier startar

livscykeln antingen vid tillverkning, eller om det är ämne som finns naturligt, vid utvinning

(Figur 1). Kemikalien kan användas i flera olika produkter. Varje produkt kan sedan genomgå

tillverkning, användning, avfallshantering och eventuell återvinning. I varje fas kan utsläpp av

kemikalien ske.

Figur 1. Livscykelperspektiv för en substans som används i flera olika produkter.

För en produkt startar livscykeln vid utvinning av de råvaror som behövs för tillverkning och

användning av produkten. I livscykeln ingår sedan tillverkning av produkten och andra varor

och tjänster som behövs i produktens livscykel, användning av produkten och

avfallshantering (Figur 2).

Figur 2. Livscykelperspektiv för en produkt.

Page 10: Life cycle aspects of nanomaterials

iv

De olika livscykelperspektiven som beskrivs i figur 1 och 2 är också kopplade till olika

metoder att bedöma miljö- och hälsoaspekter av olika system. Livscykeln i Figur 1 som berör

substanser är kopplad till Substansflödesanalyser (SFA) och Riskbedömningar i

livscykelperspektiv. I substansflödesanalyser studerar man en substans från att ämnet

uppstår (antingen genom produktion eller utvinning). Sedan följer man flödet av substansen i

samhället, hur och var den används och var ämnet emitteras till omgivningen (van der Voet,

2002). Med hjälp av substansflödesanalyser kan man identifiera dataluckor, alltså brist på

information om emissioner. Förutom emissioner och dataluckor så kan även sänkor

identifieras. Sänkor kan vara permanenta genom att ämnet förstörs eller tillfälliga. Ett

exempel på en permanent sänka kan vara förbränning av organiska ämnen då ämnet förstörs.

Ett exempel på en tillfällig sänka kan vara deponier där utlakningen av ett ämne kan ske

långsamt men ändå vara större än noll. Substansflödesanalyser ger alltså information om

emissioner. Däremot behandlas inte toxiska eller ekotoxiska effekter.

Riskanalyser och riskbedömningar (eng Risk Assessment, RA) är termer som används i många

olika sammanhang med lite olika mening. Riskbedömningar kopplat till kemiska substanser

syftar till att bedöma miljö och/eller hälsorisker med ett visst ämne, antingen i en specifik

exponeringssituation eller över hela substansens livscykel. Riskbedömningar kopplat till

kemiska substanser innehåller både en exponeringsanalys och en effektanalys eller en dos-

responsanalys (t.ex. Grieger et al, 2012). I exponeringsanalysen ingår att göra en analys av

vilka grupper av människor eller vilka ekosystem som kan bli exponerade för substansen och i

vilka halter. I exponeringsanalysen ingår då både uppgifter om emissioner och om spridning

och omvandling av ämnet i miljön inklusive arbetsmiljö. I effektanalysen görs en analys av

vilka effekter olika halter kan ge upphov till. Sedan vägs resultaten från exponerings- och

effektanalysen ihop i en riskbedömning. Riskbedömningar av kemiska ämnen har bland annat

reglerats på en Europeisk nivå i samband med REACH-lagstiftningen. Riskbedömningar kan

göras i ett livscykelperspektiv, d.v.s. hänsyn tas till emissioner av ämnet i hela dess livscykel.

Livscykeln i Figur 2 är kopplad till Livscykelanalyser (eng. life cycle assessment, LCA) som

studerar den potentiella miljöpåverkan av en produkt från ”vaggan till graven”. Ordet

”produkt” ska tolkas brett så att det kan innehålla både varor och tjänster. För

livscykelanalyser finns en internationell standard (ISO, 2006 a och b). Livscykelanalyser skiljer

sig från substansflödesanalyser och riskbedömningar bland annat i att det som studeras inte

är ett kemiskt ämne, utan en funktion som en produkt, en tjänst eller ett system uppfyller

(Finnveden et al, 2009). En annan skillnad är att det man studerar inte bara är emissioner av

ett ämne, utan ett brett spektrum av potentiellt miljöstörande ämnen. Vidare behandlas flera

olika typer av miljöeffekter inklusive hälsoeffekter och resursanvändning. Ytterligare en

skillnad är att en livscykelanalys studerar potentiell miljöpåverkan snarare än total. Detta

beror bland annat på att man i en livscykelanalys (som ju har en produkt som utgångspunkt)

bara studerar en mindre del av de totala utsläppen av ett ämne, nämligen den del som hör till

den produkt (eller funktion) som man studerar i livscykelanalysen (Hauschild, 2005). I en

riskbedömning (som har ett kemiskt ämne som utgångspunkt) kan man däremot inkludera

samtliga emissioner av ämnet. Därmed finns möjligheter att uppskatta den totala eller

absoluta risken för ämnet.

De olika metoderna substansflöden, riskbedömningar i ett livscykelperspektiv och

livscykelanalyser skiljer sig alltså åt på flera olika sätt. De studerar olika typer av objekt (SFA

och RA studerar substanser och LCA produkter/funktioner). SFA och RA studerar ett ämne i

Page 11: Life cycle aspects of nanomaterials

v

taget medan LCA inkluderar flera ämnen och miljöproblem. SFA tittar bara på utsläpp av ett

ämne medan RA också studerar risker med dessa ämnen. LCA studerar potentiell

miljöpåverkan medan RA kan studera (absolut) miljöpåverkan/risk).

Fast de tre metoderna alla kan ha ett livscykelperspektiv, så har de alltså olika syften och

svarar på olika frågor. Om man är intresserad av var utsläpp av en kemikalie kan uppstå så är

substansflödesanalyser ett bra metodval. Om man är intresserad av risker av ett specifikt

ämne så är riskbedömningar det bästa valet. Om man vill studera potentiella för och

nackdelar ur ett miljöperspektiv med en specifik produkt så är livscykelanalyser det bästa

valet. Eftersom de olika metoderna är gjorda för att svara på olika frågor kan de inte lätt

ersätta varandra, utan kompletterar varandra.

Man kan också notera att de olika metoderna i viss mån bygger på varandra. Den information

om emissioner som är ett resultat av en substansflödesanalys behövs också för att göra

riskbedömningar i ett livscykelperspektiv och livscykelanalyser. För att göra riskbedömningar

behövs modeller och data för exponeringsanalysen och effektanalysen. Dessa modeller och

data kan också efter viss anpassning användas i livscykelanalyser.

Riskbedömningar har utvecklats för kemiska ämnen och en viktig fråga är då om de också

kan användas för nanomaterial. En viktig aspekt i det sammanhanget är att de toxiska

effekterna av nanomaterial inte bara beror på den kemiska sammansättningen av materialet

utan också kan bero på nanopartiklarnas storlek och form. Det innebär att när man ska

karaktärisera dem så räcker det inte med sammansättningen utan det behövs även annan

information. Det innebär också att de toxiska tester som används för kemiska ämnen kan

behöva modifieras för nanopartiklar.

Ytterligare en aspekt med nanomaterial som är speciell är att det kanske inte är

koncentrationen (mätt som massa per volym) som är den mest relevanta parametern när

toxiciteten ska bestämmas. Det har också föreslagits att antalet partiklar per volymsenhet

eller yta per volymsenhet kan vara relevanta mått för att indikera risker med nanomaterial

(Arvidsson, 2012).

På motsvarande sätt kan de modeller som används för exponeringsanalysen av kemiska

ämnen vara mindre relevanta eftersom nanopartiklar kan transporteras på andra sätt än

kemiska substanser som är upplösta. Storleken och formen på nanopartiklarana kan också

förändras vilket man kan behöva ta hänsyn till i exponeringsanalysen En slutsats är därför att

även om det ramverk som utvecklats för riskbedömningar av kemiska ämnen är relevant

också för nanopartiklar, så kan både de toxikologiska testerna och modellerna för

exponeringsanalyser behöva modifieras och vidareutvecklas (Grieger et al, 2012, Praetorius et

al, 2013).

I substansflödesanalyser beskriver man flöden i termer av massa. Eftersom de toxiska

egenskaperna hos nanopartiklar ibland kan vara mer relaterade till antalet partiklar och dess

form, snarare än massan av partiklarna kan det vara mer relevant att arbeta med

partikelflödesanalyser snarare än substansflödesanalyser (Arvidsson et al, 2011).

Livscykelanalyser kan användas också för produkter som innehåller nanomaterial (Grieger et

al, 2012). I de delar som analyserar potentiella toxiska effekter så får man dock samma

problem som i riskbedömningarna, dvs att metoderna kan behöva modifieras och

Page 12: Life cycle aspects of nanomaterials

vi

vidareutvecklas för att fånga de aspekter som är specifika för nanomaterial.

4 Emissioner av nanopartiklar

Det finns en bred enighet om att produktion, användning och avfallshantering av

nanomaterial också leder till utsläpp. Det finns dock mycket begränsad information om dessa

utsläpp (Gottschalk and Nowack, 2011). Utsläpp kan ske i alla faser, från produktion av

nanomaterial och de produkter de finns i, till användning och avfallshantering.

Utsläpp under produktion av nanomaterial kan ske både till luft och vatten. Sådana utsläpp är

relevanta bland annat för att uppskatta risker i arbetsmiljön. Det finns dock begränsat med

data. Vid modellering av utsläpp har man därför gjort olika antaganden. Man har antagit

emissioner upp till något eller några procent, vid ”worst-case-scenarier” något högre

(Gottschalk and Nowack, 2011). Samtidigt är det klart att vid noggrant kontrollerade

produktionsprocesser kan utsläppen vara betydligt lägre. På motsvarande sätt kan man tänka

sig utsläpp från tillverkning av produkter där nanomaterial ingår. Även här har man ibland

antagit utsläpp på någon eller några procent (Gottschalk and Nowack, 2011), men det kan

vara lägre vid kontrollerade processer och möjligen högre vid dåliga arbetsförhållanden.

För många nanomaterial kan de största riskerna för utsläpp vara i samband med

användningsfasen. Arvidsson et al (2011) har exempelvis studerat nanosilver med hjälp av

partikelflödesanalyser med fokus på användningsfasen. Detta kan ses som ett intressant

exempel på olika spridningsvägar och sänkor för nanomaterial.

Nanosilver används framför allt i textilier, i sårförband och elektronik. Emissioner kopplat till

användning av textilier uppskattas vara större än från sårförband samtidigt som det enligt

Arvidsson et al (2011) är svårt att uppskatta emissionerna kopplat till användning av

elektronik. Studier har visat att silverpartiklar kan frigöras vid tvättning av textilier. Hur mycket

beror dock bland annat på hur mycket silver som finns i textilierna och det kan variera

kraftigt. Silvret som frigörs vid tvättning hamnar i stor utsträckning i

vattenreningsanläggningar där en stor del, men inte allt, kan förväntas hamna i slammet och

resterande släppas ut med vattnet. Slammet kan sedan användas som täckningsmaterial på

deponier eller användas på jord- eller skogsmark. Från slammet kan silvret lakas ut. Om det

är på deponier kan frisättningsprocessen vara långsammare och lakvattnet kan fångas i

lakvattenreningsprocesser och då eventuellt fastna i reningsverksslam igen.

Arvidsson (2012) har analyserat några möjliga framtidsscenarier med en ökad användning av

silver i textilier, Man finner då att halterna i slam kan bli högre än riskrelaterade riktvärden

och om slammet används på jordbruksmark så kan halterna bli höga om hänsyn tas till

risknivåer för maskar (Arvidsson, 2012). Halterna beror dock bland annat på hur mycket

textilier med silver som används och också hur mycket silver som används i textilierna

(Arvidsson, 2012).

Slam kan också förbrännas. Vid förbränning kommer det mesta av silvret att hamna i

bottenaskan men även i andra askfraktioner och endast en mindre del kan förväntas

emitteras med rökgaserna (Mueller et al, 2013). De olika askorna kommer att deponeras eller

eventuellt användas som konstruktionsmaterial. I båda fallen kan man förvänta sig

långsamma utlakningsprocesser.

Page 13: Life cycle aspects of nanomaterials

vii

För nanosilver som sitter i sårförband kommer en mindre del att lämna förbandet under

användningen, men det mesta finns kvar i förbandet. Både för textilier och sårförband

innebär användningen en direkt exponering av människor eftersom materialen ligger mot

huden. Använda förband hamnar till stor del i brännbara avfallsfraktioner.

Nanosilver i elektronikprodukter kommer antagligen i stor utsträckning att finnas kvar i

produkterna efter användningsfasen. Om elektronikskrotet behandlas genom återvinning

finns möjligheter att delar av silvret kan återvinnas. Det är dock väl känt att elektronikskrot

inte bara behandlas genom avancerade återvinningsprocesser utan också i viss mån genom

enklare och mer miljöfarliga processer i vissa utvecklingsländer (Robinson, 2009, Umair et al,

2013), varvid utsläpp kan ske.

För andra nanomaterial kan emissioner ske på andra sätt. Titandioxid används t.ex. i

solskyddsmedel. Då sker en direkt exponering av människor, men det sker också direkta

emissioner till akvatiska miljöer i samband med att man badar med solskyddsmedel på

kroppen (Arvidsson, 2012). Nano titandioxid kan också användas i färg och cement. Från

dessa material sker dock emissioner i en långsammare takt.

Grafen är ett nytt material som kan tänkas få många olika tillämpningar till exempel inom

elektronik och som kompositmaterial. Användningen kan därför förväntas öka. Tillgängliga

data indikerat att grafen kan ha miljöfarliga egenskaper (Arvidsson et al, 2013). Det finns

dock väldigt lite information om potentiella emissioner av grafen både till yttre miljö och

relaterat till arbetsmiljö (Arvidsson et al, 2013). Det är ett exempel på de databrister som finns

för många nanomaterial.

Dessa exempel illustrerar att utsläpp från nanomaterial kan ske på många olika sätt under

livscykeln. Det kan ske både som nanopartiklar och som substanser lösta i vatten eller luft.

Det kan ske under produktion, användning och i avfallshantering. Emissioner under

användningsfasen kan ske direkt till naturen, t.ex. genom utlakning av fasader eller från

kosmetiska produkter, eller via vattenreningsprocesser. Människor kan bli exponerade direkt,

till exempel genom hudkontakt, i arbetsmiljön eller efter att utsläpp har skett till naturen.

Avfallshantering kan ha en nyckelroll. Metaller kommer inte att förstöras under

avfallshanteringen utan flyttas mellan olika former där deponier kan vara sänkor med

långsam utlakning. Hastigheten för utlakningen kan dock bero på en mängd olika faktorer

som löslighet, sammansättning och nedbrytningshastigheten för omgivande material,

partikelstorlek o.s.v. För organiska material kan nanomaterialen destrueras under förbränning.

Återvinning av produkter kan ske på många olika sätt och leda till att kretslopp sluts, men om

det sker på dåligt kontrollerade sätt kan det leda till diffus spridning av farliga ämnen.

Eftersom kompositmaterial, som är sammansatta av många olika material, ofta är svårare att

återvinna kan en ökad användning av sådana leda till ökad förbränning och deponering.

Att nanosilver valdes som exempel ovan beror dels på att silverjoner har miljöfarliga

egenskaper, men också på att det i alla fall finns några studier tillgängliga om nanosilver.

Annars är det tydligt att det för många nanomaterial och produkter saknas information, inte

bara om användningen, utan också om vilka utsläpp som kan ske under olika livscykelfaser.

Det saknas också ofta information om i vilka former emissionerna sker. Det är av betydelse

både för exponerings- och effektanalyser om emissionerna av material sker i form av

Page 14: Life cycle aspects of nanomaterials

viii

nanopartiklar, större partiklar eller om ämnet har lösts ivatten eller förångats.

5 Riskbedömningar i livscykelperspektiv

Grieger et al (2012) gör en genomgång av riskbedömningar av nanomaterial. Man

konstaterar att det finns ett antal studier som har försökt göra riskbedömningar av

nanomaterial enligt gällande protokoll. Studierna behandlar bland annat nanosilver,

titandioxid-partiklar och kolbaserade produkter som kolnanorör. Alla dessa har dock dragit

slutsatsen att på grund av brist på data och stora osäkerheter har det inte varit möjligt att

genomföra kompletta riskbedömningar för dessa nanomaterial. Resultaten måste därför

betraktas som preliminära. Bland svårigheterna finns brist på mätta exponeringsdata,

modeller för exponeringsanalyser, osäkerheter i karaktäriseringen av nanopartiklarna,

tillämpligheten av olika tester, och brist på toxikologiska och ekotoxikologiska data.

6 Livscykelanalyser av nanomaterial

I Figur 3 visas en förenklad bild av livscykeln av en produkt som innehåller nanomaterial. Den

tunnare, mörka linjen innanför den tjockare representerar nanomaterialet i produktens

livscykel och visar var emissioner av dessa kan ske.

Vid utvinning av råvaror kan miljöpåverkan uppstå bland annat på grund av energiintensiv

råvaruutvinning och associerade utsläpp, förlust av icke-förnybara råvaror och utsläpp av

toxiska ämnen. Om det handlar om förnybara råvaror så kan bland annat markanvändningen

leda till påverkan på biologisk mångfald. Under produktionsfasen kan miljöpåverkan uppstå

på grund av energiintensiva tillverkningsprocesser för nanomaterial och associerade utsläpp

och möjligen utsläpp av nanomaterial. Under användningsfasen kan utsläpp av nanomaterial

ske, men produkter med nanomaterial kan också bidra till minskad miljöpåverkan jämfört

med konventionell teknik. Under avfallshanteringen kan miljöpåverkan uppstå på grund av

utsläpp från bland annat förbränning, återvinningsprocesser och deponering, men om

material och/eller energi kan återvinnas kan det leda till minskad miljöbelastning då det kan

ersätta annan produktion.

Under det senaste decenniet har ett antal livscykelanalyser eller livscykelanalysliknande

studier gjorts på produkter som innehåller nanomaterial. Både Gavankar et al (2012) och

Hischier and Walser (2012) har nyligen publicerat översikter över gjorda studier. Sammanlagt

handlar det om ca 30 studier. Många av de publicerade studierna är dock på olika sätt

begränsade. En aspekt är att många av studierna är av typen ”vaggan till grind” där alltså

produktionsprocesser ingår, men inte användning och avfallshantering. En annan

begränsning är att många av studierna fokuserar på ett begränsat antal miljöeffekter, i första

hand energianvändning och/eller växthusgaser. Däremot är toxiska effekter sämre

behandlade. Båda dessa begränsningar är i stor utsträckning kopplade till brist på data och

modeller, både för emissioner, exponeringsanalys och effektanalys av nanomaterial. Ett

antagande som ibland görs är att potentiella effekter av nanomaterial kan modelleras som

om materialet emitteras som om det har lösts upp i vatten (och därmed inte längre finns som

nanopartiklar).

Page 15: Life cycle aspects of nanomaterials

ix

Figur 3. En förenklad beskrivning av livscykeln hos produkt med nanomaterial och var emissioner kan

uppstå.

En viktig aspekt vid livscykelanalyser av nanomaterial är energiåtgång och därtill associerad

miljöpåverkan vid tillverkning av nanopartiklarna. Denna kan vara svår att uppskatta bland

annat därför att det ofta handlar om nya processer under utveckling. Det kan då vara svårt att

skala upp från olika typer av pilotanläggningar till fullskaleprocesser för tillverkning av

nanomaterial. Det kan också finnas olika tillverkningsprocesser med olika prestanda.

Energianvändningen vid tillverkning av nanomaterial kan ibland vara signfikant. Ett exempel

är tillverkning av kolnanopartiklar som kolnanorör och fullerener. Dessa är 2 till 100 gånger

mer energikrävande per kg att tillverka än t ex aluminium, även med idealiserade

produktionsmodeller (Kushnir and Sandén, 2008). Kolnanofibrer kan användas i

kompositmaterial exempelvis tillsammans med polymerer och glasfibrer. Även dessa

kompositmaterial kan vara mer energikrävande än stål att tillverka (Hischier and Walser,

2012). Betydelsen av livscykelperspektiv blir dock uppenbar om man tar hänsyn till att

kompositmaterialen kan ersätta stål i till exempel fordon och då bidra till att dessa får en

lägre vikt och därmed lägre bränsleförbrukning i användningsfasen. Sett över en bils livscykel

kan då den totala energianvändningen bli lägre med kompositer som innehåller nanomaterial

jämfört med stål, trots den högre energianvändningen i samband med tillverkningen

(Hischier and Walser, 2012). Noteras kan dock att i den analysen ingick inte avfallsledet vilket

skulle kunna påverka resultatet. Inte heller ingick att ett lättare material kanske inte leder till

lättare fordon utan att man i stället stoppar in en större motor eller mer elektronik i fordonet,

Page 16: Life cycle aspects of nanomaterials

x

så att det i slutändan inte alls blir en minskning av bränsleanvändningen. För att fånga dessa

aspekter krävs en bredare och mer fullständig livscykelanalys.

En liknande situation kan vara fallet med nya litiumbatterier som innehåller nya typer av

nanomaterial. Dessa kan vara mer energikrävande att producera. Men om de används

exempelvis i fordon, kan det leda till betydligt större energivinster (Kushnir and Sandén,

2011). Tillgängligheten av litium över tiden kan dock vara en begränsande faktor för

litiumbatterier (Vikström et al, 2013) vilket möjligen kan påverka miljöbelastningen från

produktionen.

Ett annat exempel där produktionen av nanomaterial kan vara av betydelse gäller nanosilver.

Walser et al (2011) gjorde en studie av t-tröjor, tillverkade med och utan tillsatser av biocider

i form av nanosilver eller triclosan. Studien visade att beroende på produktionsmetoden, kan

utsläpp av växthusgaser under produktionen av nanosilverpartiklar vara signifikanta för en t-

tröjas hela livscykel (inklusive 100 tvättar) (Walser et al, 2011).

Studien av Walser et al (2011) är också intressant eftersom den är en av få studier av

produkter som innehåller nanomaterial som försöker bedöma även ekotoxiska effekter av

dessa i ett livscykelperspektiv. Man fann i denna studie att varken silver- eller triclosan-

utsläpp från tvättning av t-tröjan stod för de största bidragen till hela produktens potentiella

ekotoxiska effekter i akvatisk miljö. Man räknade då med en relativt hög avskiljning av

nanosilver i vattenreningsverket. I studien ingick akvatisk ekotoxicitet, däremot inte terrester

ekotoxicitet, t.ex. efter användning av silverhaltigt reningsverksslam. Utsläpp från

gruvbrytning och gruvavfall från produktion av silver kunde däremot vara signifikanta. Annars

uppstod de största ekotoxiska utsläppen i t-tröjans livscykel från produktion av t-tröjan och

tvättning (inkluderande produktion och användning av tvättmedel och produktion av el för

tvättning) (Walser et al, 2011).

7 Om val av metoder, begränsningar och utvecklingsbehov

Enligt diskussionen i kapitel 3 så kan olika metoder användas för att belysa olika typer av

frågeställningar. Lite förenklat kan vi dela in frågeställningarna i några huvudtyper och länka

dessa till de metoder som beskrivits.

En typ av frågor handlar om var i livscykeln de största emissionerna av nanomaterial kan ske.

Dessa frågor kan i första hand besvaras av substansflödesanalyser (eller

partikelflödesanalyser). Baserat på denna information kan man sedan belysa vilka grupper av

människor (anställda eller konsumenter) som löper risk för direkt exponering och till vilka

typer av miljöer emissionerna sker (vatten, mark, luft inomhus eller utomhus).

Substansflödesanalyser kan också användas för att identifiera brist på data om utsläpp.

Baserat på denna information kan man också analysera förändringar av utsläppen från olika

typer av åtgärder för att minska risker.

För att kunna göra substans- (eller partikelflödesanalyser) krävs kunskap om hur mycket av

nanomaterialen som används i samhället och i vilka produkter. Som diskuterades ovan i

kapitel 2 så finns det ingen samlad information om användning av olika nanomaterial, vare

sig mängder eller i vilka produkter.

För att kunna göra substansflödesanalyser behövs också information om utsläpp från

Page 17: Life cycle aspects of nanomaterials

xi

produktion, användning och avfallshanteringen. Dessa kan ofta uttryckas som

emissionsfaktorer t.ex. från användningsfasen. För att uppskatta dessa behövs ofta mätningar

och/eller beräkningar med vars hjälp emissioner kan uppskattas. Som vi såg i avsnitt 4 saknas

idag ofta data även för potentiellt miljöfarliga nanomaterial vilket gör substans- (och

partikelflödesanalyser) svåra att utföra.

En andra typ av frågor handlar om risker med användning av nanomaterial. Det kan handla

om att bedöma hur stora riskerna är med användning av ett specifikt nanomaterial, eller för

att kunna bedöma vilka de största riskerna är med ett nanomaterial i ett livscykelperspektiv.

För denna typ av frågor är riskbedömningar i ett livscykelperspektiv tänkta att användas.

Som framgick ovan i kapitel 5 finns det idag stora svårigheter att göra kompletta

riskbedömningar. Det handlar både om brist på data och brist på metoder (Gottschalk and

Nowack, 2011, Grieger et al, 2012, Praetorius et al, 2013, Savolainen et al, 2010). Dels handlar

det om uppgifter om hur och hur mycket nanomaterial som används och dels om emissioner

av nanomaterial i olika exponeringssituationer. Men det behövs också vidareutveckling av

metoder för exponeringsanalyser liksom de toxiska och ekotoxiska analyserna. Vid utveckling

av exponeringsanalyser är det också viktigt att beakta olika situationer såsom arbetsmiljö,

användning av produkter och efter utsläpp till vatten, luft och mark.

Svårigheterna att göra riskbedömningar i livscykelperspektiv innebär att även om

riskbedömningar utvecklas för att besvara frågor om risker som diskuterades ovan, så är det i

praktiken svårt att använda dem för det syftet idag. Svårigheterna att göra riskbedömningar i

ett livscykelperspektiv innebär också att även om ett nanomaterial kan leda till allvarliga

miljöproblem, så kan det vara svårt att visa det i en riskbedömning. Detta illustrerar att för att

få en säker användning av nanomaterial så kan man inte bara förlita sig på riskbedömningar

som beslutsunderlag. Det kräver mycket data och tar tid. Ett riskparadigm där ett stort antal

nanomaterial ska genomgå riskbedömningar blir därför dyrt och ineffektivt. Det behöver

också utvecklas andra metoder som kan användas som beslutsunderlag, metoder som kan

använda data och metoder som är mer lättillgängliga. Förutom att utveckla metoder och data

för riskbedömningar så behöver det därför också utvecklas metoder som kan användas i

stället för riskbedömningar vid reglering av nanomaterial. En parallell kan göras till

kemikaliområdet där Miljömålsberedningen föreslog att ska kunna behandla och pröva

grupper av ämnen utan att varje enskilt ämne genomgick en riskbedömning

(Miljömålsberedningen, 2012). Det borde också kunna vara intressant även för nanomaterial.

En tredje grupp av frågor handlar om att identifiera potentiella miljöproblem i ett

livscykelperspektiv. För dessa frågor kan både substansflödesanalyser, riskbedömningar och

livscykelanalyser vara användbara, under förutsättning att data och metoder finns

tillgängliga. Man kan dock notera att de olika metoderna har olika ansatser och därmed

möjlighet att identifiera olika typer av miljöproblem. Med substansflödesanalyser kan viktiga

emissionspunkter i nanopartiklarnas livscykel identifieras. Med riskbedömningar kan viktiga

risker i hanteringen av nanomaterial bedömas. Livscykelanalyser kan även bidra till att

identifiera andra miljöeffekter än de som förknippas med utsläpp av det specifika

nanomaterialet. Livscykelanalyser kan också utnyttjas för att identifiera de faser i livscykeln

där viktiga naturresurser används, där utsläpp av växthusgaser sker, och där andra potentiella

miljöproblem kan uppstå.

Page 18: Life cycle aspects of nanomaterials

xii

Nanomaterial kan öppna upp nya möjligheter bland annat genom att man kan producera nya

och lättare material, och genom användning i energi och miljötekniska sammanhang. Men

användning av produkter med nanomaterial kan också leda till andra typer av miljöproblem.

En fjärde grupp av frågor kan därför vara att identifiera potentiella för- och nackdelar med

olika alternativa produkter, med eller utan nanomaterial, med avseende på olika miljöfrågor i

ett livscykelperspektiv. För denna typ av frågor kan livscykelanalyser användas för att visa på

möjligheter men också begränsningar med nanomaterial.

I dagsläget begränsas möjligheten att fullt använda livscykelanalyser på produkter

innehållande nanomaterial av brist på data för nanomaterialen (Gavankar et al, 2012, Hischier

and Walser, 2012). Detta gäller till exempel data för energianvändning och emissioner från

produktion av nanomaterial. Det gäller också brist på data om emissioner av nanomaterial

som diskuterades ovan i samband med SFA och riskbedömningar liksom metoder och data

för miljöpåverkansbedömningen av nanomaterial. Även för avfallshanteringen finns ofta brist

på data hur produkter med nanomaterial kan hanteras och vad som händer med olika

nanomaterial vid exempelvis deponerings och återvinningsprocesser. Bland annat dessa

metodbegränsningar innebär dock att det sällan eller aldrig är möjligt att dra bestämda

slutsatser om vilken produkt som är föredra. Rent generellt kan livscykelanalyser sällan

besvara frågor av typen ”Är produkt A bättre än produkt B ur miljösynpunkt?” och detta

gäller även produkter med nanomaterial. Mer specifika frågor av typen, ”kan den ökade

energianvändningen under produktionsfasen av produkt A uppvägas av energibesparingar i

användningsfasen jämfört med produkt B? är ofta mer lämpade för en LCA (Finnveden, 2000).

En jämförelse mellan de två studierna av Arvidsson et al (2011) och Walser et al (2011) som

diskuterades i kapitel 4 och 6 och som båda berör nanosilver illustrerar hur SFA och LCA kan

användas, vilka typer av resultat man kan få och hur de kan komplettera varandra. Studien av

Arvidsson visar bland annat hur ackumulering i jordbruksmark kan vara problematisk, en

aspekt som är svår att fånga med en LCA som inte ser hela användningen av ett ämne utan

bara den del som är associerad med en produkt, i studien av Walser et al (2011) en t-tröja. En

LCA kan å andra sidan fånga upp andra aspekter såsom utsläpp av andra toxiska ämnen och

andra miljöproblem, exempelvis klimatpåverkan från produktion av nanosilver, vilka inte alls

studeras av en SFA.

8 Pågående forskning

Utvecklingen av nanomaterial är snabb. Det har också skett en utveckling av metoder och

data för olika typer av miljö- och riskbedömningar inom området. Det är signifikativt att de

flesta referenser till denna rapport är från de allra senaste åren. Inte minst genom flera EU-

projekt har kunskapsområdet utvecklats. Flera av de studier som redovisas kortfattat här är

från pågående eller nyss avslutade EU-projekt. Exempel på sådana EU-projekt av relevans för

denna rapport är Nanosustain och Prosuite som båda innehåller metodikutveckling för LCA

och riskanalyser av nanomaterial. Projektet Nanopolytox berör några grupper av

nanomaterial som används i polymerer och Nanohouse berör ytbehandlingsprodukter med

nanomaterial. Projektet Nanovalid berör metoder för riskbedömningar och Licara metoder

för LCA. Mer information om dessa och andra projekt finns i Lazarevic and Finnveden (2013)

och på hemsidor med i de flesta fall adressen www.projektnamn.eu.

Inom Sverige kan bland annat nämnas att Mistra kommer att starta ett forskningsprogram

Page 19: Life cycle aspects of nanomaterials

xiii

om nanomaterial under 2013. Inriktningen på detta är dock inte bestämt när detta skrivs.

Genom de forskningsinsatser som nu pågår kommer kunskapsläget att förbättras under de

närmaste åren. Man kan dock förvänta sig att många av de kunskapsluckor och

utvecklingsbehov som nämnts ovan kommer att bestå. Detta bland annat därför att flera av

forskningsprogrammen i första hand berör ett begränsat antal nanomaterial samtidigt som

antalet nanomaterial är stort och det dessutom utvecklas nya. Även tillämpningar inom t.ex.

biomedicin och IKT kan förväntas växa. Den forskning kring risker som pågår ger också nya

frågeställningar. Det finns därför ett starkt behov av forskning och kunskapsuppbyggnad

inom området livscykelaspekter av nanomaterial.

9 Rekommendationer

För att kunna säkerställa en säker hantering av nanomaterial och för att kunna identifiera

möjligheter i ett livscykelperspektiv krävs bättre data och analysmetoder. Nedan identifieras

några vägar framåt:

Bättre information om användning av nanomaterial. För att kunna bedöma risker

behövs information om vilka mängder samhället använder, i vilka tillämpningar och i

vilka former.

Bättre information om emissioner. För att kunna bedöma risker behövs information

om var emissioner sker. Förenklade substansflödesanalyser behöver därför utföras på

nanomaterial. Metoder för detta behöver tas fram där rimliga worst-case-antaganden

kan göras för att bedöma om fördjupade analyser behöver göras. Den som sätter ett

material på marknaden bör kunna beskriva hur den kommer att destrueras alternativt

emitteras till naturen.

Fördjupade substansflödesanalyser i vissa fall. Dessa fall kan väljas av flera olika skäl:

miljömässigt problematiska nanomaterial, nanomaterial som används i stora

mängder, eller nanomaterial som kan anses vara representativa för större grupper och

därmed kan användas för att utveckla och verifiera de förenklade modellerna.

Mätningar. Substansflödesanalyser bygger på att det finns data tillgängliga som i sin

tur behöver komma från faktiska mätningar eller modellberäkningar, som i sin tur

behöver bygga på mätningar. Exempel på viktiga situationer där faktiska mätningar

behövs är för exponering i arbetsmiljö, exponering av konsumenter, flöden i

vattenreningsanläggningar, flöden i samband med återvinningsprocesser och annan

avfallshantering.

Metoder för karaktärisering av nanopartiklar. Eftersom egenskaper hos nanomaterial

kan förändras med partiklarnas form och storlek behöver de karaktäriseras på sätt

som är relevanta för emissionsmätningar, exponeringsanalyser och toxiska effekter.

Toxiska och ekotoxiska dos-responsdata behöver tas fram.

Modeller för exponeringsanalyser behöver vidareutvecklas och anpassas för

nanopartiklar.

Metoder för miljöpåverkansbedömningen i livscykelanalyser behöver vidareutvecklas

och anpassas för nanopartiklar. I takt med att metoder för riskbedömningar av

nanopartiklar utvecklas behöver metodiken för livscykelanalyser följa efter och

anpassas.

Livscykelanalysdata för nanomaterial. Livscykelanalyser är starkt beroende av

databaser och dessa har utvecklats under det senaste decenniet för traditionella

Page 20: Life cycle aspects of nanomaterials

xiv

material och tillverkningsprocesser. Det finns dock stora brister avseende

nanomaterial. Livscykeldata är nödvändiga för att kunna bedöma potentiella för- och

nackdelar med nanomaterial i livscykelperspektiv.

Metoder att ta fram livscykeldata för nya teknologier. Nanoteknologi är ett område

under stark utveckling. Det gäller även produktionsprocesser och miljöprestanda för

dessa.

Internationell samverkan, men med svenskt perspektiv. Mycket av de data och

metoder som behöver tas fram bör ske i internationell samverkan. Det kan dock vara

viktigt att ta fram livscykeldata för produkter som tillverkas i Sverige eftersom en del

förhållanden kan vara specifika för Sverige (t.ex. råvaror och energimix). Också andra

processer som till exempel avfallshantering kan ha specifika svenska förhållanden.

Samverkan industri, myndigheter och forskning. Mycket av de data som behöver tas

fram, behöver komma från industrin som har kunskap om tillverkningsprocesser etc.

Utveckling av metoder behöver dock ske i samverkan med forskning och

myndigheter.

Trovärdig information till användare. En säker användning förutsätter informerade

användare. Märkning och annan information behöver utformas så att användare i

företag, organisationer, myndigheter och konsumenter kan fatta egna beslut.

Undvik fastlåsning i ett riskparadigm. Fullständiga riskbedömningar kräver mycket

data och tar tid. Det är dyrt och ineffektivt om det ska genomföras på ett stort antal

nanomaterial. Man måste därför kunna fatta effektiva beslut om säker användning av

nanomaterial utan fullständiga riskbedömningar.

Undvik ett material för material-paradigm. Antalet nanomaterial kan vara stort. För att

få effektiva processer måste beslut kunna fattas utan att fullständiga data finns

tillgängligt för varje enskilt material. Beslut behöver kunna fattas för grupper av

material, eller baserat på enklare kriterier.

Resurser till forskning inom flera områden. Enligt ovan behöver det tas fram metoder

och data inom flera områden för att kunna utveckla användningen av

substansflödesanalyser, riskbedömningar och livscykelanalyser. För att detta ska ske

behöver det också finnas resurser till forskning.

10 Slutsatser

Det finns ett stort antal nanomaterial som används i ett stort antal produkter, exempelvis

icke-metalliska oorganiska material (såsom kiseloxider, aluminiumoxid och titandioxid),

kolbaserade nanomaterial (såsom kimrök (eng: carbon black) och ”kolnanorör”), metaller

(t.ex. silver) och organiska makromolekyler och polymera material. Bland tillämpningar av

nanomaterial finns i däck och i polymera material, inom elektronik, och kosmetika. Det finns

också många specialiserade tillämpningar inom energiteknik, informations- och

kommunikationsteknik och biomedicinska tillämpningar.

Det finns ingen offentlig statistik tillgänglig om vilka material som används och i vilka

produkter. Miljö- och hälsorisker är både förknippade med den kemiska sammansättningen

av materialen, men också nanopartiklarnas storlek, form och egenskaper. Nanopartiklarna

behöver därför klassas inte bara med avseende på kemisk sammansättning. Storlek och form

är dock egenskaper som kan förändras under användning och efter utsläpp vilket försvårar

bedömningar av miljö och hälsorisker.

Page 21: Life cycle aspects of nanomaterials

xv

För att bedöma miljöpåverkan av nanomaterial i livscykelperspektiv finns det tre

huvudgrupper av metoder: substansflödesanalyser med vars hjälp utsläpp av nanomaterial

över dess livscykel kan analyseras, riskbedömningar i livscykelperspektiv med vars hjälp risker

för människor och miljö med användning av nanomaterial kan bedömas och livscykelanalyser

med vars hjälp potentiell miljöpåverkan av en produkt som innehåller nanomaterial kan

analyseras liksom potentiella för- och nackdelar med olika produkter med och utan

nanomaterial. För alla dessa typer av metoder finns det exempel på mer eller mindre

fullständiga fallstudier.

För susbtansflödesanalyser krävs data om användning och emissioner av nanomaterial.

Enstaka fallstudier, t.ex. för silver, pekar på att det finns risker att riskrelaterade riktvärden

överskrids. Det finns dock stora kunskapsluckor avseende emissioner av nanomaterial under

produktion, användning och avfallshantering även för ämnen med miljöfarliga egenskaper.

För riskbedömningar behöver modeller för spridning och exponeringsanalyser för

nanomaterial utvecklas, liksom dos-respons data för toxiska effekter. Fullständiga

riskbedömningar i ett livscykelperspektiv av nanomaterial är svåra på grund av de brister i

data och metoder som finns i dagsläget.

Livscykelanalyser har gjorts på ett antal produkter innehållande nanomaterial. De är dock ofta

begränsade i det att endast ett mindre antal miljöeffekter behandlas och/eller att bara delar

av livscykeln analyserats. Produktion av nanomaterial kan ofta vara energikrävande. Dock kan

i ett livscykelperspektiv användningen av nanomaterial leda till en minskad energianvändning

som är större än den som orsakades av produktionen. Användningen av nanomaterial kan

därför innebära viktiga möjligheter.

Utvecklingen av nanomaterial är snabb. Det har också skett en utveckling av metoder och

data de senare åren och det pågår bland annat flera EU-projekt vilket kommer att förbättra

kunskapsläget. Många av de databrister och forskningsbehov som identifierats kommer dock

sannolikt att finnas kvar.

För att både kunna nå en säker användning av nanomaterial och att kunna utnyttja

nanomaterialens möjligheter i ett livscykelperspektiv krävs bättre data och analysmetoder.

Som exempel på vägar framåt kan nämnas bättre information om användning av

nanomaterial, bättre information om emissioner av nanomaterial, fördjupade

substansflödesanalyser av intressanta nanomaterial, mätningar i viktiga miljöer inklusive

arbetsmiljöer och exponering av konsumenter, utveckling av metoder för karaktärisering av

nanopartiklar, utveckling av modeller för exponeringsanalyser, framtagning av toxiska och

ekotoxiska dos-responsdata, utveckling av livscykelanalysdata för nanomaterial, internationell

samverkan med svenskt perspektiv, information till användare, utveckling av metoder som

kan komplettera riskbedömningar och resurser till forskning.

Page 22: Life cycle aspects of nanomaterials

xvi

11 Referenser

Arvidsson, R. 2012. Contributions to Emission, Exposure and Risk Assessment of

Nanomaterials. PhD Thesis, Chalmers University of Technology.

Arvidsson, R., Molander, S., Sandén, B.A., 2011. Impacts of a Silver Coated Future: Particle

Flow Analysis of Silver nanoparticles. Journal of Industrial Ecology 15, 844–854

Arvidsson, R., Molander, S., Sandén, B.A., 2013. Review of Potential Environmental and Health

Risks of the Nanomaterial Graphene. Human and Ecological Risk Assessment, 19: 873–

887.

European Commission, 2011. Commission Recommendation of 18 October 2011 on the

defition of nanomaterial (2011/696/EU). Official Journal of the European Union L275/38-

L2

European Commission, 2012. Commission staff working paper. Types and uses of

nanomaterials, including safety aspects SWD(2012) 288 final. Brussels.

Finnveden, G., 2000. On the Limitations of Life Cycle Assessment and Environmental Systems

Analysis Tools in General. Int. J. LCA, 5, 229-238.

Finnveden, G., Hauschild, M.Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A.,

Pennington, D., Suh, S., 2009. Recent developments in life cycle assessment. Journal of

Environmental Management 91, 1–21.

Gavankar, S., Suh, S., Keller, A.F., 2012. Life cycle assessment at nanoscale: review and

recommendations. The International Journal of Life Cycle Assessment 17, 295–303.

Gottschalk, F., Nowack, B., 2011. The release of engineered nanomaterials to the environment.

Journal of Environmental Monitoring 13, 1145–1155.

Grieger, K.D., Laurent, A., Miseljic, M., Christensen, F., Baun, A., Olsen, S.I., 2012. Analysis of

current research addressing complementary use of life-cycle assessment and risk

assessment for engineered nanomaterials: Have lessons been learned from previous

experience with chemicals? Journal of Nanoparticle Research 14, 1– 23.

Hauschild, M.Z., 2005. Assessing environmental impacts in a life cycle perspective.

Environmental Science & Technology, 39, 81A-88A.

Hischier, R., Walser, T., 2012. Life cycle assessment of engineered nanomaterials: State of the

art and strategies to overcome existing gaps. Science of The Total Environment 425,

271–282.

ISO, 2006a. ISO 14040 International Standard. In: Environmental Management – Life Cycle

Assessment – Principles and Framework. International Organisation for Standardization,

Geneva, Switzerland.

ISO, 2006b. ISO 14044 International Standard. In: Environmental Management – Life Cycle

Assessment – Requirements and Guidelines. International Organisation for

Standardization, Geneva, Switzerland.

Kemikalieinspektionen (2011): Kemikalier I varor. Strategier och styrmedel för att misnka

riskerna med farliga ämnen I vardagen. Rapport nr 3/11. Kemikalieinspektionen.

Kushnir, D., Sandén, B.A., 2008. Energy requirements of carbon nanoparticle production.

Journal of Industrial Ecology 12, 360–375.

Lazarevic, D. and Finnveden, G. 2013. Environmental aspects of nanomaterials in a life-cycle

perspective. Avdelningen för miljöstrategisk analys, KTH, Stockholm. Under

Page 23: Life cycle aspects of nanomaterials

xvii

bearbetning. www.kth.se/abe/fms

Miljömålsberedningen, 2012. Minska riskerna med farliga ämnen. SOU 2012:38,

Mueller, N.C., Buha, J., Wang, J., Ulrich, A., Nowack, B., 2013. Modeling the flows of

engineered nanomaterials during waste handling. Environmental Science: Processes &

Impacts 15, 251–259.

Praetorius, A., Arvidsson, R., Molander, S., Scheringer, M. (2013): Facing complexity through

informed simplifications: A research agenda for aquatic exposure assessment of

nanoparticles. Environmental Sciences: Processes and Impacts, 15, 161-168.

Robinson, B.H. (2009): E-waste: An assessment of global production and environmental

impacts. Science of the Total Environment, 408, 183-191.

Savolainen, K., Alenius, H., Norrpa, H., Pylkkänen, L., Tuomi, T. and Kasper, G. (2010) : Risk

assessment of engineered nanomaterials and nanotechnologies – A review. Toxicology,

269, 92-104.

Umair, S., Björklund, A. and Ekener Petersen, E. (2013): Social Life Cycle Inventory and Impact

Assessment of Informal Recycling of Electronic ICT Waste in Pakistan. In Hilty, L.,

Aebischer, E., Andersson, G., Lohmann, W.: Proceedings of the First International

Conference on Information and Communication Technologies for Sustainability ETH

Zurich, February 14-16, 2013, 52-58. ETH Zurich, University of Zurich and Empa, Swiss

Federal Laboratories for Materials Science and Technology

Van der Voet, E., 2002. Substance flow analysis methodology, in: Ayres, R.U., Ayres, L.W. (Eds),

A Handbook of Industrial Ecology. Edward Elgar, Cheltenham, UK.

Walser, T., Demou, E., Lang, D.J., Hellweg, S., 2011. Prospective environmental life cycle

assessment of nanosilver T-shirts. Environmental Science & Technology 45, 4570–4578.

Vikström, H., Davidsson, S and Hööl, M., 2013. Lithium availability and future production

outlooks. Applied energy, 110, 252-266.

Page 24: Life cycle aspects of nanomaterials

i

CONTENTS

ABBREVIATIONS ........................................................................................................................................ II

LIST OF FIGURES ....................................................................................................................................... III

LIST OF TABLES ......................................................................................................................................... III

1 INTRODUCTION ................................................................................................................................... 1

1.1 Background ............................................................................................................................................................... 1

1.2 Overview of this study .......................................................................................................................................... 1

2 NANOMATERIALS AND NANOTECHNOLOGY ................................................................................. 3

2.1 Defining nanomaterials and nanotechnology............................................................................................. 3

2.1.1 Nanomaterials ............................................................................................................................................... 3

2.1.2 Nanotechnology ........................................................................................................................................... 4

2.2 Nanomaterials .......................................................................................................................................................... 5

2.3 Applications .............................................................................................................................................................. 8

2.1 Potential to contribute to sustainability and unintended consequences ........................................ 8

3 METHODS FOR INVESTIGATING NANOMATERIALS FROM LIFE CYCLE PERSPECTIVE ........... 11

3.1 Life cycle assessment ......................................................................................................................................... 12

3.2 Risk assessment .................................................................................................................................................... 15

3.3 Substance and particle flow analysis ........................................................................................................... 17

4 LIFE CYCLE ASSESSMENT OF NANOMATERIALS ........................................................................... 18

4.1 Research applying life cycle assessment to nanomaterials ................................................................ 18

4.1.1 Current research in the EU and OECD ............................................................................................... 18

4.1.2 Literature review ........................................................................................................................................ 19

4.1.3 Meta-analyses ............................................................................................................................................. 21

4.1.4 Results from selected case studies ..................................................................................................... 26

4.2 Obstacles to and strategies for the application of LCA to nanomaterials .................................... 32

4.2.1 Goal and scope definition ...................................................................................................................... 32

4.2.2 Life cycle inventory analysis (LCI) ........................................................................................................ 34

4.2.3 Life cycle impact assessment (LCIA) ................................................................................................... 37

5 RISK ASSESSMENT OF NANOMATERIALS ...................................................................................... 41

5.1 Risk assessment .................................................................................................................................................... 41

5.2 The complementarity of RA and LCA .......................................................................................................... 41

5.2.1 Life cycle based risk assessment ......................................................................................................... 42

5.2.2 Risk assessment complemented by life cycle assessment ........................................................ 42

5.2.3 A Stream lined approach ........................................................................................................................ 42

6 SUBSTANCE FLOW ANALYSIS OF NANOMATERIALS ................................................................... 44

6.1 Research applying SFA and PFA to nanomaterials ................................................................................ 44

6.1.1 Literature review ........................................................................................................................................ 44

6.1.2 Results from selected case studies ..................................................................................................... 46

6.2 Potential life cycle release and exposure of nanomaterials ................................................................ 49

6.2.1 Production of nanomaterials and manufacture of nanoproducts ......................................... 49

6.2.2 Use phase ..................................................................................................................................................... 50

6.2.3 End-of-life phase ....................................................................................................................................... 51

7 COMMUNICATION OF A LIFE CYCLE APPROACH TO NANOMATERIALS ................................. 53

8 RECOMENDATIONS ........................................................................................................................... 54

9 CONCLUSIONS .................................................................................................................................... 56

10 REFERENCES ........................................................................................................................................ 57

APPENDIX A ............................................................................................................................................. 65

APPENDIX B ............................................................................................................................................. 69

Page 25: Life cycle aspects of nanomaterials

ii

ABBREVIATIONS

CED Cumulative Energy Demand

CNF Carbon Nanofibre

CNT Carbon Nanotubes

EC European Commission

ENM Engineered Nanomaterial

ESA Environmental Systems Analysis

EU European Union

GWP Global Warming Potential

ISO International Organisation for Standardisation

LCA Life Cycle Assessment

LCC Life Cycle Costing

LCI Life Cycle Inventory

LCIA Life Cycle Impact Assessment

MFA Material Flow Analysis

MWCNT Multi-wall Carbon Nanotube

OECD Organisation for Economic Co-operation and Development

NP Nanoparticle

SFA Substance Flow Analysis

SWCNT Single-wall Carbon Nanotube

PFA Particle Flow Analysis

UFP Ultra-Fine Particle

Page 26: Life cycle aspects of nanomaterials

iii

LIST OF FIGURES

Figure 1: Categorisation framework for nanomaterials ............................................................................ 5

Figure 2: Environmental systems analysis tools and their focus ......................................................... 11

Figure 3: Life cycle of a product system ......................................................................................................... 12

Figure 4: Cycles for ENMs determined by the life cycles of nanoproducts ..................................... 14

Figure 5: Comparison of how RA and LCA perceive the term ‘life cycle’ ......................................... 16

Figure 6: Substance flow analysis model ...................................................................................................... 17

Figure 7: LCIA midpoint indicators for vapour-grown carbon nanotubes compared to

aluminium, steel and polypropylene .............................................................................................................. 27

Figure 8: CED of polymer nanocomposites that provide equal stiffness to a steel component

....................................................................................................................................................................................... 28

Figure 9: Difference in CED of CNF reinforced PNCs compared to steel ......................................... 29

Figure 10: Cradle-to-grave climate footprint of biocidal T-shirts and a regular T-shirt ............. 30

Figure 11: Comparison of the freshwater toxicity for the life cycle of one T-shirt ....................... 31

Figure 12: Flow chart recommending the nanomaterial assessment path depending on the

availability of data ................................................................................................................................................. 39

Figure 13: Flows of ENMs during waste disposal shown as a % of the total flow that enters the

incineration/landfill system ............................................................................................................................... 48

Figure 14: Life cycle thinking and nanomaterials ....................................................................................... 53

LIST OF TABLES

Table 1: Nanomaterials on the EU market ..................................................................................................... 7

Table 2: Applications of nanomaterials in different markets .................................................................. 9

Table 3: Environmental advantages in products for different nanotechnology sectors ............ 10

Table 4: Potential benefits and impacts of the use of nanomaterials ............................................... 10

Table 5: LCA studies of nanomaterials . ......................................................................................................... 19

Table 6: Summary of studies applying LCA studies to ENMs ................................................................ 23

Table 7: Cradle-to-gate energy requirement for various methods of CNT and CNF synthesis

....................................................................................................................................................................................... 25

Table 8: Nanomaterials with a high potential for future industrial applications ........................... 37

Table 9: Outcomes, strengths and weaknesses of LCA and RA ........................................................... 41

Table 10: Proposed Stepwise approach to LCT combined with RA ................................................... 43

Table 11: Case studies applying substance flow analysis to nanomateirals ................................... 45

Table 12: Current in-flow, stocks and emissions during the use phase for nanosilver

applications in wound dressings, textiles, and electronic circuitry ..................................................... 46

Table 13: Current in-flow, stocks and emissions during the use phase for titanium dioxide

nanoparticle applications in paint, sunscreen, and self-cleaning cement ....................................... 47

Table 14: Recovery of ENMs from PA and PP composites ..................................................................... 51

Page 27: Life cycle aspects of nanomaterials

1

1 INTRODUCTION

1.1 Background

Nanotechnology and nanomaterials are increasingly seen for their potential to provide

benefits to many areas of society. Consequentially, current and potential applications of

nanomaterials are attracting increasing investments from businesses and governments

worldwide (Royal Society 2004).

Although still an emerging technology, nanotechnology has been labelled a key enabling

technology, and applicable in almost all technological sectors (European Commission 2009a,

2004). There are high expectations as to the positive contribution nanotechnology can make

to sustainable development. It has been suggested that nanotechnology has the potential to

play a key role in addressing the UN’s Millennium Devilment Goals (Salamanca-Buentello et

al., 2005; UNESCO, 2006), and it may increase environmental sustainability via energy

technologies, water technologies, chemistry and green chemistry (Fleischer and Grunwald

2008).

However, the history of technology shows the potentially harmful unintended consequences

of technologies (Tenner 2001) (e.g., dichlorodiphenyltrichloroethane (DDT),

chlorofluorocarbons and asbestos). As such, Maynard (2011, 31) suggests “It makes sense to

assume that nanomaterials come with unanticipated risks”. Consequentially, as the pace of

nanomaterial research, development and production has increased, so has the concern of the

potential risk to health and the environment caused by the ubiquity of these materials.

Although the development of methods to measure and test nanomaterials has progressed

significantly, there remains significant knowledge and data gaps. This results in increased

uncertainty when assessing the potential risk of nanomaterials throughout their life cycle.

1.2 Overview of this study

In September 2012, the Swedish government released a Committee Directive to produce "A

national action plan for the safe use and handling of nanomaterials" (Dir. 2012:89). The

purpose of this action plan is that “... Sweden, in various ways, should exploit nanomaterial’s

possibilities to meet economic, medical, technical and environmental challenges, whilst

taking into account their health and environmental risks and their minimization”

(Miljödepartementet 2012, 1). The intention of this action plan is to ensure that knowledge

concerning nanomaterials being developed, coordinated and disseminated.

The Committee Directive highlights the importance of a life cycle perspective, stating under

the heading “A life cycle perspective”:

“Faced with the government's standpoint on issues of importance to the development

and use of nanomaterials at a national and international level, the availability of a

comprehensive and broad basis that takes into account both possibilities with

nanomaterials and their health and environmental risk from a lifecycle perspective is

very valuable. An important starting point for such a health and environmental risk

analysis must therefore be to review nanomaterials from a lifecycle perspective, which

also includes the disposal and recycling of products containing nanomaterials. The

Page 28: Life cycle aspects of nanomaterials

2

investigator will, if necessary, suggest measures that give the government a good

basis for taking a position." (Miljödepartementet 2012, 6)

In this context, this study has reviewed the current state of knowledge on the environmental

aspects of nanomaterials in a life cycle perspective. The remit of this study was to:

- clarify the types of models and methods that would be best suited to highlight issues

relate to the safe use, safe to both human health and the environment, of

nanomaterials from a life cycle perspective;

- summarize the results of current life cycle research and difficulties, such as knowledge

gaps and the lack of information sources specific to nanomaterials;

- identify on-going research and other initiatives in Sweden, the European Union and

internationally, which focus on the development of methodologies and data

collection in order to illustrate the potential life cycle impacts of nanomaterials;

- propose priorities, from a Swedish perspective, on what can be done with the current

state of knowledge, and work which should be given priority in the short and long

term, for Sweden to achieve the level of knowledge required to understand risks and

opportunities of nanomaterials and nano-products;

- provide suggestions for images to pedagogical explain the importance of the life

cycle perspective in the Government's continuing work in the field of nanomaterials.

Page 29: Life cycle aspects of nanomaterials

3

2 NANOMATERIALS AND NANOTECHNOLOGY

2.1 Defining nanomaterials and nanotechnology

2.1.1 Nanomaterials

A nanometre (nm) is one billionth of a metre. To place this in context, a human hair is

approximately 80,000 nm in width, a red blood cell is approximately 7,000 nm wide, and a

water molecule is almost 0.3 nm across (Royal Society 2004).

Broadly speaking, the term ‘nanomaterial’ refers to material with internal structures and/or

external dimensions within the nanoscale (Lövestam et al., 2010, p. 6). The nanoscale has

been reported to be between 1-100nm (ISO 2008; British Standards Institution 2007), 0.1-

100nm (Royal Society 2004), less than 100nm (O’Brien and Cummins 2010) or less than 500

nm (Handy et al., 2008).

Lövestam et al. (2010) note that there is a general consensus that the definition of

nanotechnology term should be pursued at a European or Global level. Hence, various

international organisations and committees such as the International Organization for

Standardization (ISO), the Organisation for Economic Co-operation and Development

(OECD), the EU Scientific Committee on Emerging and Newly Identified Health Risks

(SCENIHR), the EU Scientific Committee on Consumer Products (SCCP), and governmental

institutions at the national level, have proposed definitions of nanomaterials (see Lövestam et

al. (2010) for a detailed summary of these definitions). Nevertheless, the definition of

nanomaterials have been the subject of intensive debate during recent years, as the term has

obvious implications for regulation and policy1 (Lövestam et al., 2010).

The definition of the term ‘nanomaterial’ as given by the ISO and the European Commission

are presented below.

International Organization for Standardization

ISO (TS 80004-1) proposes the following definition for the term nanomaterial:

“Material with any external dimension in the nanoscale or having internal structure or

surface structure in the nanoscale. Note: This generic term is inclusive of nano-object

and nanostructured material”2

European Commission

The European Commission (EC) has adopted the following recommendation for the

regulatory definition for nanomaterials which are set out in articles 2-4 of the Commission

Recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU):

“ ‘Nanomaterial’ means a natural, incidental or manufactured material containing

particles, in an unbound state or as an aggregate or as an agglomerate and where, for

1 For instance, the EU chemicals legislation REACH (Registration, Evaluation, Authorisation and Restriction of

Chemicals) applies to chemical ‘substances’ on their own, in mixtures or in articles. Although REACH does not

specifically refer to nanomaterials, REACH addresses chemical substances in any size, shape of physical form.

Hence, the definition of a substance in REACH means that substances at the nanoscale are covered by REACH and

its provisions apply to nanomaterials. 2 Nanoscale is referred to as “Size range from approximate 1nm to 100nm

Page 30: Life cycle aspects of nanomaterials

4

50 % or more of the particles in the number size distribution, one or more external

dimensions is in the size range 1 nm-100 nm.

In specific cases and where warranted by concerns for the environment, health, safety

or competitiveness the number size distribution threshold of 50 % may be replaced by

a threshold between 1 and 50 %.” (European Commission 2011)

This definition is based on scientific advice from the Scientific Committee on Emerging and

Newly Identified Health Risks (SCENIHR 2010) and the Joint Research Centre (Lövestam et al.,

2010).

This report uses the term engineered nanomaterial (ENM), which is commonly defined as

materials designed and produced to have structural features with at least one dimension of

100 nanometres or less (Oberdörster et al. 2005).

2.1.2 Nanotechnology

Compared to the definition of the term ‘nanomaterial’, less focus has been placed on the

definition of the term ‘nanotechnology’. Lövestam et al. (2010) note that this is due to the

term only being of occasional practical use.

Nanotechnology is a broad term which encompasses all nanoscale science, research,

engineering and technology (Lloyd 2004). The European Commission (2004, 4) suggests that

“Conceptually, nanotechnology refers to science and technology at the nanoscale of atoms

and molecules, and to the scientific principles and new properties that can be understood

and mastered when operating in this domain”.

International Organization for Standardization

ISO proposes the following definition of nanotechnology:

“the application of scientific knowledge to manipulate and control matter in the

nanoscale to make use of size- and structure- dependent properties and phenomena

distinct from those associated with individual atoms or molecules or with bulk

materials.

Note: manipulate and control includes material synthesis” (ISO/DTS 80004-1)

Page 31: Life cycle aspects of nanomaterials

5

2.2 Nanomaterials

Bauer et al. (2008) note that ENMs can provide a vast range of functions and have material

properties that shape a variety of products and services. ENMs are generally seen as having a

great potential for providing benefits to sectors such as pharmaceuticals, potable water and

water treatment, information and communication technologies (ICT), energy technologies,

chemistry and green chemistry (Royal Society 2004; Fleischer and Grunwald 2008). This is

largely due to the different material properties at the nanoscale, compared to materials at

larger scales.

Broadly speaking, ENMs differ from bulk materials due to two main reasons: relative surface

area and quantum effects. Firstly, as particle size decreases a greater proportion of atoms can

be found at the surface. Hence, nanoparticles have a greater surface area when compared to

larger particles. This has the consequence of changing properties such a reactivity, strength

and electrical characteristics. Secondly, quantum effects can affect the optical, electrical and

magnetic behaviour of matter at the nanoscale. (Royal Society 2004)

Various typologies have been developed to categorise nanomaterials. Foss Hansen et al.

(2007) have developed a typology based on physical shape. This includes the categorises of I)

bulk nanomaterials, II) materials that have nanostructure on the surface and III) materials that

contain nanoparticles. This last category consists of several subcategories including,

nanoparticles suspended in a solid, surface bound nanoparticles, airborne nanoparticles and

nanoparticles suspended in a liquid. This categorisation is illustrated in Figure 1.

Figure 1: Categorisation framework for nanomaterials (reproduced from Foss Hansen et al. (2007))

Page 32: Life cycle aspects of nanomaterials

6

Approximately 11.5 million tonnes of nanomaterials, with a market value of roughly 20 bn€,

are produced and placed on the global market annually (European Commission 2012). Table

1 provides a list of nanomaterials currently on the European market.

There is little quantitative data on the annual production of ENMs and although estimates of

market size are perceived to be reliable, they still need to be taken with a degree of caution

(European Commission 2012). The European Commission (2012) notes that carbon black (9.6

million t/year) and synthetic amorphous silica (1.5 million t/year) dominate the ENM market.

Other ENMs produced in significant quantities include aluminium oxide (200,000 t/year),

barium titanate (15,000 t/year), titanium dioxide (10,000 t/year), cerium dioxide (10,000

t/year), zinc oxide (8,000 t/year), iron oxides (2,500-3,000 t/year), zirconium dioxide (2,500-

3,000 t/year), carbon nanofibres (300-350 t/year), carbon nanotubes (200-250 t/year), silver

(22 t/year) and platinum and palladium alloy (12 t/year).

Page 33: Life cycle aspects of nanomaterials

7

Table 1: Nanomaterials on the EU market (Source: European Commission (2012))

Nanomaterial

Inorganic non-metallic nanomaterials

Synthetic amorphous silica (silicon dioxide) and similar substance

Titanium dioxide

Zinc oxide

Aluminium oxide

Aluminium hydroxides and aluminium oxo-hydroxides

Iron oxides: diiron trioxide (ferric oxide, hematite) and triiron tetraoxide (ferrous-ferric oxide,

magnetite)

Cerium dioxide

Zirconium dioxide

Barium titanate

Barium sulphate

Strontium titanate

Strontium carbonate

Indium tin oxide

Antimony tin oxide

Calcium carbonate

Aluminium nitride

Silicon nitride

Titanium nitride

Titanium carbonitride

Tungsten carbide

Tungsten sulphide

Metals and metal alloys

Gold

Silver

Platinum and palladium alloy

Nickel

Cobalt

Aluminium

Zinc

Manganese

Molybdenum

Tungsten

Lanthanum

Lithium

Carbon-based nanomaterials

Fullerenes

Carbon nanotubes

Carbon nanofibres

Carbon black

Graphene flakes

Nanopolymers and dendrimers

Polymer nanoparticles

Polymer nanotubes, nanowires and nanorods

Polyglycidylmethacrylate (PGMA) fibres

Nanocellulose (fibrils and crystals)

Nanostructured polymer-films

Polyacrylonitrile nanostructures (PAN)

Dendrimers

Quantum Dots

Nanoclays

Page 34: Life cycle aspects of nanomaterials

8

2.3 Applications

Compared to bulk materials, nanomaterials often display different chemical, physical, and

biological properties; they behave differently even though possessing the same elemental or

molecular composition. Nanomaterials have the potential to make every-day consumer

products lighter, stronger, cleaner, less expensive, more efficient, more precise, or more

aesthetic. (Lövestam et al. 2010)

The Woodrow Wilson online nanotechnology consumer products inventory contains 1317

products3. Nanomaterials are used in a variety of product categories including health and

fitness, home and garden, automotive, food and beverage, multifunctional products,

electronics and computers, appliances and goods for children. Over 50% of products

containing nanomaterial can be found within the health and fitness sector, including

products such as cosmetics, clothing, personal care, sporting goods, sunscreen and filtration4.

(Woodrow Wilson International Center for Scholars 2011)

Table 2 details the various markets and applications of nanomaterials.

2.1 Potential to contribute to sustainability and unintended consequences

The unique properties of nanomaterials are often associated with positive expectations in

areas such as material and energy efficiency, pollution and waste reduction and sustainable

development (Fleischer and Grunwald 2008; Bauer et al. 2008). Table 3 summarises some of

the environmental advantages of nanotechnology in various sectors.

However, environmental NGOs, such as Friends of the Earth, suggest that the

“nanotechnology industry has over-promised and under delivered. Many of the claims made

regarding nanotechnology’s environmental performance, and breakthroughs touted by

companies claiming to be near market, are not matched by reality. Worse, the energy and

environmental costs of the growing nano industry are far higher than expected.” Furthermore

that warn that “… overall, this technology will come at a huge energy and broader

environmental cost. Nanotechnology may ultimately facilitate the next wave of expansion of

the global economy, deepening our reliance on fossil fuels and existing hazardous chemicals,

while introducing a new generation of hazards.” (Illuminato and Miller 2010, 3–4)

Gavankar et al. (2012, 296) note that at the nanoscale “materials of the same chemical

composition but different particle-specific intrinsic and extrinsic factors may exhibit different

behaviour and have different impacts on the environment and on human health.” Table 4

illustrates the potential impacts of the use of nanomaterials, highlighting the need to

understand the environmental benefits and impacts of nanomaterials from a systems

perspective. Hence, the claims regarding the potential for nanomaterials to contribute to

sustainability require scrutiny.

3 as of the 10

th of March 2011

4 Som et al (2010) note this data should be used with caution. For instance, Dekkers et al. (2007) note that, at least

from a Dutch perspective, it is possible that products on the market with the claim of ‘nano’ may neither contain

nanomaterials nor be produced with nanotechnology, and not all products advertise the presence of

nanomaterials in their products (as there has been no legal obligation to label products containing nanomaterials).

Page 35: Life cycle aspects of nanomaterials

9

Table 2: Applications of nanomaterials in different markets (reproduced from Bauer et al. (2008))

Market Application C/P

Automotive industry Lightweight construction C

Painting (fillers, base coat, clear coat) C

Catalysts C

Tyres (fillers) P

Sensors C

Engineering Wear protection for tools and machines C

Lubricant-free bearings C

Construction Construction materials C

Thermal insulation C

Flame retardants C

Surface-functionalized building materials for wood, stone, tiles. C

Façade coatings C/P

Groove mortar C/P

Textile fabrics Surface-processed textiles C

Smart clothes P

Energy Fuel cells C

Solar cells C/P

Batteries C/P

Capacitors C

Cosmetics Sun protection P

Lipsticks P

Skin creams P

Tooth paste P

Household Ceramic coatings for irons C

Odors catalysts P

Cleaner for glass, ceramic, floor, windows P

Chemical industry Fillers for paint systems C

Coating systems based on nanocomposites C/P

Impregnation of papers C

Switchable adhesives C

Magnetic fluids C

Electronic industries Data memory C

Displays P

Laser diodes C

Glass fibres C

Optical switches C

Filters (IR-blocking) C

Conductive, antistatic coatings C

Medicine Drug delivery systems C

Active agents C

Contrast medium C

Medical rapid tests C

Prostheses and implants C

Antimicrobial agents and coatings C

Agents in cancer therapy C

Food and drinks Package materials C

Storage life sensors C

Additives C

Clarification of fruit juices C

Sports/outdoor Ski wax P

Antifogging of glasses/goggles C

Antifouling coatings for ships/boats C/P

Reinforced tennis rackets and balls P

C=component, P=product.

Page 36: Life cycle aspects of nanomaterials

10

Table 3: Environmental advantages in products for different nanotechnology sectors (Reproduced from

Bauer et al. (2008))

Sectors of nanotechnology Examples products Environmental advantages

Nano electronic Electronic component, bioelectronic

component

Energy efficiency, speed data

processing, replacement of silicon

Nano optic Optoelectronic component Higher data transfer rate,

miniaturisation

Nano fabrication Nano structures for electronic

components, ultra-thin layers of tools

and components,

Energy efficiency, speed data

processing, longer life time

Nano chemistry, nanomaterials Nanoparticles (as part) from new

materials or new composites

New mechanical, electrical,

magnetically active, optical

properties and therefore,

unknown material functions less

weight and volume, improvement

of properties

Nanobiotechnlogy Bio-based micro manufacturing of

electronic components, bio sensors,

bio catalyst, cellular engine

Medical early warning system

energy efficiency

Nano analytics Measuring instruments of quanta

effects

Analysing nano structures

Table 4: Potential benefits and impacts of the use of nanomaterials

Nanomaterials and potential sustainability

benefits

Potential impacts

Nanomaterials such as aluminium oxide, cerium oxide,

zirconium oxide, perovskite, zeolites and precious

metals (i.e., palladium, platinum and rhodium) can be

used in catalytic conversion technologies in order to

reduce unburned hydrocarbons, particulate matter

and other emissions from cars and trucks.

However, this would need to offset the potential

negative environmental impacts that can occur during

mining and production. Additionally, some materials

are scarce leading to problems related to the scarcity

of rare earth metals.

Carbon nanotubes (CNTs) and aerogels can be used in

nanocomposites in automotive applications to reduce

weight and therefore increase fuel efficiency.

However, the production of CNTs is energy intensive,

which must be taken into consideration in any

sustainability assessment.

Biocides such as nanosilver (and to a lesser extent

various metal oxides) are used in a wide variety of

applications such as biocidal cleaning products,

antimicrobial agents and coating, application to

medical instrumentation and textiles. Nanosilver is an

effective and antimicrobial treatment/coating and can

reduce the application of hazardous substances (such

as chlorine bleach) for similar purposes.

However, silver is one of the most toxic metals to

aquatic organisms (Luoma 2008). The increased use of

nanosilver in consumer products, such as socks and

other textiles, to reduce odour and/or kill bacteria my

result in the increased flow of nanosilver to the

environment.

Page 37: Life cycle aspects of nanomaterials

11

3 METHODS FOR INVESTIGATING NANOMATERIALS FROM LIFE CYCLE PERSPECTIVE

Environmental systems analysis (ESA) is a subfield of systems science (see Ackoff (1973) and

Checkland (1999)) which aims at addressing environmental problems (Baumann and Tillman

2004). There are a number of ESA tools which differ in goal and scope (Finnveden and

Moberg 2005; Finnveden et al. 2009). Tools which are used to investigate the environmental

impact of products or substances include substance flow analysis (SFA), chemical risk

assessment (RA), and life cycle assessment (LCA), see Figure 2. These tools incorporate the

concept of a product or substance life cycle into their analysis.

Figure 2: Environmental systems analysis tools and their focus (adapted from Finnveden and Moberg

(2005))

In industry, the term ‘life cycle’ is generally understood as the life-span of either a material, a

chemical or a product, covering its production, use and disposal (Som et al. 2009). Seager

and Linkov (2008, 282) have noted that “It is now nearly universally accepted that the product

life cycle is the proper perspective for thinking about materials, including nanomaterials”.

However, the way the term ‘life cycle’ is used and perceived within different areas of

expertise, such as LCA and RA, leads to different interpretations (Christensen and Olsen

2004). Below, Sections 3.1, 3.2 and 3.3 briefly introduce LCA, RA and SFA, respectively, and

discuss how the ‘life cycle’ is perceived in each of these tools.

Page 38: Life cycle aspects of nanomaterials

12

3.1 Life cycle assessment

LCA assesses the potential environmental impacts of a product/service system over its life

cycle. The term ‘life cycle’ includes the extraction and processing of raw materials, production,

transportation and distribution, use, and end-of-life (re-use, recycling, recovery and final

disposal) phases, see Figure 3.

LCA is an accepted and internationally standardised tool (ISO 14040 – 14044), defined as the

“compilation and evaluation of the inputs, outputs and the potential environmental impacts

of a product system throughout its life cycle” (ISO 2006a, 2). The ISO standards lay down

quality criteria for the design and execution of the LCA, as well as for the reporting of results,

data, methods, assumptions and limitations. (Guinée, 2002). Part of this quality criteria is the

need for a critical review, by a qualified expert or panel of experts, when an LCA is used to

support comparative assertions.

Figure 3: Life cycle of a product system (reproduced from UNEP (2007))

Page 39: Life cycle aspects of nanomaterials

13

LCA consists of four phases: goals and scope definition, life cycle inventory analysis (LCI), life

cycle impact assessment (LCIA) and interpretation.

- Goal and scope definition: The goals and scope definition of an LCA provides a

description of the product system. According to ISO (2006b), the goal should state:

“the intended application, the reasons for carrying out the study, the intended

audience … and whether the results are intended to be used in comparative assertions

intended to be disclosed to the public” (ISO 2006b, 7).

- Life cycle inventory analysis (LCI): The LCI phase involves the compilation and

quantification of data for all inputs (such as energy, water and materials usage) and

outputs (such as air emissions, solid waste disposal, wastewater discharge) of all the

processes in product/ service system throughout its life cycle. These data are related

to the reference flow which is given by the functional unit (Hauschild 2005).

- Life cycle impact assessment (LCIA): The LCIA phase translates the LCI input and

output data into information about the system’s impact on the environment, human

health and resources (Hauschild 2005). It is aimed at evaluating the significance of

potential environmental impacts of the LCI phase (ISO 2006b). The LCIA phase

consists of several steps: selection of impact categories, category indicators and

characterisation models; classification; characterisation; normalisation; grouping; and

weighting (see ISO (2006a) for detail about individual phases). According to ISO,

mandatory elements of the LCIA phase are the selection of impact categories,

category indicators and characterisation models, classification, and characterisation.

Normalisation, grouping and weighting are optional.

- Interpretation: The interpretation phase evaluates all the LCA results according to the

defined goal and scope, which reach conclusions, explain limitations and provide

recommendations. The interpretation phase should include a sensitivity and

uncertainty analysis to qualify the results and conclusions of the study (Hauschild

2005).

It is important to establish a demarcation between LCA and life cycle thinking (LCT). LCT is a

concept that “seeks to identify possible improvements to goods and services in the form of

lower environmental impacts and reduced use of resources across all life cycle stages. … The

key aim …is to avoid burden shifting” (European Commission 2010), whereas LCA aims to

describe the potential environmental impacts of a product/service system over its life cycle.

Page 40: Life cycle aspects of nanomaterials

14

As early as 2004, the Royal Society (2004, 32) suggested that the “potential benefits of

nanotechnologies should be assessed in terms of lifecycle assessment”. Furthermore,

according to Grieger et al. (2012), there is a general consensus amongst scientists,

researchers and regulatory agencies that the potential health and environmental risks of

ENMs should be evaluated over there entire life cycle.

In the context of nanotechnology, the term ‘life cycle’ can be used in reference to both ENMs

and nanoproducts (Som et al. 2009). For instance, a nanoparticle can be incorporated into

different ENMs which can then be used in different products. Hence, there may be a variety

of use and end of life phases for nanomaterials, depending upon the products in which they

are incorporated, as illustrated in Figure 4.

Figure 4: Cycles for ENMs determined by the life cycles of nanoproducts (reproduced from Som et al.

(2009))

Page 41: Life cycle aspects of nanomaterials

15

3.2 Risk assessment

Although there are a multitude of definitions of risk, Renn (2008, 373) defines risk “an

uncertain consequence of an event or an activity with regard to something that humans

value” 5, the consequences of which can be either positive or negative depending upon the

values people associate with them.

Risk assessment (RA) has been the standard approach to assessing the potential risk of bulk

chemicals. RA assesses the risk to human health and the environmental of a single substance

at a particular point in a chemical’s life cycle or the total release of a substance from a

chemical’s life cycle (Grieger et al. 2012). The term ‘life cycle’ covers all downstream uses of

the chemical, from the manufacture of substance to its disposal or the preparations/articles

containing the substance (Christensen and Olsen 2004). RA is often performed to identify

whether any life-cycle stages pose a risk (Grieger et al. 2012).

The difference between the conception of ‘life cycle’ in LCA and RA is illustrated in Figure 5.

Whilst LCA assesses a range environmental impacts of a product system related to a

functional unit from the cradle-to-grave, RA assesses the health and environmental risk of a

single substance at a particular point in the substances life cycle.

More specifically, RA is “the task of identifying and exploring, preferably in quantified terms,

the types, intensities and likelihood of the (normally undesired) consequences related to a

risk”. RA consists of four steps:

- hazard identification: the mapping of a chemical’s inherent physico-chemical and

biological properties required to provide a uniform basis for the evaluation of hazard

potential.

- dose-response assessment: quantitative estimation of the chemical concentration

expected not to have an effect on human health or the structure and function of an

ecosystem’s species.

- exposure assessment: the application of generic and/or specific scenarios of exposure

pathways for a chemical, resulting in the a predicted environmental concentration

value for each scenario.

- risk characterisation: compares the exposure of each exposed population with the

appropriate derived no-effect level, compares the concentrations predicted in each

environmental sphere with the predicted no-effect level, and assesses the likelihood

and the severity of an event arising from the physico-chemical properties of the

substance.

There is a consensus that the RA framework is applicable to passive ENMs (SCENIHR 2009,

2010). However, many of the methodological steps within RA require further refinement or

development for ENMs (Grieger et al. 2012). There has been a recent call for a

complementary application of LCA and RA to ENMs (see Linkov and Seager (2011) Grieger et

al. (2012) and Shatkin (2008)). In this context, two approached to RA from a life cycle

perspective have been identified: ‘LC-based RA’ and ‘RA-complemented LCA’(Grieger et al.

2012) (See Chapter 5).

5 Original definition in Kates et al. (1985, p.21)

Page 42: Life cycle aspects of nanomaterials

16

Figure 5: Comparison of how RA and LCA perceive the term ‘life cycle’ (reproduced from Grieger et al.

(2012))

Page 43: Life cycle aspects of nanomaterials

17

3.3 Substance and particle flow analysis

Several authors have suggested a substance life cycle approach to assess the emissions of

ENMs (Lubick 2008; Sweet and Strohm 2006). Substance flow analysis (SFA) is a tool

sometimes applied prior to RA in order to estimate emissions (van der Voet et al. 1999).

Consequentially, SFA has become the point of departure for the development of emission

assessment methods (Arvidsson 2012).

SFA focus on the flows and stocks of materials, substances and particles of interest to society.

Its overall goal is to quantify the flows and stocks of a substance and estimate the emissions

from different life cycle stages, thus providing an input for policy relating to environmental

pollution (van der Voet 2002). The core principle SFA, is based in the mass balance principle,

derived from Lavoisier’s law of mass conservation (Lavoisier, 1789). Arvidsson (2012) notes

that such an analysis is often based on product life cycles, which includes raw material

extraction, production, use and end-of life, as illustrated in Figure 6. Flows between, and

stocks within, the life cycle stages are quantified and measured as mass per unit time (i.e.,

tonnes/year) and mass only (i.e., tonnes), respectively (Arvidsson 2012).

van der Voet (2002) suggests that SFA aims to provide relevant information for an overall

management strategy with regard to one specific substance or group of substance. Arvidsson

(2012) notes that emissions from society to the environment are of specific interest to SFA

studies since the flows of some substances are of particular environmental importance.

However, Arvidsson et al. (2011, 845) note that “there are strong indications, however, that

mass may not be a relevant indicator of flow and stock magnitude, exposure, or toxic effects

for the case of NPs”. Rather than using mass as a measure of the flows and stocks of

nanomaterials, particle flow analysis (PFA) measures the flows and stocks of particles. This

allows for relevant properties, such as particle size, to be accounted (Arvidsson et al. 2011).

Furthermore, processes that change particle number (such as agglomeration, melting of

particles, dissociation of particles into ions, and grinding) can be included into the analysis.

Figure 6: Substance flow analysis model (reproduced from Arvidsson et al. (2012)

Page 44: Life cycle aspects of nanomaterials

18

4 LIFE CYCLE ASSESSMENT OF NANOMATERIALS

4.1 Research applying life cycle assessment to nanomaterials

4.1.1 Current research in the EU and OECD

European Union

At the European level, there is a significant call to study ENMs from a life cycle perspective.

For instance, the European Commission communication Towards a European Strategy for

Nanotechnology states “… R&D also needs to take into account the impacts of

nanotechnologies throughout their whole life cycle. For example, by using Life-Cycle

Assessment Tools” (European Commission 2004).

The European Commission’s Nanosciences and Nanotechnologies: An action plan for Europe

2005-2009. Second Implementation Report 2007-2009 (European Commission 2009b) notes

that from a regulatory point of view, an urgent need is the improvement, development and

validation of methods in the areas of “characterisation, exposure assessment, hazard

identification, life cycle assessment and simulation.” (European Commission 2009b, 9). The

Accompanying document to the Nanosciences and Nanotechnologies: An action plan for

Europe 2005-2009 Second Implementation Report 2007-2009 (European Commission 2009c)

suggests that there is a need to “further adjust, validate and harmonise currently available

guidelines for the life cycle assessment of nanomaterials and nanotechnology-based

products, building upon results from completed and ongoing activities. To develop hands-on

guidance for simplified LCAs for SMEs.” (European Commission 2009c, 92).

FP7 research projects which have some relationship to LCA of nanotechnology and ENMs

have been identified (see Jovanovic and Cordella (2011), OECD (2011) and the OECD

Database on Research into the Safety of Manufactured Nanomaterials6). These projects are

outlined in Appendix A. Findings from the research programme PROSUITE (Walser et al. 2012,

2011; Hischier and Walser 2012) and NanoImpactNet (Som et al. 2010) feature prominently in

Sections 4.1.2 and 4.1.3.

Organisation for Economic Co-operation and Development

Within the Organisation for Economic Co-operation and Development (OECD), two working

parties have been established: the Working Party on Nanotechnology (WPN) and the

Working Party on Manufactured Nanomaterials (WPMN).

The OECD has recently released a summary of National Activities on Life Cycle Assessment of

Nanomaterials (OECD 2011). This document has compiled information on OECD members

national activities related to LCA of nanotechnology and ENMs which have been provided by

delegations from the following countries: Austria, Finland, Germany, Korea, Poland, the

United Kingdom, United States, the European Commission, as well as from the Business and

Industry Advisory Committee to the OECD (BIAC). See OECD (2011) for a detailed summary of

these research projects.

6 http://webnet.oecd.org/NANOMATERIALS/Pagelet/Front/Default.aspx

Page 45: Life cycle aspects of nanomaterials

19

4.1.2 Literature review

A comprehensive meta-analysis of the state-of-the-art of LCA research on ENMs is beyond

the scope of this report. Whilst highlighting some of the current research results, our primary

objective is to focus on the potentials and limitations of current research efforts in order to

propose further research priorities.

To this end, a non-exhaustive search of academic literature databases (Scopus, ScienceDirect)

and an internet search for publications (such as those in scientific journals, conference

proceedings, conference presentations, research reports and theses) was completed using

the following combination of keywords:

- nano + life cycle assessment

- nano + “life cycle assessment”

- nano + “life cycle”

- nano + LCA

The studies identified are highlighted in Table 5. Three meta-analyses of the LCA of ENMs

can be found in the peer-reviewed literature: Hischier and Walser (2012), Gavankar et al.

(2012) and Upadhyayula et al. (2012). Hischier and Walser (2012), Gavankar et al. (2012)

reviewed all studies applying LCA to ENMs, whilst Upadhyayula et al. (2012) specifically

focused on carbon nanotubes (CNTs) and carbon nanofibres (CNFs). The LCA studies

considered by these meta-analyses can be found in Table 5.

Table 5: LCA studies of nanomaterials.

Publications Type Nanomaterial Focus of Study Life cycle phases E M U EOL

Babaizadeh and Hassan (2013)

J TiO2 Comparison of TiO2 coated class with float glass

O O O x

Bauer et al. (2008)† ‡

* J Ti, TiAl, Ti+TiAl Examine implications of life cycle thinking on nanotechnology (and nanoproduct) evaluation; 2 case studies

O O O O

De Figueirêdo et al. (2012) J Cellulose nanowhiskers

The comparison of two alternative processes for the production of cellulose nanowhiskers

O O x x

Fthenakis et al. (2008)†;

Fthenakis et al. (2009)†

C C

Nanocrystaline-Si, nano CdTe, and nano-Ag PV systems

Comparison of the cumulative energy demand for the production of PV systems using nanomaterials

O O x x

Greijer et al. (2001)† J Nanocrystaline dye

(out of nano- TiO2 and carbon black)

Identify the significant environmental aspects of nanocrystaline dye sensitive solar cell system

O O O O

Griffiths and O’Byrne (2013) J Multi walled carbon nanotubes (MWCNT)

Identification and quantification of the environmental impact of MWCNT formation via catalytic chemical vapour deposition.

O O x x

Grubb and Bakshi (2008)† ;

Grubb (2010)†;

Grubb and Bakshi (2011a, 2011b)

†‡

T C J

TiO2 Evaluate the production processes for TiO2

O O x x

Healy et al. (2008†‡

*; 2006†);

Isaacs et al. (2006, 2010)†

J;C C;J

Single walled carbon nanotubes (SWCNT)

Environmental assessment of SWNCT production

O O x x

Joshi (2008)† J Nanoclay (ONMT,

organically modified montmorillonite)

Comparison of nanoclay composite biopolymer with biobased polymers

O O x x

† Reported in Hischier and Walser (2012); ‡ Reported in Gavankar et al. (2012); * Reported in Upadhyayula et al.

(2012);

C: Conference; J: Journal; T: Thesis; B: Book Chapter; R: Report. O: Included; x: Excluded

Page 46: Life cycle aspects of nanomaterials

20

Table5 (Cont.): LCA studies of nanomaterials

Publications Type Nanomaterial Focus of Study Life cycle phases

E M U EOL

Khanna et al. (2007)†;

Khanna, Zhang, et al. (2008b)

†;

Khanna, Bakshi, et al. (2008a)

† ‡*

J B C

CNFs Environmental burden of CNF synthesis

O O x x

Köhler et al. (2008) ‡

J CNTs Potential release of carbon nanotubes throughout the life cycle of textiles and lithium-ion batteries

x O O O

Kushnir and Sandén (2008)†

‡*

J Fullerenes and CNT Implications for industrial scale production

O O x x

Lloyd and Lave (2003)† ‡

; Lloyd (2004)

J T

Nanoclay-reinforced polymer composites

Replacing auto-body panels made of steel with those of polymer composites with aluminium

O O x x

Lloyd et al. (2005)† ‡

; Lloyd (2004)

J T

Nanoscale platinum-group metal (PGM) particles

Evaluating reduction in non-renewable resources like PGM via greater process control offered by nanotech

O O x x

Merugula et al. (2010) C CNTs (in reinforced wind turbine blades)

Comparison of vapour-grown carbon nanofibre reinforced glass fibre epoxy matrix and glass fibre reinforced plastic

O O O O

Meyer et al. (2011)‡ J Ag Identifying the life cycle hot spots via

screening level LCA O O x x

Moign et al. (2010) J Zirconium nanopowder

Comparison of spraying technologies for the manufacture of yttria-stabilised zirconia

O O x x

Osterwalder et al. (2006)† ‡

J Various oxide nanoparticles

Energy comparison of wet and dry synthesis methods for oxide nanoparticle production

x O x x

Roes et al. (2007)† ‡

J Polypropylene Nanocomposite

Compare environmental impact and cost of polypropylene nanocomposite with conventional polypropylene in the use cases: i) packaging film, ii) agricultural film, iii) automotive body panel.

O O O O

Roes et al. (2010) † J SiO2, CaCo3, CNTs

WMCNTS, organophilic montmorillonite

Compared the non-renewable energy use of 23 nanocomposite materials with 3 conventional composite materials

O O O O

Şengül and Theis (2011)‡ J QD photovoltaics LCA of a proposed type of

nanophotovoltaic, quantum dot photovoltaic module

O O x x

Singh et al. (2008)†*;

Agboola (2005)†

J T

CNTs Environmental Impact Assessment (EIA), via LCA method, of two methods for producing SWCNTs

O O x x

Steinfeldt, Gleich, et al. (2004a)

†‡;

Steinfeldt, Petschow, et al., (2004b)

R R

Nanoelectronics Nanomaterials/nanoparticles

Lighting – LEDs x x O x

Chemical/paintings O O x x

Chemical/plastics O O x x

Electronics/displays O O x x

Walser et al. (2011)† J Ag Comparison of the environmental

benefits and impacts of nanosilver T-shirts with conventional T-shirts and T-shirts treated with triclosan

O O O O

† Reported in Hischier and Walser (2012); ‡ Reported in Gavankar et al. (2012); * Reported in Upadhyayula et al.

(2012);

C: Conference; J: Journal; T: Thesis; B: Book Chapter; R: Report. O: Included; x: Excluded

Page 47: Life cycle aspects of nanomaterials

21

4.1.3 Meta-analyses

Engineered nanomaterials

Hischier and Walser (2012) and Gavankar et al. (2012) note that whilst there is plenty of

literature promoting the application of LCA, studies applying LCA to the area of

nanotechnology are ‘scarce’. Furthermore, these studies only looked at parts of the life cycle,

with no quantitative studies addressing all life cycle phases.

ENM studies in these meta-analyses included: cadmium telluride, calcium carbonate, carbon

black, carbon nanofibres (CNFs), carbon nanotubes (CNTs), nanoclay, nanoscale platinum-

group metals, silica, silver, silicon, titanium and titanium oxide. Product systems studied

included: auto-body panels, biopolymers, coatings, electronic displays, electronic sensors,

lithium-ion batteries, photo voltaic systems, packaging and agriculture polymer films, ENM

production processes, textiles and wind turbine blades.

The general conclusions of these meta-studies can be summarised as follows:

- Proper goal and scope definition is of “crucial importance in order to get meaningful

results that take into account the different properties, especially for comparisons with

traditional materials.” (Hischier and Walser 2012, 279)

- The LCIs cannot be classified as comprehensive as they often lack ENM specific data

related to the outputs of the processes (Hischier and Walser 2012). Hischier and

Walser (2012, 279) also highlighted the “considerable variability of the (traditional)

inventory items like energy input, material input, etc., … especially concerning the

energy consumption for the production of the various engineered nanomaterials.”

Hence, populating LCI databases with ENM specific information, such as size and

shape, is of critical importance (Gavankar et al. 2012). The retention of as much nano-

specific information as possible would then facilitate subsequence LCIA for ENMs

(Gavankar et al. 2012).

- Regarding LCIA, “there is a complete lack of characterization factors for release of

nanoparticles indoors and outdoors. ... Only in exceptional cases are first approaches

to examine e.g. the toxicity of the emissions to air and water reported. However, it is

not always clear if nano-specific aspects were taken into account” (Hischier and

Walser 2012, 279). A number of existing tools, such as USEtox (Rosenbaum et al.

2008), CALtox (McKone and Enoch 2002) and QSAR (Dudek et al. 2006; Puzyn et al.

2009, 2010), are available to quantitatively assess the fate, transport or toxicity of

chemicals and bulk materials (Gavankar et al. 2012). The incorporation of additional

information on ENM specific properties into these existing tools would allow the

modelling capability of ENMs behaviour and impact in the environment.

- Due to the lack of modelling techniques available for the critical, yet frequently

omitted, use and end-of-life phases, the development of protocols and models are

needed to enable a holistic assessment that takes into consideration ENM’s intrinsic

properties (Gavankar et al. 2012).

- In the absence of any empirical data, qualitative or screening LCAs should be

performed (Gavankar et al. 2012).

- LCA should be complemented with tools such as risk assessment when location

specific parameters are critical for understanding the behaviour and impact of ENMs,

as LCA may not be able to capture such context specific sensitivities (Gavankar et al.

2012).

Page 48: Life cycle aspects of nanomaterials

22

Hischier and Walser (2012) and Gavankar et al. (2012) considered a diversity of ENMs and

product systems, consequentially they could not compare the result of individual LCA studies.

Instead, these studies investigated the how the LCA methodology was applied to each case;

for instance, the function units considered, the life cycle stages considered, the

environmental impact categories selected, the consideration of the ENM specific data in the

LCI and LCIA phases, and data and methodological gaps.

Hischier and Walser’s (2012) meta-analysis of the ‘Life cycle assessment of engineered

nanomaterials’ aimed to 1) provide an overview of LCA studies in the area of ENMs, and 2)

identify the shortcoming which contribute to delaying the comprehensive application of the

LCA framework to ENMs, and 3) propose strategies to overcome these shortcomings.

Although the authors noted a scarcity of studies applying the LCA approach to the area of

nanotechnology, 17 studies7 were analysed. The authors categorised the studies by how they

addressed the following issues: consideration of functional unit, consideration of system

boundaries, production systems studied, LCI and LCIA. These results are summarised in Table

6.

7 Some studies having multiple publications

Page 49: Life cycle aspects of nanomaterials

23

Table 6: Summary of studies applying LCA studies to ENMs as reported in Hischier and Walser (2012)

Aspect Meta Study Results

Functional unit In terms of functional unit, two groups of studies were distinguished: - Weight based: Half the studies assessed the environmental impact of the

production of a specified quantity (usually 1 kg) of ENM - Application/service based: The other half of the studies assessed the

environmental impact of the specific application of the ENM, for instance 1kWh of electricity output from a nano solar cell system.

System boundaries In terms of life cycle phases addressed, two groups were identified: - Cradle-to-grave studies: considered all life cycle stages, from extraction of

raw materials to the end-of-life phase. Six of the 17 studies considered all life cycle phases.

- Cradle-to-gate studies: considered the resource phase and the production phase. The gates of these studies were considered as either the production site of the ENMs, or the production site of the product containing ENMs. Eleven of the 17 studies were cradle-to-gate studies.

Production systems studies Three quarters of the studies compared the ENM with traditional materials. This comparison was divided into two groups. The first considered the specific application of the respective material and thus employed context related functional unites (such as 1m

2 of photovoltaic cell material). The other group

assessed the production of the ENM without taking into consideration any contextual application.

Life

cyc

le p

ha

ses

Resource extraction & production

All studies included the extraction and production phases.

Use phase Ten of the 17 studies included the use phase. Although there was typically not a lot of detail reported, such as the release of ENMs.

End of life The six studies that considered the end of life phase mostly assumed incineration in a municipal solid waste incinerator. However, traditional models for incineration were used which do not take into account the fate of ENMs as a separate flow. One study, Bauer et al. (2008), qualitatively described the potential release pathways during the end of life phase. Hence, ENMs were not quantitatively evaluated during the end of life phase.

Life cycle inventory The majority of studies used publically available literature. Only in four out of the 17 studies were data taken from either actual production plant (pilot and commercial), theoretical calculations, or process simulations. All studies included detailed information on energy use, and many studies included information on material inputs. Whilst several studies reported emissions to air, these emissions were for ‘conventional’ flows. Furthermore, there was little detail on information regarding emissions to water and soil, be they ‘conventional’ or nano emissions. Only one study, Walser et al. (2011), covered the output of ENMs.

Life cycle impact assessment

Three studies considered were LCI or energy analysis studies (no LCIA performed). The remaining studies often reported one or two LCIA categories. LCIA categories linked to energy consumption such as global warming potential (GWP) were considered by the majority of the studies. Although the release of nanoparticles to air, water and soil are suspected of having potential impacts on human health and the environment, only Walser et al. (2011) considered the freshwater and seawater toxicity results for colloidal silver. Whilst several studies reported ecotoxicity, no LCIA methods contain characterisation factors for either the indoor or outdoor releases of nanoparticles.

Page 50: Life cycle aspects of nanomaterials

24

Carbon nanotubes

Upadhyayula et al. (2012) recently conducted a review of LCA of CNTs, analysing seven

studies8. The aim of this research was to emphasise the role of LCA during the development

of CNT products in order to mitigate potential impacts to human health and ecosystems over

their life cycle.

These studies considered CNTs and CNFs9. Five studies were cradle-to-gate and two studies

were cradle-to-grave. For the cradle-to-gate studies, the functional units related to the

production of 1kg (in one case 1 g) of CNTs via alternative production technologies. Table 7

illustrates the cradle-to-gate energy consumption for the four major synthesis routes for

CNTs: electric arc discharge, laser ablation, chemical vapour deposition (CVD) and high-

pressure carbon monoxide (HIPCO) processes.

CNT manufacture is energy intensive due to the processes involved in the preparation of raw

materials (i.e., the need for ultrapure graphite, purification of gasses and purification of CNTs

prior to use) and the high temperature requirements for synthesis processes (Upadhyayula et

al. 2012).

Table 7 does not account for the full impact of air emissions and waste stream discharges

(Upadhyayula et al. 2012), because accurate models, and characterisation factors for human

health and ecological impact, have yet to be developed (Khanna 2009). For instance, liquid

waste from nanoproduct manufacture may potentially contain CNTs and other toxic

materials, such as heavy metals, which require treatment that has not been included in these

studies (Upadhyayula et al. 2012). Furthermore, solid waste from these manufacturing

processes can potentially lead to the generation of solid hazardous waste due to the low

recyclability of metal catalysis (Upadhyayula et al. 2012).

The energy demand for a CNT product is dependent upon: a) quantity of CNTs used in the

product, b) purity and type of CNTs needed and, c) specialised operational steps as

demanded by the CNT product manufacturing process.

Upadhyayula et al. (2012) infer that the potential environmental problems caused by CNT

products can be attributed to two factors: the energy intensive manufacturing stage and the

potential release of toxic air emissions and liquid waste discharges in the various life cycle

stages.

8 Five of these LCAs where analysed by Gavankar et al. (2012) and six were analysed by Hischier and Walser (2012)

9 Although the CNFs are not technical CNTs, both nanomaterials have a similar have similar production methods

with comparable impacts. (Upadhyayula and colleagues 2012).

Page 51: Life cycle aspects of nanomaterials

25

Table 7: Cradle-to-gate energy requirement for various methods of CNT and CNF synthesis (reproduced

from Upadhyayula et al. (2012))

Synthesis method

Material inputs Energy (MJ/kg)

SRCY (%)

References Product characteristics

Precursor Catalyst Acid

Arc discharge Pure graphite

Ni, Co, Y Nitric acid

4.6E+05

3.2E+05

2.2E+05

4.5

4.5

-

Gutowski et al., 2010

Healy et al., 2008

Kushnir & Sanden, 2008

(i) Structurally superior

(ii) Low-level metal

impurities

Laser ablation Pure graphite

Ni, Co, Y Nitric acid

8.7E+07

9.6E+03

7.0E+05

- 50 -

Gutowski et al., 2010

Kushnir & Sanden,

2008Ganter et al., 2009

(i) Structurally superior

(ii) Low-level metal

impurities CVD (Fixed-bed)

Hydro-carbons

Fe, Ni, Co, Mo Mineral acids

9.2E+05

6.3E+05

2.95

2.95

Gutowski et al., 2010

Healy et al., 2008

(i) Low structural quality

(ii) High-level metal

impurity requiring

intensive purification CVD (Fluidized bed)

Methane Fe, Ni, Co, Mo on metal oxides

Mineral acids

8.5E+02 30 Kushnir & Sanden, 2008 (iii) Assumed

purification yields up to

90% CVD (Floating bed) Benzene

Benzene Fe, Ni, Co, Mo on metal oxides

Mineral acids

4.8E+02 - Kushnir & Sanden, 2008

CVD (VGCNF) Methane Ethylene Benzene

Ferrocene Mineral acids

1.1E+04 8.0E+03 2.9E+03

50 50 70

Khana et al. 2008 (i) Assumed purification yields of 90% (ii) Less stringent purity requirements

HIPCO & CoMoCAT

Carbon Monoxide

Iron pentacarbonyl or Co and Mo

Nitric acid

4.7E+05 1.6E+05 5.3E+08 8.1E+07 2.4E+07 5.8E+03

50 50 - - - -

Gutowski et al., 2010

Healy et al., 2008

Nikolaev et al., 1999

Brownikowski et al.,

2001

Smalley et al., 2007

Kushnir & Sanden, 2008

(i) Structurally superior (ii) High purification yields

Page 52: Life cycle aspects of nanomaterials

26

4.1.4 Results from selected case studies

Carbon nanofibres: Khanna et al (2008a) and Khanna and Bakshi (2009)

Studies by Khanna et al. (2008a) and Khanna and Bakshi (2009) highlight the importance of

considering the function of the nanoproduct with a specified context.

Khanna et al. (2008a) evaluated the life cycle energy requirements (cumulative energy

demand) and performed an LCIA for CNF synthesis using various hydrocarbon feedstocks

and compared these results with those of traditional materials (steel, aluminium and

polypropylene). An LCI was completed for vapour-grown carbon nanofibres (VGCNF) based

upon on laboratory data and data available from literature sources.

The authors show that the cradle-to-gate energy requirements of CNFs range from 2,872

MJ/kg for benzene feedstock to 10,925 MJ/kg for methane feedstock. This energy

requirement is significantly greater when compared to conventional materials: steel 30MJ/kg,

aluminium 218 MJ/kg and polypropylene 119 MJ/kg (Khanna et al. 2008a). The LCIA results

for the midpoint indicators global warming potential, human toxicity potential, ozone layer

depletion potential, photochemical oxidation potential, freshwater aquatic ecotoxicity

potential, terrestrial ecotoxicity potential, acidification potential, acidification potential and

eutrophication potential are illustrated in Figure 7. However, the LCIA did not consider the

release and impact of nanoparticles on human and ecosystem species.

This type of comparison can be useful for identifying hot-spots of environmental impact in

the manufacture of CNFs, thus highlighting areas for improvement. Upadhyayula et al. (2012)

note the findings of LCAs of CNT production highlight the need to refine CNT manufacturing

by adapting synthesis techniques involving low temperatures, renewable feedstocks and

recycled materials as catalytic supports.

Page 53: Life cycle aspects of nanomaterials

27

Figure 7: LCIA midpoint indicators for vapour-grown carbon nanotubes compared to aluminium, steel

and polypropylene (reproduced from Khanna et al. (2008a))

Page 54: Life cycle aspects of nanomaterials

28

However, the direct comparison of the CED of the production of 1 kg of CNFs to the

production of 1kg of steel, aluminium or polypropylene does not reflect the actual

replacement of steel, aluminium or polypropylene (Hischier and Walser 2012). The potential

environmental impacts of specific nanoproducts need to be compared to conventional

products (i.e., products manufactured from either steel, aluminium or polypropylene) which

provide the same performance or utility (Khanna and Bakshi 2009).

In this context, Khanna and Bakshi (2009, 2079) conducted such a study, with the aim of

assessing the CED of CNF based polymer nanocomposites (PNCs) and their comparison with

steel “on a functional unit basis of a standard plate and automotive body panel”. In this study,

various CNF polymer nanocomposites (PNCs) (content varying between 0.6 to 15 vol.%) with

and without glass fibres were analysed.

Results from this study are illustrated in Figure 8. This comparison shows the dramatic

reduction in CED due to the small amount of CNFs used to provide the same mechanical

stiffness as a steel component. For example, to achieve a similar functionality (mechanical

stiffness) to 1 kg of steel, a polypropylene CNF-glass fibre matrix containing 2.3% CNFs was

necessary, resulting in a weight of 0.38 kg.

Figure 8: CED of polymer nanocomposites that provide equal stiffness to a steel component (Reproduced

from Khanna and Bakshi (2009))

Page 55: Life cycle aspects of nanomaterials

29

Furthermore, using the results produced by Khanna et al. (2008a), Hischier and Walser (2012)

show the importance of considering the use phase. When the use phase is considered, the

reduced weight of the CNF reinforced PNC component leads to a lower CED when compared

to the steel component. Figure 9 highlights three types of comparisons of the CED of CNFs

and steel, highlighting the importance of both the function unit and use phase in the analysis

of ENMs. Point ① shows the CED for the production of 1 kg of CNF is almost 11 times higher

than that of 1 kg of steel (Hischier and Walser 2012). Point ② shows the considerable

reduction in the CED of the PNC component, although still higher than the steel component.

Point ② shows the lighter weight of the PNC component influences the energy use during

the use phase, and the PNC component has a lower CED than the steel component.

“Difference in the CED value (expressed in GJ/kg) when compared with 1 kg of steel; i.e. a negative value indicates

that the CED of the respective material is lower than the CED of 1 kg of steel – point ① on the level of pure

materials, point ② on the level of equally stiff material, and point ③as part of a car, driving around 280000 km”

(Hischier and Walser 2012, 276)

Figure 9: Difference in CED of CNF reinforced PNCs compared to steel (Reproduced from Hischier and

Walser (2012))

Page 56: Life cycle aspects of nanomaterials

30

Nanosilver T-Shirts: Walser et al. (2011)

Walser et al. (2011) have compared the environmental impact of nanosilver T-shirts to

conventional T-shirts with and without biocidal treatment. The authors investigated the

environmental performance of two nanosilver production processes: commercialised flame

spray pyrolysis (FSP) with melt-spun incorporation of silver nanoparticles, and plasma

polymerization with silver cosputtering (PlaSpu) at the laboratory, pilot and commercial

(estimated) scales. The T-shirts were compared via the functional unit of “being dressed with

a biocidal polyester T-shirt for outdoor activities during one year in Switzerland (wearing it

once a week)” (Walser et al. 2011, 4573).

Figure 10 illustrates the life cycle CO2-equivilent emissions of a conventional T-shirt, a T-shirt

treated with 22mg of triclosac (a bicoidal treatment), a T-shirt with 47mg of nano sized silver-

tricalciumphosphate (nanoAg-TCP) treated by the FSP process, and a T-shirt treated with

31mg of pure nanosilver from the PlaSpu process. For the conventional T-shift, triclosan T-

shirt and FSP nano sliver coated T-shirt, the largest contribution to the carbon footprint was

the use phase, which was assumed to be 100 washes. The PlaSpu process significantly

increased the carbon footprint of the T-shirt.

The production of nanosilver from the FSP process (0.21 kg of CO2-equivelnts) has no

significant influence on the CO2-equivilent emissions during over the life cycle of the T-shirt.

However, the PlaSpu process has a much greater influence on the carbon footprint of the T-

shirt, even though this reduces with technological development (PlaSpu laboratory: 164.0 kg

of CO2-equivelnts, PlaSpu pilot: 15.24 kg of CO2-equivelnts, and PlaSpu commercial: 5.14 kg

of CO2-equivelnts).

Figure 10: Cradle-to-grave climate footprint of biocidal T-shirts and a regular T-shirt (100 washings)

(reproduced from Walser et al. (2011))

Page 57: Life cycle aspects of nanomaterials

31

This was the only LCA study to analyse the freshwater and seawater toxicity of Nanosilver.

Compared to a conventional T-shirt, both silver and triclosan emissions are not considered

relevant when taking the whole life cycle into consideration. The silver released from washing

accounts for less than 1% of the overall freshwater toxicity of the nanosilver T-shirts. Figure

11 highlights the insignificant contribution of the release of silver over the T-shirts life cycle

compared to freshwater toxicity associated with processes over the T-shirts life cycle.

Figure 11: Comparison of the freshwater toxicity for the life cycle of one T-shirt (reproduce from Walser et

al. (2011))

Page 58: Life cycle aspects of nanomaterials

32

4.2 Obstacles to and strategies for the application of LCA to nanomaterials

4.2.1 Goal and scope definition

Hischier and Walser (2012) note that engineered ENMs may have specific functions and

material properties that provide additional gains when used as a substitute for traditional

materials. Hence, these additional functions and properties should be taken into

consideration in the scope of the LCA. Due to these special material properties, Bauer at al.

(2008, p 914) note that it “seems obvious that materials and services must be assessed in the

context of a product or a functional purpose to quantify expected benefits also with regard

to the entire life cycle.”

Obstacles

Functional unit

ISO (2006b, 9) states that a key feature of LCA, separating it from other methods such as

environmental impact assessment and risk assessment, is that it is a “relative approach based

on a functional unit”. LCA relates the inputs and outputs of a system to the function that is

provided: “This functional unit defines what is being studied. All subsequent analyses are

then relative to that functional unit, as all inputs and outputs in the LCI and consequently the

LCIA profile are related to the functional unit” (ISO 2006b, 7).

Since LCA typically compares alternative ways of delivering the same function, it is important

that the systems being compared actually provide the same function (Hauschild 2005).

Typically, more than one function is provided by one of the systems being compared. In this

case, methods such as allocation or systems expansion (see JRC (2010) for a detail description

of these methods) can be followed to ensure that the systems being compared are equal.

Several authors note that the choice of functional unit is an especially important

consideration - a prerequisite - in order to perform a meaningful LCA of ENMs (Klöpffer et al.

2007; Hischier and Walser 2012; Bauer et al. 2008). The definition of the functional unit

becomes more difficult when dealing with ENMs due to the plethora of functions and

material properties which can be achieved at the nanoscale.

As demonstrated in section 4.3.2, basing a functional unit on weight alone would only make

sense if one is comparing alternative production processes to produce, for instance, one

tonne of the same ENM with the same functionality. Since the potential sustainability benefits

of ENMs are related to their interactions with other materials or components, once the goal

of the study goes beyond the production of a specific ENM a functional unit based on weight

is inappropriate (Hischier and Walser 2012).

When the goal of the study involves the use of nanoproducts the functional unit should be

defined in relation to the service provided by the product (the product performance during

the use phase) (Hischier and Walser 2012). However, Klöpffer et al., (2007) note that

nanoproducts fulfil functions that are quite new, leading to a difficulty to specify functional

alternatives.

Page 59: Life cycle aspects of nanomaterials

33

System boundaries

The system boundaries determine what processes should be included in an LCA. ISO (2006b,

12) states that “Ideally, the product system should be modelled in such a manner that inputs

and outputs at its boundary are elementary flows.” Decisions regarding what processes

should be included or excluded from a study will ultimately have an influence on the result of

the study. Hence, it is important that the models, assumptions and choices made should be

transparent.

Klöpffer et al. (2007) stress that LCA studies of ENMs and nanoproducts should address all life

cycle stages. However, in their analysis of current research addressing complementary use of

life-cycle assessment and risk assessment for ENMs, Grieger et al. (2012, 6) note that few

“studies have encompassed the full life-cycle, and most of them focused on a cradle-to-gate

study or on a specific LC stage. … Moreover, the majority of these have relied upon generic

life-cycle impact databases or general literature in formulating the inventories and impact

assessment criteria (i.e., excluding potential toxicological impacts of NMs).” Indeed, Gavankar

et al. (2012) have noted that no LCAs of ENMs are compliant with the ISO standards as none

of them have covered the complete life cycle of an ENM or product.

Use phase

Bauer et al. (2008, p. 914) note that a dissipative use of ENMs is characteristic for a large

share of products, whereby the ENM enters the environment during its use. To this end,

Gottschalk and Nowack (2011) have demonstrated that initial analytical and experimental

studies have shown evidence for the release of ENMs from products such as textiles and

paints.

In their meta-analysis, Hischier and Walser (2012, 274) note that in studies which included the

use phase there was limited information regarding how ENMs were considered. The authors

noted that this is “an astonishing fact when one keeps in mind the various advantages, e.g. in

view of the sustainability of ENMs highlighted in various studies about this new technology”.

End of life

A small group of nanoproducts are designed for a longer life, where the ENMs will enter the

end of life phase of the product life cycle (Bauer et al. 2008). Bauer at al. (2008) note that little

emphasis has been given to the end-of-life phase, which has often been disregarded due to

data gaps.

Although six of the studies reported in Hischier and Walser (2012) considered the end-of-life

phase, the treatment of the ENM was omitted. Municipal solid waste incineration models

used did not consider the amount or fate of ENMs as a separate flow (Hischier and Walser

2012).

Page 60: Life cycle aspects of nanomaterials

34

Strategies

Klöpffer et al. (2007) note that the goal and scope definition should reflect issues such as: the

use of nanoproducts being in line with the product recommendation or predictions, and

potential rebound effects resulting from the use of nanoproducts. To address these issues the

use of sensitivity analysis is recommended in the interpretation phase.

4.2.2 Life cycle inventory analysis (LCI)

Obstacles

Ensuring the collection and use of complete, reliable, transparent and acceptable data,

including the explanation of assumptions, are problems faced during the LCI phase of LCAs

of ‘conventional’ product systems (Klöpffer et al. 2007). However, when LCA is applied to

nanotechnologies and ENMs these problems are amplified (Klöpffer et al. 2007). As such,

Hischier and Walser (2012) note the core issues of the LCI phase is the availability or

adequate and comprehensive LCI data from ENMs.

LCA of an emerging technology

Klöpffer et al. (2007) suggest that it is difficult to apply a “full-spectrum” LCA to emerging

technologies due to the lack of detailed knowledge regarding the inputs and output of the

system. Nevertheless, there is a general trend to apply LCA to emerging technologies (e.g.,

solar, wind, bio-fuels) (Klöpffer et al. 2007).

In the case of CNTs, Upadhyayula et al. (2012) note that the application of LCA is a

challenging task because many of the technologies studied are still emerging; introducing a

great degree of uncertainty and complexity into LCA. Obtaining accurate data for emerging

technologies can be a challenge because data based on conceptual designs, and assumption

about the scaling up of laboratory or pilot scale process may not accurately reflect industrial

scale operations. Additionally, early prototypes may undergo several changes during product

development and testing that can alter how a product is manufactured and used

(Upadhyayula et al. 2012). Furthermore, Upadhyayula et al. (2012, 43) note that one of the

greatest challenges when assessing nanoproducts is the “variable nature of manufacturing

processes and how subtle differences in the resulting nanocomponents can affect the

associated nanoproduct”.

Data availability

Klöpffer et al. (2007, 6) state that “The main problem with LCA of nanomaterials and

nanoproducts is the lack of data and understanding in certain areas.” Studies analysed in

Gavankar (2012) and Hischier and Walser (2012) show data on the input side covers energy

inputs and in most cases material inputs, yet in the great majority of studies the output side

is empty.

Gavankar et al. (2012) note that presently available LCI databases, populated with material

and product flows, do not distinguish between bulk materials and ENMs. Standard LCIs only

require the quantity and chemical composition of material inputs. In some cases, additional

characteristics are required for materials such as its isotope, stereo-isomer or valence

(Klöpffer et al., 2007). Parameters likely to influence the toxicity of ENMs include the chemical

composition, particle size, shape, aspect ratio, crystal structure, surface area, surface

chemistry and charge, solubility, as well as adhesive properties and whether the ENM is in a

pure form or in a composite (Klöpffer et al. 2007). Furthermore, it is important to know if

Page 61: Life cycle aspects of nanomaterials

35

ENMs change their form during their life cycle, due to aging and other influences such as

weather, mechanical stress/pressure, electromechanical fields or catalysis (Klöpffer et al.

2007).

Indeed, Gavankar et al. (2012) highlight the lack of information on the production processes,

suggesting that it will take substantial effort and time to build an understanding on the

behaviour and impact of ENMs in order for the LCI and LCIA to be able to fully address their

potential environmental impacts.

Data confidentiality

Klöpffer et al. (2007) highlight the difficulty in acquiring proprietary information from

companies, especially from the producers of materials. In some cases, the exact composition

of the ENM is confidential. Hence, the challenge lies in the coordination of a compromise

between the interests of industry (confidentiality) and the interests of the LCA community

(acquiring data at an appropriately aggregated level).

Data quality

Hischier and Walser (2012) note that for LCA studies of CNTs, data for some processes in

some production technologies varied significantly. For instance, the CED for the production

of high-pressure carbon monoxide differed by a factor of approximately 10,000, and up to

almost 100,000 for the chemical vapour decomposition process. Additionally, Khanna et al.

(2008) suggest that the industrial scale nano-LCA results may be gross overestimates due to

expected increases in efficiency over time.

Capital goods

Klöpffer et al. (2007) highlight the large and energy-consuming capital equipment required

to manufacture ENMs (such as lithography and ultra-clean rooms) which can rapidly become

out-dated due to the fast pace of progress in the field. Hence, nanotechnology may be a case

where the capital goods are required to be included in the system boundaries (Klöpffer et al.

2007). This leads to two issues, the collection of data required to model the impact of capital

goods and the problem of allocation due to the multiple products/services than capital

goods may provide (Klöpffer et al. 2007).

Strategies

A case study approach

Emerging technologies do not lend themselves to analysis by a complete thorough LCA due

to insufficient knowledge regarding the inputs and outputs of the system (Klöpffer et al.

2007). Joshi (2008, 487) highlights the need to “generate comprehensive, transparent,

representative, and publicly available data for various process and material developments in

nanotechnology that satisfy the data quality requirements outlined under ISO standards for

LCA”.

Concerning strategies to address the lack of information regarding LCI and LCIA data,

Hischier and Walser (2012) identify two opposing strategies: ‘from back to front’, and ‘from

font to back’.

From back to front: addressing data gaps in the LCIA before “representative and

comprehensive” LCIs are established. This strategy is not recommended as following such a

Page 62: Life cycle aspects of nanomaterials

36

trajectory has been evaluated as ineffective (Hischier and Walser 2012). Gavankar et al. (2012)

also highlight the critical importance of populating LCI databases with nano-specific

information.

Furthermore, Kuiken (2009) highlighted that the main obstacle for defining the environmental

effects of specific ENMs is the slow advancement of metrology10. Without the ability to

monitor emissions and conduct full scale ecosystem and human health effect studies on

ENMs, full-scale LCAs cannot be properly performed.

From front to back: Hischier and Walser (2012) recommend, as a first step, the collection of

inventory data. The authors highlight the need for inventory datasets with a high level of

representativeness of certain ENMs. Klöpffer et al. (2007) also suggest that a case-study

based approach should be adopted.

In following such an approach, LCI databases for specific ENMs and products can be

populated with nanomaterial-related input and output flows of emissions and resources,

supplementing them with information likely to influence the toxicity of ENMs (detailed

above) which are necessary for the characterization step of the LICA (Gavankar et al. 2012).

The Swiss Centre for Life Cycle Inventories, Ecoinvent, currently differentiates particulate

matter (PM) in the following categories: PM greater than 10 µm (PM>10), PM from 10 to 2.5

µm (PM10) and PM smaller than 2.5 µm (PM2.5) (Frischknecht et al. 2004). Bauer et al. (2008)

note that one option would be to differentiate UFPs, i.e. a category for PM 0.1.

Two approaches to the selection of appropriate case studies can be identified. Klöpffer et al.

(2007) recommend that the selection of case studies should prioritise criteria including the

most toxic products, nature of dispersion, high volume production and fate and transport

issues. Bauer et al. (2008) suggest the targeting ENMs with a high potential for future

industrial application. The authors suggest that for the materials listed in Table 8, the most

common production method should be identified and the LCI of these materials should be

populated with ENM specific information.

10

The science of measurement; this underpins nanoscience and nanotechnologies as it allows the

characterisation of materials not only in terms of dimensions but also in terms of attributes such as

electrical properties and mass. (Royal Society 2004)

Page 63: Life cycle aspects of nanomaterials

37

Table 8: Nanomaterials with a high potential for future industrial applications (Reproduced from Bauer et

al. (2008, p.915)

Material Category Application

Carbon based

nanomaterials

Carbon black, carbon nanotubes, fullerenes, carbon nanofilms, etc.

Nanocomposites Polymer matrix nanocomposites, ceramic matrix nanocomposites,

metal matrix filled with nanopolymer composites

Metals and alloys Ti, Ti-Al, Ti-transition metal alloy, Mg-Ni, Fe-Cu-Nb-Si-B alloy, Fe-

transition metal alloy, Al-transition metal alloy, Al, Mg, Al-Mg alloy,

nanopowders of noble metals (Ag, Au, Pt, Pb)

Biological nanomaterials Protein-based materials, peptides, carbohydrates, virus particles,

lipids, DNA, composites

Nano polymers

Nano glasses Metallic glasses, electrochromics, nanoporous glasses, nanochannel

glass materials, photonic glasses, etc.

Nanoceramics Tungsten carbide, alumina, zirconia, titania, silica, zinc oxide, silicon

nitride, magnesia, ferric oxide, ceria, hydroxyapatite (HAP), yttria,

silicon carbide, boron nitride, TiC, amorphous silicon nitride, etc.

An Input-output approach

In order to take account of the issues such as capital goods, Klöpffer et al. (2007) suggest that

input-output based LCA (IO-LCA) approaches, as input-output based models consider all

elements in a product’s supply chain. This includes direct and indirect purchases required to

produce a final product, including capital goods required to produce ENMs themselves and

the capital goods required to produce chemical feedstock for ENMs.

4.2.3 Life cycle impact assessment (LCIA)

Obstacles

The meta-studies conducted by Hischier and Walser (2012) and Gavankar et al. (2012),

indicate that the most common impact categories selected in LCA studies of ENMs related to

energy consumption (CED and GWP).

Due to their size and unique functionality, the properties of ENMs are different from their

conventional counterparts (Oberdörster et al. 2005). This may lead to them exhibiting

unconventional behaviour, leading to unexpected fate, transport, and toxicity mechanisms in

human and ecological systems (Gavankar et al. 2012). Hence, it is difficult to address potential

toxic impacts of ENMs on humans and the environment (Klöpffer et al. 2007).

Klöpffer et al. (2007, 20) conclude that the UNEP/SETAC framework for toxic impacts “can, in

principle, be used for specific impacts caused by nanoparticles and nanoproducts given that

(nanomaterial-specific) fate, exposure and effects have been adequately identified” (emphasis

added). However at this current point in time, Klöpffer et al. (2007) note that there are limits

regarding its application, especially relating to the assessment of toxicity impacts (Klöpffer et

al. 2007, 6).

At the centre of the ENM discussion is risk associated with the possible release of ultra-fine

particles (UFPs) and their potential impact on human health and the environment (Bauer et al.

Page 64: Life cycle aspects of nanomaterials

38

2008). Characterisation of particle emissions is conventionally made according to their

particle size (aerodynamic diameter): coarse particles (between 10 and 2.5 µm), fine particles

(<2.5 µm) and UFP (<0.1 µm) (Englert 2004). In current impact assessment methods, outdoor

emissions of particulate matter (PM) of size <10 and <2.5 μm are assessed, and their

contribution to various impacts on the natural environment and human health (e.g., climate

change, ozone depletion, acidification, eco-toxicity and human toxicity) is quantified (Hischier

and Walser 2012).

However, basic research concerning the toxicological effects of UFP and their risks for human

health and the environment is still in its infancy and only few data on the safety of ENMs is

available (Bauer et al. 2008). Since contribution of UFPs to the various impacts on human

health and the environment is not known (Hischier and Walser 2012), LCIA methods such as

CML 2001, Eco-Indicator 1999 or Impact 2002 do not cover toxicological effects of UFPs

(Bauer et al. 2008). The current understanding of effect mechanisms, dose-response

relationships, as well as transport and transformations in the environment may not be

sufficient to ascertain a representative characterization of ENMs. (Klöpffer et al. 2007, 19).

A significant “retooling” of existing tools, such as USEtox (Rosenbaum et al. 2008), CALtox

(McKone and Enoch 2002) and QSAR (Dudek et al. 2006; Puzyn et al. 2009, 2010), would be

required for them to account for the intrinsic and extrinsic factors that control the behaviour

of ENMs (Gavankar et al. 2012).

However, such work is underway. The modification of QSAR (Quantitative structure-activity

relationship) to QNAR (quantitative nanostructure–activity relationship) (Fourches et al. 2010),

to assess the biological effects of engineered nanoparticles based on their physical, chemical,

and geometrical properties has recently been proposed (Gavankar et al. 2012).

Additionally, Klöpffer et al. (2007) highlight increased dissipative use of scarce resources

(such as indium, used in semiconductors) in nanotechnologies may lead to the need for

reaching consensus on a framework for the characterization of abiotic resource depletion.

Strategies

Klöpffer et al. (2007) note that major efforts are needed (in terms of protocols and practical

methodologies for toxicology studies, fate and transport studies and scaling approaches) in

order to fully assess the potential risks and environmental impacts of nanoproducts and

materials. The authors suggest that in order to assess the impacts from ENMs and

nanoproducts, one should wait for the development of approaches used for the regulative

RA of which can then be adapted for the comparative assessment of potential impacts in

LCA. Klöpffer et al. (2007, p.19) note that the following types of studies still need to be

undertaken for ENMs:

- “Protocols and practical methodologies for toxicological studies;

- Fate and transport studies; and

- Scaling studies (i.e., how properties such as surface area, conductivity and magnetism

change with the size of the nanomaterial).”

Alternatively, Klöpffer et al., (2007) suggst one immediate action could be attempts to define

categories of ENMs, based on currently available information, for the specific purpose of

Page 65: Life cycle aspects of nanomaterials

39

LCIA, including categories, such as reactivity, degradability/fate and transport, and eco-

toxicity vs. human toxicity. In this case, categorization should address:

- Dispersive vs. non-dispersive uses

- Chemical composition

- Form and structure

- Mobility of releases in the environment (air emissions, water release, waste, etc.) at

each life cycle stage. Reactivity, fate and transport, and interactions with other sources

of environmental impacts should also be addressed. (Klöpffer et al. 2007, 21)

Qualitative Screening Approach

The fact that there are significant data and methodology gaps does not mean that the impact

of ENMs on human health and the environment should be ignored or omitted. Screening

approachs have been suggested as an interim device to identify potentially significant issues

and explore worst-case scenarios (where ENMs have an impact potential as high as that of

the most toxic chemicals (Klöpffer et al. 2007; Gavankar et al. 2012).

Scalability

Gavankar et al. (2012) propose approach outlined in Figure 12 when faced with the limited

data concerning ENMs.

Figure 12: Flow chart recommending the nanomaterial assessment path depending on the availability of

data (reproduced from Gavankar et al. (2012))

Page 66: Life cycle aspects of nanomaterials

40

In some cases, for instance some metal and metal oxide ENMs (see Auffan et al (2009))

scalability is known to exist. In these cases, the assessment of ENMs can be based on

traditional characterization approaches for bulk materials. The LCI data for the conventional

materials can be used in the place of the lacking ENM specific data, and the fate–transport

and toxicity assessment approaches can be used in the LCIA (Gavankar et al. 2012).

In cases where scalability cannot be established, (when particle size is below the threshold for

conventional material properties to be applied), Gavankar et al. (2012, 300) suggest exploring

any “empirical relationships, even if simplified, between ENM properties and their impact on

human health and environment based on the existing literature, engineering, industrial, and

other publicly available data”. Hence, empirical relationships may provide an early input for

nano-specific assessments until specific data for ENM fate, transport, and toxicity become

available (Gavankar et al. 2012).

When no quantitative data exists, qualitative assessment can be performed based on the

available information on the ENM and its release pathways. Bauer et al. (2008) and Gavankar

et al. (2012) discuss the qualitative approach proposed by Reijnders (2006) which

distinguishes between inherently non-dispersive11 and inherently dispersive nanoparticles12.

Inherently dispersive nanoparticles may be further classified according to the likelihood of

their dispersion in conjunction with their size range (Gavankar et al. 2012). Bauer et al. (2008,

p. 916) suggest that “more in-depth toxicological studies about these materials are of crucial

interest hence, as long as no such study results are known, these materials have to be

avoided as far as possible”.

11

Such as coatings, textiles, ceramics, membranes, composite materials, glass products, prosthetic implants, anti-

static packaging, cutting tools, industrial catalysts, a variety of electric and electronic devices including displays,

batteries and fuel cells (Royal Society 2004) 12

Such as drugs, personal care products such as cosmetics, quantum dots and some pilot applications in

environmental remediation (Royal Society 2004).

Page 67: Life cycle aspects of nanomaterials

41

5 RISK ASSESSMENT OF NANOMATERIALS

5.1 Risk assessment

Although some RAs have been conducted for ENMs according to standard RA protocols,

Grieger et al. (2012) suggest that all have concluded, due to limited data and the presence of

large uncertaitintites, it has not be possoible (based on the currently available information) to

complete full RAs for regulatory decicion making. Hence, any results to date should be

considered as pleminary results. The authors note that there is a lack of measured exposure

data for ENMs, lack of validated exposure estimation models, extensive uncertainties within

characterizing ENMs and a lack of (eco)toxicological studies in a variety of species. Hence, it

is difficult to complete hazard identification, dose–response and exposure assessments for

most ENMs (Grieger et al. 2012).

5.2 The complementarity of RA and LCA

The European Commission’s Nanoscience and Nanotechnologies An action plan for 2005-2009

(European Commission 2005) suggests that “Risk assessment related to human health, the

environment, consumer and workers should be responsibly integrated at all stages of the life

cycle of the technology, starting at the point of conception and including R&D,

manufacturing, distribution, use and disposal or recycling “(European Commission 2005, 10).

Several authors have recommended the application of both LCA and RA to ENMs. On the one

hand, it has been suggested that further efforts should be made for RA to consider life cycle

concepts, and on the other hand, LCA should be more risk based when applied to ENMs

(Sweet and Strohm 2006; Som et al. 2010). It has also be suggested that the risk of ENMs be

analysed at each life cycle stage (Shatkin 2008).

RA and LCA are tools that estimate the potential impact of a given substance or product,

notwithstanding the fact that they vary in aim, scope, outcomes, strengths and weaknesses

(Grieger et al. 2012). The difference in outcomes, strengths and weaknesses of these tools are

shown in Table 9.

Table 9: Outcomes, strengths and weaknesses of LCA and RA

LCA RA

Outcomes - Comparative basis - Absolute basis

Strengths - Includes impacts from all life cycle

stages

- Includes a range of impact

categories

- Avoids in ‘burden shifting’, from one

impact category to another and from

one life cycle stage to another

- the provision of an absolute assessment

of the potential risk for specific settings

- the use of worst-case evaluations to

help ensure safety to a potential

adverse effect

weaknesses - requires substantial amounts of data

- ineffective in handling uncertainties

and lack of data

- strong expert knowledge required

- requires substantial amounts of data

- ineffective in handling uncertainties and

lack of data

- strong expert knowledge required

Page 68: Life cycle aspects of nanomaterials

42

Similarities and differenced between LCA and RA have been identified by Grieger et al.

(2012). Similarities include: providing a way of structuring, presenting and evaluating

information for environmental decision-making in a life cycle perspective (although

possessing different conceptions of life cycle) (Flemström et al. 2004), estimation of

exposures and effects from emissions (Olsen and Christensen 2001), both contain methods to

characterise uncertainty within the assessments (Evans et al. 2002), and both help in

providing information to support decisions in situations of uncertainty (Evans et al. 2002).

Differences include: LCA’s focus on the product/service system and RA’s focus on the

emissions of a single substance (Christensen and Olsen 2004), different system boundaries

and ‘life cycles’ are used (Christensen and Olsen 2004), the results of LCA are comparative

whereas the results of RA are absolute (Grieger et al. 2012), and LCA covers a range of

environmental impacts whereas RA primarily cover toxicological and (eco)toxicological

impacts.

Grieger et al. (2012) have identified two main approaches that have been proposed for

combining LCA and RA for ENMs: life cycle-based risk assessment (LC-based RA) and risk

assessment-complemented life cycle assessment (RA-complemented LCA). The authors note

several research articles, frameworks and recommendations that apply these two approaches,

most of them describing the use of the RA-complemented LCA. In addition, there are very

few concrete case studies in the peer-reviewed literature that have tested and validated these

approaches.

5.2.1 Life cycle based risk assessment

LC-based RA is an approach that applies traditional RA in a life cycle perspective (Grieger et

al. 2012). This is done to help “concentrate efforts where it is the most needed, i.e., at each

life-cycle stage” (Grieger et al. 2012, 9), and is considered an extension of standard RA in a

life cycle perceptive (as required by REACH).

Wardak et al. (2008) recommends using LCA and RA methods based on scenario analyses

with expert elicitation, specifically focusing on ENMs or nanoproducts during the use and

disposal stages (Grieger et al. 2012).

5.2.2 Risk assessment complemented by life cycle assessment

RA-complemented LCA consists of a conventional LCA (assessing the environment impact of

a product) complemented with either a quantitative, semi-quantitative or qualitative RA

which assesses the risks related to specific life cycle stages (Grieger et al. 2012). The authors

note that this approach is the only approach that really combines life cycle and RA based

methods for ENM risk. Grieger et al. (2012) note that most publications and risk analysis

frameworks utilise this method.

5.2.3 A Stream lined approach

Klöpffer et al. (2007) outline a screening approach, combining the use of LCA, RA and

scenario analysis, to be used by industries (including SMEs) and stakeholders involved in the

development of ENMs and nanoproducts in order to identify the main areas of concern in

relation to the potential environmental impacts and to support go/no go decisions. Five steps

where highlighted in this screening approach are illustrated in Table 10.

Page 69: Life cycle aspects of nanomaterials

43

Table 10: Proposed Stepwise approach to LCT combined with RA

Steps Purpose What Is Available What Is Missing

1. Check for obvious harm

- Compliance with

health, safety and

environmental

regulation

- Usual assessment

methods in industry

2. Traditional LCA without toxicity study (focus on environmental impacts)

- Understanding

burdens versus

benefits

- If substantial benefits,

then go forward

- Analogies with

existing materials

- Confidential info

available to the “right”

people

- Software with easy to-

use interface

- If material is not listed,

use what’s similar

- Some LCI data on

nanomaterial

production

- Interface – to be

developed to deal

with fuzzy inputs -

should this be sector

or region- specific?

- Find ways to make

confidential

information available

within industry

3. Toxicity and RA (or qualitative analysis) could include toxicity and risk questions

- What are the likely

adverse risks that

humans and other

organisms will be

exposed to at each life

cycle stage

- How structure of

material influences

behavior (surface,

area, shape, etc.)

- Confidential

information available

to the “right” people

- Quantitative or fuzzy

- Published information

is available

- Hazard and exposure

data (potential

primary and

secondary

transformation into

unknown toxic

substances across life

cycle stages)

- Find ways to make

confidential

information available

within industry

4. Combine LCA and RA - To assess overall

impacts over whole

life cycle

- Can evaluate impacts

from the interaction of

materials

- No standard

quantitative tool

available to merge

the data

5. Scenario Analysis - To scale- up to

society-wide use

(consider issues such

as resource depletion)

- Lack of reasonable

upper and lower

bounds for scaling

and impact

estimations

Page 70: Life cycle aspects of nanomaterials

44

6 SUBSTANCE FLOW ANALYSIS OF NANOMATERIALS

6.1 Research applying SFA and PFA to nanomaterials

6.1.1 Literature review

Conducting a comprehensive meta-analysis of the state-of-the-art of SFA research on

nanomaterials is beyond the scope of this report. Whilst highlighting some of the current

research results, our primary objective is to focus on the potentials and limitations of current

research efforts in order to propose research priorities.

A search of academic literature databases (Scopus, ScienceDirect) and an internet search for

publications (such as those in scientific journals, conference proceedings, conference

presentations, research reports and theses) was conducted using the following combination

of keywords

- nano + substance flow analysis

- nano + “substance flow analysis”

- nano + SFA

- nano + material flow analysis

- nano + “material flow analysis”

- nano + MFA

- nano + particle flow analysis

- nano + “particle flow analysis”

- nano + PFA

Table 11 highlights the peer reviewed scientific literature on nanotechnology and ENMs

conducted from a SFA perspective.

Page 71: Life cycle aspects of nanomaterials

45

Table 11: Case studies applying substance flow analysis to nanomateirals

Author ENM Compartments System Case Study

Arvidsson et

al. (2011)

Ag Generic PFA of nanosilver emissions from dissipative and

non-recyclable products (wound dressings and

textiles).

Arvidsson et

al. (2012a)

TiO2 Generic PFA of titanium dioxide nanoparticles from

sunscreen, paint and cement.

Blaser et al.

(2008)

Ag Water EU Dissolved silver (Ag) emissions from nano-silver

containing biocidal products (textiles and plastics)

were compared to the expected concentrations in

the environment. Nanosilver is only responsible for

a small share of the total dissolved silver flow in

the environment, but did not consider any

particulate emissions.

Boxall et al.

(2007)

TiO2,

ZnO,

CeO2,

Al2O3,

SiO2,

Au,

Ag,

C60

Water, sludge,

soil, air

UK Based on an assumption of 10% market

penetrations of nanoproducts and the known

usage of these products, concentrations of silver,

aluminum oxide and fullerene were predicted to be

in the ng/l in wastewaters, whereas nano-TiO2,

silica, ZnO and hydroxyapatite were predicted to

be in the µg/l range.

Gottschalk

et al. (2009)

TiO2,

ZnO,

Ag,

CNT,

C60

Water, sludge,

air, sediments,

soils,

groundwater

CH, EU,

USA

Stochastic simulations of the release of all

considered ENM to environmental and technical

compartments during all life-cycle stages

Mueller and

Nowack

(2008)

TiO2,

Ag,

CNT

Water, air, soil CH Release of TiO2, Ag, CNT to environmental and

technical compartments.

Mueller et

al. (2013)

TiO2,

ZnO,

Ag,

CNT

Water, air, soil CH The flow of TiO2, ZnO, Ag, CNT during waste

incineration and landfilling.

O’Brien and

Cummins

(2010)

TiO2,

Ag,

CeO2

Air, surface

water

Ireland The release of TiO2 from exterior paints, Ag from

food packaging and CeO2 from fuel additives

Park et al.

(2008)

CeO2 Air, Soil Generic The release of CeO2 from fuel additives

Page 72: Life cycle aspects of nanomaterials

46

6.1.2 Results from selected case studies

Release of nanosilver and nano titanium dioxide during the use phase

Arvidsson et al. (2011) and Arvidsson et al. (2012a) are outcomes from the Swedish research

programme NanoSphere: Centre for interaction and risk studies in Nano-Bio-Geo-Sociotechno-

sphere interfaces13. This research programme is a cooperation between twelve research

groups from three faculties at University of Gothenburg and from Chalmers and funded by

FORMAS (25 million SEK from 2010-2014).

Arvidsson et al. (2011) and Arvidsson et al. (2012) applied PFA to estimate the global current

emissions, and future emissions, of nanosilver (in wound dressings, textiles and nanosilver ink

in electronic circuitry) and nano titanium dioxide (in sunscreen, paint and cement) to the

environment. Both of these studies focused on the use phase, as the production phase

emissions are highly dependent upon individual company’s management practice and there

is poor knowledge on the fate of nanosilver during the waste-handling phase.

Current and future production of nanosilver and nano titanium dioxide were analysed. The

authors developed an exploratory scenario to assess the potential future development of

nanosilver and nano titanium dioxide applications. The assumptions behind the nanosilver

case were that application will reach 100% market share within the product group in

question, the per capita in-flow to the use phase and stock of the product group will be

equal to those found in today’s high-income regions, and the world population will increase

to 10 billion people by 2050. The assumptions behind the nano titanium dioxide case were

that the world average demand per capita for nano titanium dioxide applications are equal to

the current demand in developed countries and that the world population will increase to 10

billion people by 2050.

Nanosilver

The current production of the nanosilver for wound dressings, textiles and electronic circuitry,

was suggested to be 254 kg/year, < 4,700 kg/year, and < 4,700 kg/year, respectively. The

current and future in-flow, stock and emissions of nanosilver particles are summarised in

Table 12.

Table 12: Current in-flow, stocks and emissions during the use phase for nanosilver applications in

wound dressings, textiles, and electronic circuitry (adapted from Arvidsson et al. (2011))

Output parameter Symbol and unit Wound dressings Textiles Electronic circuitry

Current production

particles/year 4.6 x 1022

< 8.5 x 1023

< 6.8 x 1024

Current stock particles Insignificant Insignificant < 6.8 x 1025

Current emissions particles/year 4.6 x 10

21 < 8.5 x 10

23 < 6.8 x 10

24

Explorative scenario production

particles/year (1 x 1022

, 1 x 1025

) (6 x 1028

, 6 x 1032

) 9 x 1027

Explorative scenario stock

particles Insignificant Insignificant 9 x 1028

Explorative scenario emissions

particles/year (1 x 1021

, 1 x 1024

) (6 x 1028

, 6 x 1032

) < 9 x 1027

13 http://www.nanosphere.gu.se/

Page 73: Life cycle aspects of nanomaterials

47

The highest inflow of nanosilver particles to the use phase occurs from their use in electronic

circuitry followed by textiles and wound dressings. Due to the short product life of wound

dressings, no stock of nanosilver is formed during the use phase. Likewise, there is no stock

of nanosilver from its use in textiles, as it is assumed to be emitted during the first few

washes. The life span of electronic circuitry was assumed to be 10 years, resulting in a stock

of < 6.8 x 1025 nanosilver particles.

Whilst the emissions for nanosilver from textiles reported in this study are very uncertain, the

authors highlight the importance these emissions during both the current use phase and

their potential future emissions.

Nano titanium dioxide

This study analysed the current and future emissions of titanium dioxide nanoparticles from

the use phase of their applications in sunscreens, paints and self-cleaning cement. The

current production of nano titanium dioxide used for paint and sunscreen was suggested to

be, 29,000 kilotonnes/year and 72 kilotonnes/year, respectively. The production of nano

titanium dioxide for self-cleaning cement was reported as being negligible. The current and

future in-flow, stock and emissions of titanium dioxide nanoparticles are summarised in Table

13.

Table 13: Current in-flow, stocks and emissions during the use phase for titanium dioxide nanoparticle

applications in paint, sunscreen, and self-cleaning cement (adapted from Arvidsson et al. (2012))

Scenario Output parameter Symbol and unit Paint Sunscreen Self-cleaning cement

Current Inflow to use phase particles/year 1 x 1025

2.6 x 1025

Negligible Stock in use particles 1 x 10

26 Negligible Negligible

Use phase emissions particles/year 1 x 1019

2.6 x 1025

Negligible Explorative scenario Inflow to use phase particles/year 7 x 10

25 2 x 10

26 9 x 10

27

Stock in use particles 7 x 1026

Negligible 9 x 1028

Use phase emissions particles/year 8 x 10

19 2 x 10

26 < 9 x 10

27

The highest inflow of nano titanium dioxide particles to the use phase occurs from their use

in sunscreen, even though the mass of nano titanium dioxide in paint applications is more

than 400% greater than in sunscreen applications. This is a result of the much smaller nano

titanium dioxide particles used in sunscreen applications compared to paint.

Regarding the future inflows and stocks of nano titanium dioxide, the most important

application is self-cleaning cement, due to the small particle size (almost equal to the size

used in sunscreen) and the significant growth potential for this application.

The authors note that majority of nano particles in paint and self-cleaning cement are not

emitted during the use phase, but will be retaining in the materials when the pass through to

the end of life phase.

Due to the dissipative nature of sunscreen during the use phase, the authors note the

importance of the inflow of sunscreen from an emissions perspective, which is the case for

both the current and future scenario.

Page 74: Life cycle aspects of nanomaterials

48

Flows of engineered nanomaterials during waste handling

Muller et al. (2013) have used SFA to predict the flows of nano titanium dioxide, nano zinc

oxide, nanosilver and carbon nanotubes during waste incineration and landfilling of

municipal solid waste and construction waste in Switzerland.

The inflows to the system consist of the direct deposit of construction waste to landfills for

inert wastes, and the incineration of municipal solid waste and sewage sludge. The

incineration process consists of a) burning under oxidisation conditions at around 1000°C, b)

flue gas filtration (electrostatic precipitator of bag house filter), c) flue gas scrubbing, and d)

waste water treatment for wastewaters from the cooling processes of the bottom ash, the

scrubber, and possibly from the acid washing of the fly ash.

Depending upon the physio-chemical properties of the ENMs, they may either be a)

destroyed by oxidation, melting or volatolisation in the furnace or by

dissolution/precipitation in the wastewater treatment plant or in the scrubber, or b) survive

incineration be found in either the bottom ash or fly ash, be released into the air or the

quench water.

Figure 13 shows that the major flows for nano titanium oxide, nano zinc oxide and nanosilver

from the incineration process go to landfill as bottom ash. The second most significant flow

of ENMs to landfill was via the direct deposition of construction waste. For CNTs, 94% were

combusted with insignificant amounts remaining in the system. Very small amounts of nano

zinc oxide (< 5 t/year), nanosilver (< 5 t/year), and CNTs(< 100kg /year), were predicted to

enter landfills. However, up to 150 t/year of for nano titanium dioxide was predicted to enter

landfills.

Figure 13: Flows of ENMs during waste disposal shown as a % of the total flow that enters the

incineration/landfill system (Reproduced from Muller et al. (2013))

Page 75: Life cycle aspects of nanomaterials

49

6.2 Potential life cycle release and exposure of nanomaterials

Som et al. (2010) note that the assessment of human and environmental exposure is closely

linked to the release potential of ENMs during the different life cycle stages. To this end, it is

important to know in what form (as ‘free’ ENMs, in an aggregated or agglomerated form, or

integrated into a nanometre or micrometre sized material) and in what life cycle stage ENMs

can be released.

6.2.1 Production of nanomaterials and manufacture of nanoproducts

Som et al. (2010) and Gottschalk and Nowack (2011) note that the greatest likelihood of

direct release and exposure to ENMs is during their manufacture. Direct release and exposure

to ENMs already occurs and is mainly due to the production and handling of dry powders

(see Bello et al. (2008), Han et al. (2008) and Fujitani et al. (2008)). Gottschalk and Nowack

(2011) suggest that once the ENMs are released to indoor air it is likely that they will sooner

or later enter into the environment. The authors also suggest ENMs may be directly released

to the environment through open windows during the improper handling ENMs, from

transport accidents and other types of spills.

Concerning the production of ENMs, Gottschalk and Nowack (2011) note that recent studies

on the direct release to the environment show uniform probability distributions ranging from

0 to 2% of the ENM produced. The authors note that generic worst-case scenario release

coefficients for chemicals and the manufacturing process of such chemicals consider that 5%

are released to the air, 6% to surface waters before reaching a sewage treatment plant and

0.01% to soils. However, depending on the production and maintenance procedures used, it

may be possible that only a negligible release to the environment occurs when closed

systems and solvent-free procedures are implemented and all waste from cleaning and

maintenance is disposed of as special waste (Gottschalk and Nowack 2011).

For the manufacture of nanoproducts, Gottschalk and Nowack (2011) note that recent studies

on the direct release to the environment show uniform probability distributions ranging from

0 to 2% of the ENM produced. Generic worst-case scenario release coefficients for

formulation of mixtures (not embedded into a matrix) considers that 2.5% are released to the

air, 2% to surface waters before reaching a sewage treatment plant and 0.01% to soils

(Gottschalk and Nowack 2011).

The indirect release of ENMs during the production phase may be via untreated or treated

water to rivers (Gottschalk and Nowack 2011). For instance, the production of fullerenes or

carbon nanotubes results in the production of a greater proportion of waste that contains a

variety of carbon-based structures whose characterisation is not yet available (Gottschalk and

Nowack 2011).

Page 76: Life cycle aspects of nanomaterials

50

6.2.2 Use phase

The exposure of ENMs during the use phase can result from the intended or unintended

release of nanoparticles (Som et al. 2009). The intended release of nanoparticles results from

either point sources, such as the use of ENMs in groundwater remediation, or non-point

sources, such as the use of ENMs in products such as sunscreens (Som et al. 2009; Gottschalk

and Nowack 2011). Som et al. (2009, p, 166) suggest that the exposure of consumers to non-

point sources could be estimated using “behavioural and anthropometric data, usage

statistics, and from the prevalence and manner of integration of ENMs in different product

categories”. Furthermore, the magnitude of ENM released via point sources is generally

known.

The unintended release of nanoparticles results from the use of ENM in products such as

nanosilver in textiles (Som et al. 2009; Gottschalk and Nowack 2011). The release of ENMs

from products during their use depends on several factors, including the amount of ENMs in

the product, how the ENM is embedded in the product, the products life time, and the actual

use of the product (Som et al. 2009; Gottschalk and Nowack 2011). Som et al. (2009) suggest

that products that have a loose incorporation of ENMs or an intense use will most likely not

contain any ENMs at the time of disposal. However, factors such as a low rate of use and

strong fixation would increase the likelihood of ENMs entering the disposal phase.

Hsu and Chein (2006) have shown the release of nano titanium dioxide from coatings on

wood, polymers and tiles, with UV light contributing to an increased release of ENMs. Vorbau

et al. (2009) have shown no significant release of nanoparticles from the abrasion of coatings

containing nano zinc oxide, and that after abrasion the ENMs were still embedded in larger

particles. Blaser et al. (2008) and Benn and Westerhoff (2008) have shown that nanosilver is

released in ionic form from plastics and textiles, and as nanoparticles released from washing

nanosilver containing textiles. Furthermore, the leaching of nano titanium dioxide to surface

water from facades treated with nano titanium dioxide containing paints has been

demonstrated (Kaegi et al. 2008).

Page 77: Life cycle aspects of nanomaterials

51

6.2.3 End-of-life phase

Although there is little information about the behaviour of ENMs during the end-of-life

phase, it is assumed that there is a high risk that ENMs may be released to the environment

during recycling or disposal (Royal Society 2004). It is likely that there will be unintentional

releases of ENMs to the environment during either the recycling, incineration or landfill of

ENMs or via wastewater treatment plants. Hence, incineration plants, landfills and wastewater

treatment plants may be important sources for ENM releases to the air, water and soil.

Incineration

One pathway for ENMs to the environment is to the air via waste incineration plants

(Gottschalk et al. 2009). Although modern incineration plants are equipped with multi stage

flue gas cleaning systems (including electro filters, flue gas scrubbers,

catalytic/NOx/furane/dioxin removal and possibly fabric filters), low concentrations of ENMs

may be released to the air (Som et al. 2009). Burtscher et al. (2001) suggest that the

concentration of particles less than 100nm is reduced by filters by 99.9% and in subsequent

wet filtration by another 95%.

Roes et al (2012) calculate that by 2020 approximately 0.5 kg of ENM in plastics will

incinerated per ton of waste, equating to 1880 t/a of ENM entering Swiss waste incineration

plants as nano-composites. The authors suggest that the concentrations of nano-objects

found in the flue gas of waste containing nanocomposites would be 100-10 000 times higher

than conventional waste, assuming no EMNs are destroying and all ENMs end up in the flue

gas.

Landfill

Several authors (see Mueller and Nowack (2008) and Gottschalk et al (2010, 2009)) have

shown a significant flow of ENMs to landfill, either via deposition of bottom or fly ash, from

the incineration of wastewater sludge, or via the direct dumping of construction waste. Som

et al. (2009) note that the degradation of nanoproducts containing ENMs in landfills is yet to

be studied.

Recycling

The ability to recycle ENMs or nanostructured materials containing ENMs is uncertain. For

some nanoproducts such as lithium batteries with a complete recycling system, no release of

ENMs to the environment is expected (Som et al. 2009). A recent experimental study by

Busquets-Fité et al. (2013) on the recovery of silicon dioxide, titanium dioxide, zinc oxide and

WMCNTs from polyamide-6 (PA) and polypropylene (PP) composites has shown recovery

rates of between 0 and 99%, as detailed in Table 14.

Table 14: Recovery of ENMs from PA and PP composites

ENM PA PP

silicon dioxide (non-aged – aged) 43-59% 98-95% titanium dioxide (non-aged – aged) 60-59% 97-96% zinc oxide (non-aged – aged) 0-0% 99-99% MWCNT (non-aged – aged) 50-45% 97-80%

However, currently ENMs are not recycled at significantly high rates and recycling process

such ‘shredding’ may lead to the release of ENMs.

Page 78: Life cycle aspects of nanomaterials

52

Wastewater treatment

Gottschalk and Nowack (2011) suggest that one should expect at least some of the ENMs in

wastewater to end up in freshwater. Furthermore, it should also be considered that ENMs

may pass through several different technical compartments (the deposit of sludge from

waste incineration plants to landfill and/or the incineration of biosolids from wastewater

treatment plants) (Gottschalk and Nowack 2011).

Arvidsson et al. (2012b) have assessed the risk of silver exposure to earthworms from

applying sludge as fertilizer to agricultural land which contains nanosilver from clothing

applications. They have shown that low concentrations of silver found in clothes pose an

insignificant contribution to the total silver concentration in the waste water treatment plant

studied and that the concentration of silver in sludge was below the natural level found in the

earth’s upper crust. However, for high concentrations of silver in cloths it would be

impossible to reach the long-term goal of having the same concentration of silver in the

sludge as in Earth's upper crust. Furthermore, the authors suggest that for clothes with the

highest silver concentration, there is a substantial risk that the concentration of silver in the

soil would be toxic to earthworms, if the sludge were to be applied to agricultural land.

Page 79: Life cycle aspects of nanomaterials

53

7 COMMUNICATION OF A LIFE CYCLE APPROACH TO NANOMATERIALS

There exists a plethora of images used to represent the life cycle concept. They either are

generic representations of the life cycle concept, or represent specific information related to

the product/system service in question. These images generally belong to two categories,

linear representations and cyclical representations. Almost all graphical representations of

LCT have one aspect in common; they represent the connection between the life cycle phases

of a product (resource extraction, manufacturing/production, transport, use and end-of-life).

See Appendix B for generic, linear, general and specific life cycle images.

These images are useful to convey the life cycle perspective, however one important aspect

related to products containing ENMs that should be communicated is the release of ENMs to

the environment during different life cycle stages. Figure 14 highlights the flows and

potential releases of ENMs as a result of their incorporation into product life cycles. The blue

line represents ENMs in the product life cycle and also the potential emissions of ENMs

during a product life cycle.

Figure 14: Life cycle thinking and nanomaterials

Page 80: Life cycle aspects of nanomaterials

54

8 RECOMENDATIONS

To ensure the safe handling of ENMs and to be able to identify opportunities in a life cycle

perspective requires better data and analysis, but also more effective decision-making and

policy instruments. The following suggestions identify some potential ways forward:

Improved information concerning the use of ENMs. In order to assess risk,

information is needed on the volumes society uses, in which applications, and in what

forms.

Improved information on emissions is required in order to assess the risks of

ENMs. As a first step, information is required on where emissions occur, which can be

achieved through undertaking simplified SFAs of ENMs. Methods for this need to be

developed where the reasonable worst-case assumptions can be made to assess

whether further detailed analysis is required. Those who place a material on the

market should be able to describe how the material will be disposed of or emitted to

the environment.

In depth SFA in specific cases. These cases can be selected for several reasons:

environmentally relevant ENMs, ENMs used in large quantities or ENMs that can be

considered representative of larger groups and thus can be used to develop and

verify the simplified models.

Measurements. SFA is based upon existing and available data which in turn need to

come from actual measurements or model calculations, which in turn needs to be

based on measurements. Examples of important situations where actual

measurements are required include exposure in the work environment, flows in waste

water treatment plants and flows associated with recovery processes and other waste

management activities.

Methods for the characterization of nanoparticles. The properties of nanoparticles

can change according to their shape and size. Nanoparticles need to be characterised

in ways that are relevant for emission measurements, exposure analysis and toxic

effects.

Toxicological and eco-toxicological dose-response data are needed.

Models for exposure analysis require further development and need to be

adapted for nanoparticles.

Environmental impact assessment methods in LCA require further development

and need to be adapted for nanoparticles. As the methods for risk assessment of

nanoparticles are developed, there is a need for LCA methodology to follow and

adapt.

LCI data for ENMs. LCA is heavily dependent on databases which have been

developed over the past decade. However, these databases are limited with regards

to ENM data. Life cycle inventory data is essential for the assessment of the potential

benefits and impacts of ENMs in a life cycle perspective.

Methods to develop life cycle data for emerging technologies. Nanotechnology is

a field experiencing rapid development; this also applies to manufacturing processes

and their environmental performance.

International cooperation with a Swedish perspective. Much of the data and

methods that are required for LCA should be developed in the context of

international cooperation. However, it may be important to develop life cycle data for

Page 81: Life cycle aspects of nanomaterials

55

products manufactured in Sweden as some conditions may be country specific (for

example, raw materials and energy). Furthermore, other processes such as waste

management may have specific Swedish conditions.

The collaboration of industry, governmental agencies and research. Much of the

data which is required should be produced by industry. It is also important that

governmental agencies and researcher are involved in such work to ensure credibility

and transparency.

Credible information to users. The safe use of ENMs and nanoproducts requires

informed users. Labelling and other forms information is needed to be designed so

that users in businesses, organizations, government agencies and consumers can

make their own informed decisions.

Avoid locking in a risk paradigm. Full risk assessments require copious amounts of

data and take a significant amount of time to complete. It would be expensive and

inefficient to complete risk assessments on every ENM and its specific application that

is placed on the market. Hence, one must be able to make effective decisions about

the safe use of ENMs without full risk assessments.

Avoid a ‘material for material’ paradigm. The number of ENMs can be vast. In

order to have effective processes, decisions can be taken without the complete data

that is require for each individual material. Decisions can be made for groups of

materials, or based on more simple criteria.

Resources for research in several fields. There is need for research on data and

methods that can be used for SFA, RA and LCA. Research is also needed on the use of

ENMs, policy instruments and decision theory.

Page 82: Life cycle aspects of nanomaterials

56

9 CONCLUSIONS

ENMs are used in a growing number of products. Their application in products can be either

inherently non-dispersive or inherently dispersive. Yet even ENMs in inherently non-

dispersive applications can be released to the environment during the life cycle of the

product.

The present assessment of the impacts, or benefits, of ENMs upon human health and the

environmental is currently inadequate. One of the most important contributing causes for

this inadequacy is the lack of data. Although there are a large variety of ENMs currently being

used, there are no official statistics available on the amounts of ENMs currently used and

products that contain ENMs.

Environmental and health risks are both related to the chemical composition of the ENMs,

but also the particles size, shape and properties. Hence, nanoparticles must be classified

according to more than their mere chemical composition.

There are major gaps in knowledge regarding the emission of ENMs and nanoparticles

during production, use and disposal. Models for dispersion and exposure analysis for ENMs

must be developed as well as dose-response data for toxic effects.

Full RAs of ENMs are difficult because of the lack of data and methods available. LCAs have

been completed for a number of products containing ENMs. ENMs are not considered in the

LCIA, hence there is no information presented concerning the environmental impact on

human health or the environment due to the release of ENMs.

Production of ENMs can often be energy intensive. However, in a life cycle perspective, the

use of ENMs may lead to reduced energy use that is greater than that caused by the

production.

To be able to both reach the safe use of ENMs and to exploit ENMs opportunities in a life

cycle perspective requires better data and analysis but also effective instruments and

decision-making.

Page 83: Life cycle aspects of nanomaterials

57

10 REFERENCES

Ackoff, R. 1973. Science in the systems age: beyond IE, OR, and MS. Operations Research 21(3

(May - Jun., 1973)): 661–671.

Agboola, A.E. 2005. Development and model formulation of scalable carbon nanotube processes:

HiPCO and CoMoCAT process models. Department of Chemical Engineering/Agricultural and

Mechanical College. Louisiana State University.

Arvidsson, R. 2012. Contributions to Emission, Exposure and Risk Assessment of Nanomaterials.

Chalmers University of Technology.

Arvidsson, R., S. Molander, and B.A. Sandén. 2011. Impacts of a Silver Coated Future: Particle Flow

Analysis of Silver nanoparticles. Journal of Industrial Ecology 15(6): 844–854.

Arvidsson, R., S. Molander, and B.A. Sandén. 2012a. Particle Flow Analysis: Exploring Potential Use

Phase Emissions of Titanium Dioxide Nanoparticles from Sunscreen, Paint, and Cement.

Journal of Industrial Ecology 16(16): 343–351.

Arvidsson, R., S. Molander, and B.A. Sandén. 2012b. Assessing the Environmental Risks of Silver

from Clothes in an Urban Area. Human and Ecological Risk Assessment: An International

Journal Article Article in Press.

Auffan, M., J. Rose, J.-Y. Bottero, G. V Lowry, J.-P. Jolivet, and M.R. Wiesner. 2009. Towards a

definition of inorganic nanoparticles from an environmental, health and safety perspective.

Nature Nanotechnology 4(10):

Babaizadeh, H. and M. Hassan. 2013. Life cycle assessment of nano-sized titanium dioxide coating

on residential windows. Construction and Building Materials 40(March): 314–321.

Bauer, C., J. Buchgeister, R. Hischier, W.R. Poganietz, L. Schebek, and J. Warsen. 2008. Towards a

framework for life cycle thinking in the assessment of nanotechnology. Journal of Cleaner

Production 16(8): 910–926.

Baumann, H. and A.M. Tillman. 2004. The Hitch Hiker’s Guide to LCA. Lund: Studentlitteratur.

Bello, D., A. Hart, K. Ahn, M. Hallock, N. Yamamoto, E. Garcia, M.J. Ellenbecker, and B. Wardle.

2008. Particle exposure levels during CVD growth and subsequent handling of vertically-

aligned carbon nanotube films. Carbon 46(6): 974–977.

Benn, T. and P. Westerhoff. 2008. Nanoparticle silver released into water from commercially

available sock fabrics. Environmental Science & Technology 42(11): 4133-4139.

Blaser, S.A., M. Scheringer, M. MacLeod, and K. Hungerbühler. 2008. Estimation of cumulative

aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and

textiles. Science of The Total Environment 390(2): 396–409.

British Standards Institution. 2007. Terminology for Nanomaterials. London.

Burtscher, H., M. Zürcher, A. Kasper, and M. Brunner. 2001. Efficiency of flue gas cleaning in waste

incineration for submicron particles. In Proc. Int. ETH Conf. on Nanoparticle Measurement., ed.

A. Mayer. BUWAL.

Busquets-Fité, M., E. Fernandez, G. Janer, G. Vilar, S.V.-C.R. Zanasca, C. Citterio, L. Mercante, and V.

Puntes. 2013. Exploring release and recovery of nanomaterials from commercial polymeric

nanocomposites. Journal of Physics: Conference Series 429(012048).

Checkland, P. 1999. Systems thinking, systems practice: includes a 30-year retrospective.

Page 84: Life cycle aspects of nanomaterials

58

Christensen, F.M. and S.I. Olsen. 2004. The potential role of life cycle assessment in regulation of

chemicals in the European union. The International Journal of Life Cycle Assessment 9(5):

327–332.

Dekkers, S., L.C.H. Prud’homme De Lodder, R. de Winter, A.J.A.M. Sips, and W.H. de Jong. 2007.

Inventory of consumer products containing nanomaterials RIVM/SIR Advisory report 11124.

Dudek, A., T. Arodz, and J. Galvez. 2006. Computational methods in developing quantitative

structure-activity relationships (QSAR): a review. Combinatorial chemistry & high throughput

screening 9(3), 213-228

Englert, N. 2004. Fine particles and human health--a review of epidemiological studies. Toxicology

Letters 149(1-3): 235–42.

European Commission. 2004. Towards a European strategy for nanotechnology. Brussels.

European Commission. 2005. Nanosciences and nanotechnologies: An action plan for Europe 2005-

2009. Brussels.

European Commission. 2009a. Preparing for our future: Developing a comm on strategy for key

enabling technologies in the EU COM(2009) 512 final. Brussels.

European Commission. 2009b. Nanosciences and Nanotechnologies: An action plan for Europe

2005-2009. Second Implementation Report 2007-2009. Brussels.

European Commission. 2009c. Accompanying document to the Nanosciences and

Nanotechnologies: An action plan for Europe 2005-2009. Second Implementation Report 2007-

2009. Brussels.

European Commission. 2010. Life Cycle Thinking and Assessment - Our thinking - life cycle

thinking. European Commission Institute for Environment and Sustainability.

European Commission. 2011. Commission Recommendation of 18 October 2011 on the defition

of nanomaterial (2011/696/EU). Official Journal of the European Union L275/38-L2.

European Commission. 2012. COMMISSION STAFF WORKING PAPER Types and uses of

nanomaterials, including safety aspects SWD(2012) 288 final. Brussels.

Evans, J., P. Hofstetter, and T. McKone. 2002. Introduction to special issue on life cycle assessment

and risk analysis. Risk Analysis Analysis 22(5): 819–820.

Figueirêdo, M.C.B. de, M. de F. Rosa, C.M.L. Ugaya, M. de S.M. de Souza Filho, A.C.C. da Silva Braid,

and L.F.L. de Melo. 2012. Life cycle assessment of cellulose nanowhiskers. Journal of Cleaner

Production 35: 130–139.

Finnveden, G., M.Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S. Hellweg, A. Koehler, D.

Pennington, and S. Suh. 2009. Recent developments in life cycle assessment. Journal of

Environmental Management 91(1): 1–21.

Finnveden, G. and Å. Moberg. 2005. Environmental systems analysis tools–an overview. Journal of

Cleaner Production 13(12): 1165–1173.

Fleischer, T. and A. Grunwald. 2008. Making nanotechnology developments sustainable. A role for

technology assessment? Journal of Cleaner Production 16(8): 889–898.

Flemström, K., R. Carlson, and M. Erixon. 2004. Relationships between Life Cycle Assessment and

Risk Assessment:– Potentials and Obstacles. Gothernburg.

Foss Hansen, S., B.H. Larsen, S.I. Olsen, and A. Baun. 2007. Categorization framework to aid hazard

identification of nanomaterials. Nanotoxicology 1(3): 243–250.

Page 85: Life cycle aspects of nanomaterials

59

Fourches, D., D. Pu, C. Tassa, R. Weissleder, S.Y. Shaw, R.J. Mumper, and A. Tropsha. 2010.

Quantitative nanostructure-activity relationship modeling. ACS Nano 4(10): 5703–12.

Frischknecht, R., N. Jungbluth, H.-J. Althaus, G. Doka, R. Dones, T. Heck, S. Hellweg, et al.. 2004.

The ecoinvent Database: Overview and Methodological Framework. The International Journal

of Life Cycle Assessment 10(1): 3–9.

Fthenakis, V., S. Gualtero, R. van der Meulen, and H.C. Kim. 2008. Comparative Life-cycle Analysis

of Photovoltaics Based on Nano-materials: A Proposed Framework. In Materials Research

Society Symposium Proceeding, 1041:R01–03.

Fthenakis, V., H.C. Kim, S. Gualtero, and A. Bourtsalas. 2009. Nanomaterials in PV manufacture:

Some life cycle environmental-and health-considerations. In Photovoltaic Specialists

Conference (PVSC), 2009 34th IEEE, 2003–2008. IEEE.

Fujitani, Y., T. Kobayashi, K. Arashidani, N. Kunugita, and K. Suemura. 2008. Measurement of the

physical properties of aerosols in a fullerene factory for inhalation exposure assessment.

Journal of Occupational and Environmental Hygiene 5(6): 380–9.

Gavankar, S., S. Suh, and A.F. Keller. 2012. Life cycle assessment at nanoscale: review and

recommendations. The International Journal of Life Cycle Assessment 17: 295–303.

Gottschalk, F. and B. Nowack. 2011. The release of engineered nanomaterials to the environment.

Journal of Environmental Monitoring 13(5): 1145–1155.

Gottschalk, F., R.W. Scholz, and B. Nowack. 2010. Probabilistic material flow modeling for

assessing the environmental exposure to compounds: Methodology and an application to

engineered nano-TiO2 particles. Environmental Modelling & Software 25(3): 320–332.

Gottschalk, F., T. Sonderer, R.W. Scholz, and B. Nowack. 2009. Modeled environmental

concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different

regions. Environmental Science & Technology 43(24): 9216–9222.

Greijer, H., L. Karlson, S.E. Lindquist, and A. Hagfeldt. 2001. Environmental aspects of electricity

generation from a nanocrystalline dye sensitized solar cell system. Renewable Energy 23(1):

27–39.

Grieger, K.D., A. Laurent, M. Miseljic, F. Christensen, A. Baun, and S.I. Olsen. 2012. Analysis of

current research addressing complementary use of life-cycle assessment and risk assessment

for engineered nanomaterials: have lessons been learned from previous experience with

chemicals? Journal of Nanoparticle Research 14(7): 1–23.

Griffiths, O. and J. O’Byrne. 2013. Identifying the Largest Environmental Life Cycle Impacts during

Carbon Nanotube Synthesis via Chemical Vapour Deposition. Journal of Cleaner Production

42: 180–189.

Grubb, G.F. 2010. Improving the environmental performance of manufacturing systems via exergy,

techno-ecological synergy, and optimization. The Ohio State University.

Grubb, G.F. and B.R. Bakshi. 2008. Energetic and environmental evaluation of titanium dioxide

nanoparticles. In Electronics and the Environment, 2008. ISEE 2008, 1–6. IEEE.

Grubb, G.F. and B.R. Bakshi. 2011a. Life Cycle of Titanium Dioxide Nanoparticle Production. Journal

of Industrial Ecology 15(1): 81–95.

Grubb, G.F. and B.R. Bakshi. 2011b. Appreciating the role of thermodynamics in LCA improvement

analysis via an application to titanium dioxide nanoparticles. Environmental Science &

Technology 45(7): 3054–3061.

Page 86: Life cycle aspects of nanomaterials

60

Han, H.J., E.J. Lee, J.H. Lee, K. Pyo So, Y. Hee Lee, G. Nam Bae, S.-B. Lee, J. Ho Ji, M.H. Cho, and I. Je

Yu. 2008. Monitoring Multiwalled Carbon Nanotube Exposure in Carbon Nanotube Research

Facility. Inhalation Toxicology 20(8): 741–749.

Handy, R.D., F. von der Kammer, J.R. Lead, M. Hassellöv, R. Owen, and M. Crane. 2008. The

ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology (London, England)

17(4): 287–314.

Hauschild, M.Z. 2005. Assessing environmental impacts in a life-cycle perspective. Environmental

Science & Technology 39(4): 905–912.

Healy, M.L., L.J. Dahlben, and J.A. Isaacs. 2008. Environmental Assessment of Single-Walled Carbon

Nanotube Processes. Journal of Industrial Ecology 12(3): 376–393.

Healy, M.L., A. Tanwani, and J.A. Isaacs. 2006. Economic and Environmental Tradeoffs in SWNT

Production. NSTI-Nanotech, Nano Science and Technology Institute, Boston (MA, USA).

Hischier, R. and T. Walser. 2012. Life cycle assessment of engineered nanomaterials: State of the

art and strategies to overcome existing gaps. Science of The Total Environment 425(15 May

2012): 271–282.

Hsu, L.-Y. and H.-M. Chein. 2006. Evaluation of nanoparticle emission for TiO2 nanopowder

coating materials. Journal of Nanoparticle Research 9(1): 157–163.

Illuminato, I. and G. Miller. 2010. Nanotechnology, climate and energy: over-heated promises and

hot air?

Isaacs, J., A. Tanwani, and M.L. Healy. 2006. Environmental Assessment of SWNT Production. In

Proceedings of the 2006 IEEE International Symposium on Electronics & the Environment, 38 –

41. Scottsdale, USA: IEEE; 2006.

Isaacs, J.A., A. Tanwani, M.L. Healy, and L.J. Dahlben. 2010. Economic assessment of single-walled

carbon nanotube processes. Journal of Nanoparticle Research 12(2): 551–562.

ISO. 2006a. Environmental Management - Life cycle assessment - Requirements and guidelines ISO

14044:2006.

ISO. 2006b. Environmental Management - Life cycle assessment - Principles and Framework (ISO

14040:2006).

ISO. 2008. ISO/TS 27687:2008 Nanotechnologies- Terminology and definitions for nano objects—

nanoparticle, nanofibre and nanoplate.

Joshi, S. 2008. Can Nanotechnology Improve the Sustainability of Biobased Products? The Case of

Layered Silicate Biopolymer Nanocomposites. Journal of Industrial Ecology 12(3): 474–489.

Jovanovic, A. and M. Cordella. 2011. Life cycle Assessment (LCA) & Risk Analysis in Nanomaterials

related NMP projects. Special Brainstorming and Coordination Meeting March 2, 2001,

Brussels.

JRC. 2010. International Reference Life Cycle Data System (ILCD) Handbook. General guide for Life

Cycle Assessment - Detailed guidance. Vol. First Edit. Ispra: Joint Research Centre, Institute for

Environment and Sustainability, Eurpean Commission.

Kaegi, R., A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, H. Simmler, et al.. 2008. Synthetic

TiO2 nanoparticle emission from exterior facades into the aquatic environment.

Environmental Pollution 156(2): 233–239.

Page 87: Life cycle aspects of nanomaterials

61

Khanna, V. 2009. Environmental and Risk Assessment at Multiple Scales with Application to

Emerging Nanotechnologies. Ohio State University.

Khanna, V. and B.R. Bakshi. 2009. Carbon nanofiber polymer composites: evaluation of life cycle

energy use. Environmental Science & Technology 43(6): 2078–2084.

Khanna, V., B.R. Bakshi, and L.J. Lee. 2007. Life cycle energy analysis and environmental life cycle

assessment of carbon nanofibers production. In Electronics & the Environment, Proceedings

of the 2007 IEEE International Symposium, 128–133. IEEE.

Khanna, V., B.R. Bakshi, and L.J. Lee. 2008a. Carbon nanofiber production: Life Cycle Energy

Consumption and Environmental Impact. Journal of Industrial Ecology 12(3): 394–410.

Khanna, V., Y. Zhang, G. Grubb, and B.R. Bakshi. 2008b. Assessing the Life Cycle Environmental

Implications of Nanomanufacturing: Opportunities and Challenges. In Nanoscience and

Nanotechnology: Environmental and Health Impacts, ed. H Grassian, 19–42. New Jersey: John

Wiley & Sons.

Klöpffer, W., M.A. Curran, P. Frankl, R. Heijungs, A. Köhler, and S.I. Olsen. 2007. Nanotechnology

and Life Cycle Assessment. A systems approach to Nanotechnology and the environment:

Synthesis of Results Obtained at a Workshop Washington, DC 2–3 October 2006. tech. rep.,

European Commission, DG Research, jointly with the Woodrow Wilson International Center

for Scholars.

Köhler, A.R., C. Som, A. Helland, and F. Gottschalk. 2008. Studying the potential release of carbon

nanotubes throughout the application life cycle. Journal of Cleaner Production 16(8): 927–

937.

Kuiken, T. 2009. It’s Time to Move Forward on LCA of Nanomaterials. In Nanotechnology & Life

Cycle Analysis Workshop; Chicago, IL (USA).

Kushnir, D. and B.A. Sandén. 2008. Energy requirements of carbon nanoparticle production.

Journal of Industrial Ecology 12(3): 360–375.

Linkov, I. and T.P. Seager. 2011. Coupling multi-criteria decision analysis, life-cycle assessment,

and risk assessment for emerging threats. Environmental Science & Technology 45(12): 5068–

5074.

Lloyd, S.M. 2004. Using Life Cycle Assessment to inform nanotechnology research and

development. Engineeing and Public Policy. Pittsburgh, Pennsylvania: Carnegie Mellon

University, Carnegie Institute of Technology.

Lloyd, S.M. and L.B. Lave. 2003. Life cycle economic and environmental implications of using

nanocomposites in automobiles. Environmental Science & Technology 37(15): 3458–3466.

Lloyd, S.M., L.B. Lave, and H.S. Matthews. 2005. Life cycle benefits of using nanotechnology to

stabilize platinum-group metal particles in automotive catalysts. Environmental Science &

Technology 39(5): 1384–1392.

Lövestam, G., H. Rauscher, G. Roebben, B. Sokull Klüttgen, N. Gibson, J.-P. Putaud, and S.

Hermann. 2010. Considerations on a definition of nanomaterial for regulatory purposes. Joint

Research Centre (JRC) Reference Reports, 80004-1.

Lubick, N. 2008. Risks of Nanotechnology Remain Uncertain. Environmental Science & Technology

42(6): 1821–1824.

Luoma, S. 2008. Silver nanotechnologies and the environment: Old problems or new challenges?

Washington, DC.

Page 88: Life cycle aspects of nanomaterials

62

Maynard, A. 2011. Don’t define nanomaterials. Nature 475(7354), 31-31.

McKone, T. and K. Enoch. 2002. CalTOX (registered trademark), a multimedia total exposure model

spreadsheet user’sguide. version 4.0.

Merugula, L.A., V. Khanna, and B.R. Bakshi. 2010. Comparative life cycle assessment: Reinforcing

wind turbine blades with carbon nanofibers. In Proceedings of the 2010 IEEE International

Symposium on Sustainable Systems and Technology, 1–6. IEEE, May.

Meyer, D.E., M.A. Curran, and M.A. Gonzalez. 2011. An examination of silver nanoparticles in socks

using screening-level life cycle assessment. Journal of Nanoparticle Research 13(1): 147–156.

Miljödepartementet. 2012. Kommittédirektiv En nationell handlingsplan för säker användning och

hantering av nanomaterial (Dir. 2012:89).

Moign, A., A. Vardelle, N.J. Themelis, and J.G. Legoux. 2010. Life cycle assessment of using powder

and liquid precursors in plasma spraying: The case of yttria-stabilized zirconia. Surface and

Coatings Technology 205(2): 668–673.

Mueller, N.C., J. Buha, J. Wang, A. Ulrich, and B. Nowack. 2013. Modeling the flows of engineered

nanomaterials during waste handling. Environmental Science: Processes & Impacts 15: 251–

259.

Mueller, N.C. and B. Nowack. 2008. Exposure modeling of engineered nanoparticles in the

environment. Environmental Science & Technology 42(12): 4447–4453.

O’Brien, N. and E. Cummins. 2010. Nano-scale pollutants: Fate in Irish surface and drinking water

regulatory systems. Human and Ecological Risk Assessment 16(4): 847–872.

Oberdörster, G., A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, et al..

2005. Principles for characterizing the potential human health effects from exposure to

nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology 2(1): 8.

OECD. 2011. National Acitivities on Life Cycle Assessment of Nanomaterials. Paris.

Olsen, S. and F. Christensen. 2001. Life cycle impact assessment and risk assessment of

chemicals—a methodological comparison. Environmental Impact Assessment Review 21(4),

385-404.

Osterwalder, N., C. Capello, K. Hungerbühler, and W.J. Stark. 2006. Energy consumption during

nanoparticle production: How economic is dry synthesis? Journal of Nanoparticle Research

8(1): 1–9.

Puzyn, T., A. Gajewicz, D. Leszczynska, and J. Leszczynski. 2010. Nanomaterials–the Next Great

Challenge for Qsar Modelers. In Recent Advances in QSAR Studies Methods and Applications,

ed. Tomasz Puzyn, Jerzy Leszczynski, and Mark T. Cronin. Dordrecht Heidelberg London New

York:

Puzyn, T., D. Leszczynska, and J. Leszczynski. 2009. Toward the Development of “Nano‐QSARs”:

Advances and Challenges. Small 5(22): 2494–2509.

Reijnders, L. 2006. Cleaner nanotechnology and hazard reduction of manufactured nanoparticles.

Journal of Cleaner Production 14(2): 124–133. Renn, O. 2008. Risk governance: coping with

uncertainty in a complex world. London: Earthscan.

Roes, A.L., E. Marsili, E. Nieuwlaar, and M.K. Patel. 2007. Environmental and cost assessment of a

polypropylene nanocomposite. Journal of Polymers and the Environment 15(3): 212–226.

Page 89: Life cycle aspects of nanomaterials

63

Roes, A.L., L.B. Tabak, L. Shen, E. Nieuwlaar, and M.K. Patel. 2010. Influence of using nanoobjects

as filler on functionality-based energy use of nanocomposites. Journal of Nanoparticle

Research 12(6): 2011–2028.

Roes, L., M.K. Patel, E. Worrell, and C. Ludwig. 2012. Preliminary evaluation of risks related to

waste incineration of polymer nanocomposites. The Science of the Total Environment 417-

418: 76–86.

Rosenbaum, R., T. Bachmann, L. Swirsky Gold, M.A.J. Huijbregts, O. Jolliet, R. Juraske, A. Koehler, et

al.. 2008. USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors

for human toxicity and freshwater ecotoxicity in life cycle impact assessment. The

International Journal of Life Cycle Assessment 13(7): 532–546.

Royal Society. 2004. Nanoscience and nanotechnologies: opportunities and uncertainties. London.

Salamanca-Buentello, F., D.L. Persad, E.B. Court, D.K. Martin, A.S. Daar, and P.A. Singer. 2005.

Nanotechnology and the developing world. PLoS Medicine 2(5): 0383–0386.

SCENIHR. 2009. Risk assessment of products of nanotechnologies. European Commission Health

and Consumer Protection Directorate-General, DirectorateC— public health and risk

assessment, C7—risk assessment. Brussels.

SCENIHR. 2010. Scientific Basis for the Definition of the Term “Nanomaterial.”

Seager, T.P. and I. Linkov. 2008. Coupling multicriteria decision analysis and life cycle assessment

for nanomaterials. Journal of Industrial Ecology 12(3): 282–285.

Şengül, H. and T.L. Theis. 2011. An environmental impact assessment of quantum dot

photovoltaics (QDPV) from raw material acquisition through use. Journal of Cleaner

Production 19(1): 21–31.

Shatkin, J. 2008. Informing environmental decision making by combining life cycle assessment

and risk analysis. Journal of Industrial Ecology 12(3): 278–281.

Singh, A., H.H. Lou, R.W. Pike, A. Agboola, X. Li, J.R. Hopper, and C.L. Yaws. 2008. Environmental

impact assessment for potential continuous processes for the production of carbon

nanotubes. American Journal of Environmental Sciences 4(5): 522–534.

Som, C., M. Berges, Q. Chaudhry, M. Dusinska, T.F. Fernandes, S.I. Olsen, and B. Nowack. 2010. The

importance of life cycle concepts for the development of safe nanoproducts. Toxicology

269(2): 160–169.

Som, C., N.C. Mueller, T. Sonderer, F. Gottschalk, R. Scholz, and B. Nowack. 2009. Exposure

modeling of engineered nanoparticle. In Nanotechnology 2009: Fabrication, Particles,

Characterization, MEMS, Electronics and Photonics. Cambridge, Massachusetts,: NSTI,

Nanoscience and Technology Inst.

Steinfeldt, M., A. von Gleich, and U. Petschow. 2004a. Nachhaltigkeitseffekte durch Herstellung

und Anwendung nanotechnischer Produkte. Institut für ökologische Wirtschaftsforschung

GmbH, Berlin (Germany).

Steinfeldt, M., U. Petschow, R. Haum, and A. von Gleich. 2004b. Nanotechnology and

sustainability. Schriftenreihe Des IÖW 167: 3.

Sweet, L. and B. Strohm. 2006. Nanotechnology—life-cycle risk management. Human and

Ecological Risk Assessment 12(3): 528–551.

Page 90: Life cycle aspects of nanomaterials

64

Tenner, E. 2001. Nanotechnology and Unintended Consequences. In Societal Implications of

Nanoscience and Nanotechnology, ed. Mihail C. Roco and William Sims Bainbridge, 241–246.

Arlington, Virginia.

UNEP. 2007. Life Cycle Management: A Business Guide to Sustainability. Paris.

UNESCO. 2006. The Ethic and Politics of Nanotechnology. Paris.

Upadhyayula, V.K.K., D.E. Meyer, M.A. Curran, and M.A. Gonzalez. 2012. Life cycle assessment as a

tool to enhance the environmental performance of carbon nanotube products: a review.

Journal of Cleaner Production 26(May 2012): 37–47.

Voet, E. van der. 2002. Substance flow analysis methodology. In A Handbook of Industrial Ecology,

ed. R U Ayres and L W Ayres. Cheltenham, UK: Edward Elgar.

Voet, E. van der, L. van Oers, J.B. Guinée, and H.A. de Haes. 1999. Using SFA indicators to support

environmental policy. Environmental Science and Pollution Research International 6(1): 49–58.

Vorbau, M., L. Hillemann, and M. Stintz. 2009. Method for the characterization of the abrasion

induced nanoparticle release p into air from surface coatings. Journal of Aerosol Science

40(3): 209–217. h

Walser, T., E. Demou, D.J. Lang, and S. Hellweg. 2011. Prospective environmental life cycle

assessment of nanosilver T-shirts. Environmental Science & Technology 45(10): 4570–4578.

Walser, T., L.K. Limbach, R. Brogioli, E. Erismann, L. Flamigni, B. Hattendorf, M. Juchli, et al.. 2012.

Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nature

Nanotechnology 7(8): 520–4.

Woodrow Wilson International Center for Scholars. 2011. Project on Emerging Nanotechnologies.

Page 91: Life cycle aspects of nanomaterials

65

Appendix A

A.1 European Union FP7 Project Duration Link Description Life Cycle Related Publications

NANOSUSTAIN

Development of

sustainable

solutions for

nanotechnology-

based products

based on hazard

characterisation

and LCA

2010-05-01 -

2013-04-30

http://www.nanosustain.eu WP4 - life cycle assessment and prospective technological

assessment

- developing methods for extrapolation and scaling-up

of processes of engineered nanoparticles;

- developing specific exposure models for engineered

nanoparticles;

- assessing positive and negative effects on the

environment during different life cycle stages of

selected nanoproducts;

- developing criteria and guiding principles to foster the

precautionary design of ENMs and guidelines for

improved recyclability;

- testing these guidelines to explore new solutions for

the sustainable use, recycling and final treatment of

selected ENMs.

- Steinfeldt, M. 2012. LCA case studies

of nanotechnology based

applications in the project.

Conference on safe production and

use of nanomaterials: Nanosafe

2012. Grenoble, France. 13 ‐ 15

November 2012.

- Steinfeldt, M. 2013 Life Cycle

Assessment of nanotechnology

based applications. 2nd. QNano

International Conference. Prague,

Czech Republic. 27 February – 1

March 2013

- Steinfeldt, M. LCA case studies of

nanotechnology-based applications

in the project NanoSustain. Safety

Issues and Regulatory Challenges of

Nanomaterials. San Sebastian, Spain.

3rd

- 4th

May 2012.

PROSUITE

Development

and application

of standardized

methodology for

the PROspective

SUstaInability

assessment of

Technologies

2009-11-01

2013-10-31

http://prosuite.org The project goal is “to develop a coherent, scientifically

sound, and broadly accepted methodology for the

sustainability assessment of current and future

technologies over their life cycle, applicable to different

stages of maturity”. It is noted that the PROSUITE

framework and software tools address the whole life cycle

(from a technology’s use of primary materials through to

the production and handling of wastes).

Work packaging 6 contains four case studies. One focuses

on nanotechnology and covers specific application such as:

- Antimicrobial nanoparticles and nanostructured

particles in textiles with particular focus on

occupational and consumer exposure.

- Walser, et al. 2011. Prospective

environmental life cycle assessment

of nanosilver T-shirts. Environmental

Science & Technology 45, 4570–

4578.

- Walser, T; et al., 2012. Persistence of

engineered nanoparticles in a

municipal solid waste incineration

plant. Nature Nanotechnology 2012,

7, 520–524

- Hischier, R &Walser, T, 2012. Life

cycle assessment of engineered

nanomaterials: State of the art and

strategies to overcome existing

Page 92: Life cycle aspects of nanomaterials

66

- Polymer nanocomposites as new engineering

materials

- Electronic devices such as organic light emitting

diodes, field effect transistors and organic

photovoltaics.

gaps. Science of the Total

Environment 2012, 425, 271-282

NANOPOLYTOX

Toxicological

impact of

nanomaterials

derived from

processing,

weathering and

recycling from

polymer

nanocomposites

used in various

industrial

applications

2010-05-01-

2013-04-30

http://www.nanopolytox.eu The main objective is the monitoring of the life cycle of

three families of nanomaterials (carbon nanotubes,

nanoclays and metal oxide nanoparticles) when embedded

in selected polymeric hosts.

Work Package 6 will study the influence of the processing

and recycling of nanomaterials and the weathering of

nanocomposites demonstrators, on the physical, chemical

and toxicological properties of the nanofillers. Predictive

models will be also developed that will be able to provide

the needed information about the evolution of

nanomaterials properties along their life cycle. Life Cycle

Impact Assessment (LCIA) will be performed based on

these predictive models.

Martí Busquets-Fité et al. 2013.

Exploring release and recovery of

nanomaterials from commercial

polymeric nanocomposites . Journal

of Physics: Conference Series 429

012048

NANOHOUSE

Life Cycle of

Nanoparticle-

based Products

used in House

Coating.

2010-01-01-

2013-06-30

http://www-

nanohouse.cea.fr

NanoHouse project covers the whole risk assessment by

evaluating the exposure and the hazard. Through a

combination of knowledge from Life Cycle Thinking and

risk assessment, NanoHouse outlines a holistic and

prospective overview on the potential Environmental

Health and Safety (EHS) impacts of paints containing

Engineered NanoParticles (ENPs) throughout all life stages

of the paints.

- Hischier, R &Walser, T, 2012. Life

cycle assessment of engineered

nanomaterials: State of the art and

strategies to overcome existing

gaps. Science of the Total

Environment 2012, 425, 271-282

NANEX

Development of

Exposure

Scenarios for

Manufactured

Nanomaterials

2009-12-01-

2010-11-30

http://nanex-project.eu Objective4 of NANEX is to collect and review data on

environmental release, risk management measures, and

existing models for estimating environmental release and

exposure during the various life cycle stages of MNMs for

HARNs, mass-produced MNMs and specialised MNMs

- Gottschalk, F., Nowack, B., 2011. The release of engineered nanomaterials to the environment. Journal of Environmental Monitoring 13, 1145–1155.

ENFIRO

Life Cycle

Assessment of

2009-09-01-

2012-11-30

http://www.enfiro.eu LCA case studies on the substitution options for specific

brominated flame retardants, which includes nanoclay-

based flame retardants in printed circuit boards.

Page 93: Life cycle aspects of nanomaterials

67

Environment-

Compatible

Flame

Retardants:

Prototypical Case

Study

Nano Impact Net

European

Network on the

Health and

Environmental

Impact of

Nanomaterials

2008-04-01-

2012-03-31

www.nanoimpactnet.eu NanoImpactNet was a multidisciplinary European network

on the health and environmental impact of nanomaterials.

NanoImpactNet established to create a scientific basis to

ensure the safe and responsible development of

engineered nanoparticles and nanotechnology-based

materials and products, and to support the definition of

regulatory measures and implementation of legislation in

Europe

- Som, C., Berges, M., Chaudhry, Q.,

Dusinska, M., Fernandes, T.F., Olsen,

S.I., Nowack, B., 2010. The

importance of life cycle concepts for

the development of safe

nanoproducts. Toxicology 269, 160–

169.

NANOMICEX

Mitigation of risk

and control of

exposure in

nanotechnology

based inks and

pigments

2012-04-01-

2015-03-31

http://nanomicex.eu One objective of NANOMICEX is the development of novel

methods based on nanoparticle functionalization to reduce

hazards caused by potential nanoparticle emissions during

ink/pigment-based products life cycle. Work package 6

involves the Adaptive Streamlined Life Cycle/Risk

Assessment of nanoparticle-based inks and pigments.

NanoValid

Development of

reference

methods for

hazard

identification,

risk assessment

and LCA of

engineered

nanomaterials

2011-11-01-

2015-10-31

http://www.nanovalid.eu The main objective of NanoValid is the development of

new reference methods and certified reference materials,

including methods for characterization,

detection/quantification, dispersion control and labelling,

as well as hazard identification, exposure and risk

assessment of engineered nanmoaterials.

Work package 4 will evaluate the potential of the methods

to perform hazard and risk assessment and life cycle

analyses of engineered nanmoaterials.

LICARA

Life cycle

approach and

2012-10-01-

2014-09-30

http://www.licara.eu The specific objectives of LICARA include:

the development of a framework for LCA that properly

addresses risks in data scarce situations, and the

application of the life cycle approach in case studies.

Page 94: Life cycle aspects of nanomaterials

68

human risk

impact

assessment,

product

stewardship and

stakeholder

risk/benefit

communication

of nanomaterials

Work Package 4 Life cycle Analysis: Comparison of products

based on nanomaterials with conventional products in

order to illustrate their risks and benefits for the

environment. Determination of the environmental and

socio-economic impact of these products.

NanoCelluComp

The development

of very high-

performance

bioderived

composite

materials of

cellulose

nanofibres and

polysaccharides

2011-03-01-

2014-02-28

http://www.nanocellucomp

.eu

The aim of NanoCelluComp is to develop a technology to

utilise the high mechanical performance of cellulose

nanofibres, obtained from food processing waste streams,

combined with bioderived matrix materials, for the

manufacture of 100% bio-derived high performance

composite materials that will replace randomly oriented

and unidirectional glass and carbon fibre reinforced

plastics.

The environmental sustainability benefits and risks will be

quantified throughout the full product life cycle for selected

products, where the new material may substitute for carbon

fibre reinforced plastics and glass fibre reinforced plastics.

Environmental health and safety issues will be considered

for the full product life cycle of the selected products.

SunPap

Scale-up

Nanoparticles in

modern

papermaking

2009-07-01-

2012-09-30

http://sunpap.vtt.fi SunPap aims to strengthen the European paper industry’s

competitiveness by means of nanocellulose based

processes to provide radical product performance

improvements, new efficient manufacturing methods and

the introduction of new added value functionalities.

LCA was used to assess the environmental impact of Nano

fibrillated cellulose coated board, compared to

conventional board.

Hohenthal et al. 2012. Final assessment

of nano enhanced new products. VTT

Page 95: Life cycle aspects of nanomaterials

69

APPENDIX B

Figure B.1: European Commission, Joint Research Centre, Institute for Environment and Sustainability,

Life Cycle Thinking and Assessment

Source: European Commission, 2010. Life Cycle Thinking and Assessment - Our thinking - life cycle thinking.

Available: http://lct.jrc.ec.europa.eu/index_jrc [Accessed: 20/03/2013]

Figure B.2: Joint Research Centre, Institute for Environment and Sustainability

Source: European Commission, n.d. Joint Research Centre, Institute for Environment and Sustainability, Life Cycle

Thinking and Assessment. Available: http://ies.jrc.ec.europa.eu/our-activities/support-for-eu-policies/life-cycle-

thinking-and-assessment.html [Accessed: 20/03/2013]

Page 96: Life cycle aspects of nanomaterials

70

Figure B.3: United States Environmental Protection Agency

Source: United States Environmental Protection Agency, n.d. Risk Management Sustainable Technology, Life Cycle

Perspective. Available: http://www.epa.gov/nrmrl/std/lifecycle.html [Accessed: 20/03/2013]

Figure B.4: Mobile phone life cycle

Source: UNEP/SETAC, 2009. Life Cycle Management: How business uses it to decrease footprint, create

opportunities and make value chains more sustainable. United Nations Environmental Programme/Society of

Environmental Toxicology and Chemistry - Life Cycle Initiative. P.4

Page 97: Life cycle aspects of nanomaterials

71

Figure B.4: The life cycle model

Source: Baumann, H., Tillman, A.M., 2004. The Hitch Hiker’s Guide to LCA. Studentlitteratur, Lund. P. 20

Figure B.4: The life cycle perspective

Source: Rex, E., 2008. Marketing for Life Cycle Thinking. PhD Thesis. Environmental Systems Analysis. Department

of Energy and Environment, Chalmers University of Technology Göteborg, Sweden. Page 3

Raw material

acquisition

Processes

Use

Waste

Management

Manufacture

Transports

Resources, e.g.

raw materials

energy

land resources

Emissions to

Air

Water

ground