light scattering coupled to refractive index and uv ......yale school of medicine ... • flow mode...

26
Light Scattering Coupled to Refractive Index and UV Absorption Measurements in Studies of Membrane Proteins Absorption Measurements in Studies of Membrane Proteins Homo- and Hetero Associations Ewa Folta-Stogniew Biophysics Resource; Keck Laboratory Yale School of Medicine

Upload: others

Post on 21-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Light Scattering Coupled to Refractive Index and UV Absorption Measurements in Studies of Membrane ProteinsAbsorption Measurements in Studies of Membrane Proteins

    Homo- and Hetero Associations

    Ewa Folta-Stogniew

    Biophysics Resource; Keck Laboratory Yale School of Medicine

  • • Light Scattering Technologies

    – Static and dynamic light scattering

    – Parameters derived from SLS and DLS measurements

    • Flow Mode Light Scattering Applications in Studies of Membrane Proteins

    – Determination of an oligomeric state of membrane proteins from SEC-LS/UV/RI measurement

    – Determination of complex formation and stoichiometry from SEC-LS measurements

    • Capabilities and limitation of SEC-LS/RI/UV measurements

  • Li ht S tt i E i tLight Scattering Experiments

    sample cell

    Monochromatic

    Laser Light Io Icellg o I1

    I

    2

    detector at angle

    ComputerI

    detector at angle 2

  • Light Scattering Experiments

    • Static (classical)time-averaged intensity of scattered light

    • Dynamic (quasielastic)fluctuation of intensity of scattered light with time

    Parameters derived: Parameters derived:

    light

    Measurements:• batch mode a a e e s de ed

    • Molar Mass (weight-average) accuracy ~5%

    • (1/2) root mean square radii

    for (1/2)> (20) ~ 15 nm

    a a e e s de ed• DT translation diffusion coefficient

    • Rh hydrodynamic radius (Stokes radius) Uncertainty of ~10% for monodisperse sample

    • “in-line” mode combined with a fractionation step,

    i.e. chromatography, mainly Size Exclusion Chromatography, Flow Field Fractionation

    ( g ) ( )

    • A2 second virial coefficient

    Rayleigh-Debye-Zimm formalism Stokes-Einstein

    cAPMR

    cKw 2

    2)(

    1)(

    *

    hT R

    kTD6

    Rayleigh-Debye-Zimm formalism Stokes-Einstein

    D t l ti l diff i ffi i tR() Rayleigh ratio (excess scattered light)c sample concentration (g/ml)Mw weight-average molecular weight (molar mass)A2 second virial coefficient (ml-mol/g2)P() form factor (angular dependence)K optical constant [4π2n2 (dn/dc)2 /(λo4NA)]

    DT translational diffusion coefficientk Boltzmann constantT temperatureRh radiusη solvent viscosity

  • Typical SEC(AFFF); MALLS system

    columnSEC

    sample

    waste or

    collectionsamplesample

    waste or

    collection

    waste or

    collectionor AFFF

    HPLC UV LS RI HPLC UV/Vis LS RI FL

    system detector detector

    DLS+SLS

    detectorsystem detector detector

    DLS+SLS

    detector detector

    Computer 0.1 m pre -filtered buffer

    0.1 m “in -line” filter Computer 0.1 m pre -filtered buffer

    0.1 m “in -line” filter

  • Three Detector monitoring

    Define Peaks

    LS UV QELS dRI

    e

    1.0

    rela

    tive

    scal

    e

    0.5

    volume (mL)0.0 5.0 10.0 15.0 20.0 25.0

    0.0

    RI UV at 280 nm LS at 90°

    ( )

  • cAPMR

    cK22)(

    1)(

    *

    Rayleigh-Debye-Zimm formalism

    PMR w 2)()(

    R() Rayleigh ratio (excess scattered light)c sample concentration (g/ml)Mw weight-average molecular weight (molar mass)A2 second virial coefficient (ml mol/g2)

    1/(Mw)control graph

    A2 second virial coefficient (ml-mol/g2)P() form factor (angular dependence)K optical constant [4π2n2 (dn/dc)2 /(λo4NA)]

    res ults graph

    -51.495x 10

    -51.500x 10

    )(*RcK

    LS dRI

    e

    1.0

    K*c

    /R(t

    heta

    )

    -51.485x 10

    -51.490x 10

    rela

    tive

    scal

    e

    0.5

    s in ²( th e ta/2)0.0 0.2 0.4 0.6 0.8

    volum e (m L)12.0 14.0 16.0 18.0

    0.01 1

  • SEC/LS results: Molar Mass Distribution Plot

    molar mass vs. volume

    BSA S200 110708a P N

    BSA

    Monomer: 66 kDa

    BSA_S200_110708a_P_N

    ol)

    51.5x10 Weight-average molar mass

    Measured every 2 μl

    mol

    ar m

    ass

    (g/m

    o

    45.0x10

    51.0x10

    volume (mL)0.0 5.0 10.0 15.0 20.0 25.0

    m

    0.0

    UV trace; A280nm(RI trace)

    volume (mL)

  • Rayleigh-Debye-Zimm formalismProtein 47 kDa (monomer) well characterized porin detergent

    cAPMR

    cKw 2

    2)(

    1)(

    *

    R() Rayleigh ratio (excess scattered light)c sample concentration (g/ml)

    detergent

    dodecyl maltoside (C12M) MW = 511 g/mol

    0.5g/L i.e. 0.05%

    CMC = 0.008% micelle size 50-70 kDa

    p (g/ )Mw weight-average molecular weight (molar mass)A2 second virial coefficient (ml-mol/g2)P() form factor (angular dependence)K optical constant [4π2n2 (dn/dc)2 /(λo4NA)]

    Protein+lipid+detergent

    0.8Peak ID - PRNC__DC

    90°AUX1AUX2

    Protein+lipid+detergentProtein+lipid+detergent

    0.4

    0.6

    90°

    Det

    ecto

    r

    AUX2

    empty micelleempty micelle

    -0.2

    0.0

    0.2

    AU

    X, 9

    LS @ 90 degree

    RI

    UV @ 280 nm

    Protein+det.+lipids

    Protein+det.+lipids

    Protein

    10.0 12.0 14.0 16.0 18.0 20.0Volume (mL)

  • Determination of the oligomeric state of modified proteins from SEC-LS/UV/RI analysis

    1. Glycosylated proteins

    2. Proteins conjugated with polyethylene glycol

    3. Membrane protein present as a complex with lipids and detergents

    Input: Results:

    • Polypeptide sequence

    • Chemical nature of the modifier

    • Oligomeric state of the polypeptide

    • Extend of modification (grams of modifier /gram of polypeptide)

    “three detector method”

    Yutaro Hayashi, Hideo Matsui and Toshio Takagi (1989) Methods Enzymol,172:514-28Jie Wen, Tsutomu Arakawa and John S. Philo (1996) Anal Biochem, 240:155-66Ewa Folta-Stogniew (2006) Methods in Molecular Biology: New and Emerging Proteomics Techniques, pp. 97–112

  • Determination of the oligomeric state of modified proteins from SEC-LS/UV/RI analysis

    ))((* UVLSkMW MWp Molecular Weight (polypeptide)2)(RIpMW

    ε extinction coefficient

    LS light scattering intensity

    UV absorbance (ε)

    RI refractive index change

    k calibration constant

    “three detector method”

    Yutaro Hayashi, Hideo Matsui and Toshio Takagi (1989) Methods Enzymol,172:514-28Jie Wen, Tsutomu Arakawa and John S. Philo (1996) Anal Biochem, 240:155-66Ewa Folta-Stogniew (2006) Methods in Molecular Biology: New and Emerging Proteomics Techniques, pp. 97–112

  • Determination of the oligomeric state of detergent solubilized proteins:

    polypeptide+lipids+detergent complexes of unknown detergent+lipids content

    Proteins: 47 kDa porin LamB trimer = 141 kDa33 kDa hemolysin -HL heptamer = 231 kDa

    detergent

    dodecyl maltoside (C12M) MW = 511 g/mol

    0.5g/L i.e. 0.05%

    CMC = 0.008% micelle size 50-70 kDa

  • Protein 47 kDa (monomer) well characterized porin detergent

    Rayleigh-Debye-Zimm formalism

    detergent

    dodecyl maltoside (C12M) MW = 511 g/mol

    0.5g/L i.e. 0.05%

    CMC = 0.008% micelle size 50-70 kDa

    cAPMR

    cKw 2

    2)(

    1)(

    *

    R() Rayleigh ratio (excess scattered light)c sample concentration (g/ml)p (g/ )Mw weight-average molecular weight (molar mass)A2 second virial coefficient (ml-mol/g2)P() form factor (angular dependence)K optical constant [4π2n2 (dn/dc)2 /(λo4NA)]

    0.8Peak ID - PRNC__DC

    90°AUX1AUX2

    Protein+lipid+detergent

    0.4

    0.6

    90°

    Det

    ecto

    r

    AUX2

    empty micelle

    -0.2

    0.0

    0.2

    AU

    X, 9

    LS @ 90 degree

    RI

    UV @ 280 nm

    Protein+det.+lipids

    Protein+det.+lipids

    Protein

    10.0 12.0 14.0 16.0 18.0 20.0Volume (mL)

  • 475 kDa 220 kDa 66 kDa 43 kDa

    1.2

    ]

    300A280 LamBMMpp LamB

    A 280 0.8

    Mpp

    [kD

    a

    200

    A

    0.4 MM

    100

    12 14 16 18 20 220.0 0

    elution volume [mL]

  • porin monomer = 47 kDa

    MW = 149 3 kDa trimer 51 6 10

    Molar Mass vs. Volume PRNB__DCPRNC__DC51.6x10

    __PRNA__DC

    51.2x10

    (g/m

    ol)

    48.0x10

    Mol

    ar M

    ass

    (

    44.0x10

    0.010.0 12.0 14.0 16.0 18.0 20.0

    Volume (mL)

  • Determination of the oligomeric state of detergent solubilized proteins:

    polypeptide+lipids+detergent complexes of unknown detergent+lipids content

    Proteins: 47 kDa porin LamB trimer = 141 kDa

    33 kDa hemolysin -HL heptamer = 231 kDa

    detergent

    dodecyl maltoside (C12M) MW = 511 g/mol

    0.5g/L i.e. 0.05%

    CMC = 0.008% micelle size 50-70 kDa

  • monomer = 33 kDa

    MW = 225 13 kDa heptamer

    3001.2 MMpp -HLA280 HL

    Mpp

    [kD

    a]

    200

    A28

    0 0.8280

    MM

    100

    A

    0.4

    l ti l [ L]

    12 14 16 18 20 2200.0

    elution volume [mL]

  • Proteins: 47 kDa porin LamB trimer = 141±3 kDa (141 kDa)

    33 kDa hemolysin HL heptamer = 215±20 kDa (231 kDa)

    475 kDa 220 kDa 66 kDa 43 kDa

    33 kDa hemolysin -HL heptamer = 215±20 kDa (231 kDa)

    475 kDa 220 kDa 66 kDa 43 kDa

    1.2

    Da]

    300A280 LamBMMpp LamBMMpp -HL

    A28

    0

    0.4

    0.8

    MM

    pp [k

    D

    100

    200A280 HL

    12 14 16 18 20 220.0 0

    elution volume [mL]

    12 14 16 18 20 22

  • Three Detector Method

    allows determination of mass of detergent/lipids bound to a polypeptide

    )()(

    2 UVRIAk

    dcdn

    app

    Protein+lipid+detergent

    )(

    )('UV

    RIKdcdn

    dcdn

    dcdn

    ldppapp

    δ

    Protein

    is mass of detergent and/or lipids per 1 gram of polypeptide

    Assumption : detergent does not produce any signal in UV

  • MWcomplex = 285 kDa

    MWpolypeptide = 141 kDa

    MWcomplex = 271 kDa

    MWpolypeptide = 215 kDa

    475 kDa 220 kDa 66 kDa 43 kDa

    = 1.02 lipids per 1 gram of polypeptide = 0.26 lipids per 1 gram of polypeptide

    1 2 300A280 LamB

    280 0.8

    1.2

    ex [k

    Da]

    200

    300280MMcomplex LamBMMcomplex -HLA280 HL

    = 1.02

    A2

    0.4

    MM

    com

    pl

    100 = 0.26

    elution volume [mL]

    12 14 16 18 20 220.0 0

    elution volume [mL]

    Yernool D, Boudker O., Folta-Stogniew E., and Gouaux E. (2003) Trimeric subunit stoichiometry of the glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus. Biochemistry 42: 12981-12988

  • Multiple oligomeric states for reconstituted KtrAB K+ Transporter

    KtrAB ion transporter:

    complex of KtrB membrane protein and KtrA RCK domain (regulating and conductance of K+)

    KtrB: integral membrane protein isolated in the presence of detergent (DDM) as a l tid d t t(li id) lpolypeptide:detergent(lipid) complex

    0.8

    1.0

    250

    300220 156 66 kDa

    0.8

    1.0

    250

    300220 156 66 kDa

    A 280

    0.4

    0.6

    MW

    [kD

    a]

    100

    150

    200

    absorbace at 280 nmpolypeptide+detergent+lipids polypeptideA 2

    800.4

    0.6

    MW

    [kD

    a]

    100

    150

    200

    absorbace at 280 nmpolypeptide+detergent+lipids polypeptide

    V l [ L]12 14 16 18 20

    0.0

    0.2

    0

    50

    V l [ L]12 14 16 18 20

    0.0

    0.2

    0

    50

    Volume [mL]

    Protein Polypeptide[kDa]

    Oligomeric state

    Full complex

    [kDa]

    Grams of detergent/lipids per gram of polypeptide

    Volume [mL]

    Protein Polypeptide[kDa]

    Oligomeric state

    Full complex

    [kDa]

    Grams of detergent/lipids per gram of polypeptide[kDa] gram of polypeptide

    KtrB(monomer 49kDa) 98 dimer 238 1.4

    Albright R A, Ibar J. L. V., Kim C. U., Gruner S. M., and Morais-Cabral J. H. (2006) The RCK Domain of the KtrAB K+ Transporter: Multiple Conformations of an Octameric Ring. Cell 126: 1147-1159

    [kDa] gram of polypeptide

    KtrB(monomer 49kDa) 98 dimer 238 1.4

  • Multiple oligomeric states for reconstituted KtrAB K+ Transporter

    KtrAB ion transporter:

    complex of KtrB membrane protein (49 kDa) and KtrA RCK domain (regulating and conductance of K+)

    KtrA RCK domain (16 kDa) : basic assembly dimer, higher order oligomers: tetramer or octamer

    0

    0.8

    1.2

    s [k

    Da]

    100

    150

    220 kDa 66 kDa

    10 12 14 16

    A28

    0

    0.0

    0.4

    Mol

    ar M

    ass

    0

    50

    100

    elution volume [ml]10 12 14 16

    0.4

    0.5

    a]

    150

    220 kDa 66 kDa

    A28

    0

    0.1

    0.2

    0.3

    Mol

    ar M

    ass

    [kD

    a

    50

    100A280MMppMMcomplex

    Albright R A, Ibar J. L. V., Kim C. U., Gruner S. M., and Morais-Cabral J. H. (2006) The RCK Domain of the KtrAB K+ Transporter: Multiple Conformations of an Octameric Ring. Cell 126: 1147-1159

    elution volume [ml]14 15 16 17 18

    0.0 0Buffer + DDM

  • Multiple oligomeric states for reconstituted KtrAB K+ Transporter

    KtrAB ion transporter

    complex : KtrAB octameric KtrA + dimeric KtrB (8:2) model polypeptide = 228 kDaoctameric KtrA + 2x dimeric KtrB (8:4) model polypeptide = 325 kDa

    complexpolypeptideKtrA Abs 280 nm

    400

    5001.0

    KtrB Abs 280nmKtrAB Abs 280nm

    octameric KtrA + 2x dimeric KtrB (8:4) model polypeptide = 325 kDa

    Mw

    (kD

    a)

    100

    200

    300

    A 280 0.5

    octameric KtrA + dimeric KtrB (8:2) model polypeptide = 228 kDa

    polypeptide = 325 kDa

    Elution volume (ml)12 14 16 18

    00.0

    Buffer: 25 mM Tris, 150 mM NaCl, 1 mM DTT, 1 mM NADH, 1 mM DDM

  • Multiple oligomeric states for reconstituted KtrAB K+ Transporter

    KtrAB ion transporter

    complex : KtrAB octameric KtrA + dimeric KtrB (8:2) model polypeptide = 228 kDaoctameric KtrA + 2x dimeric KtrB (8:4) model polypeptide = 325 kDa

    1 0 Dimer:octamer=0 4

    dimer:octamerKtrB:KtrA

    complex Elution volume

    (ml)

    Total mass of complex

    (kDa)

    Poly-peptide(kDa)

    lipids(kDa)

    A28

    0

    0.5

    1.0 Dimer:octamer=0.4Dimer:octamer=0.9Dimer:octamer=2.2Dimer:octamer=3.4

    0.4 8:2 14.23 486 228 256

    0.9 8:2 14.05 521 240 281

    2.2 8:4 13.99 552 302 261

    3.7 8:4 13.91 560 299 251

    A

    0.0

    dimer:octamerKtrB:KtrA

    ExcessKtrB

    Elution volume

    8:2 model (228 kDa) correct model ?

    8:4 model (325 kDa) correct model ?

    Elution volume (ml)12 14 16 18

    KtrB:KtrA KtrB dimer?

    volume (ml)

    model ? model ?

    computed MW for complex (kDa)

    difference from model(kDa)

    computed MW for complex (kDa)

    difference from model(kDa)

    0.4 14.23 228 0 Yes 250 -750.4 14.23 228 0 Yes 250 75

    0.9 14.05 240 12 Yes 264 -61

    2.2 Yes 13.99 274 46 302 -24 Yes

    3.7 Yes 13.91 271 43 299 -27 Yes

  • Three detector approach

    • fast and accurate determination of oligomeric state of detergent solubilized membrane g gproteins

    • only protein sequence needed for determination of association state

    • the amount of detergent and lipids associated with the polypeptide can be determined from a single SEC-LS/RI/UV analysis

    • suitable for variety of detergentsy g

    • can be used at wide range of protein concentrations from ~ 10μg/ml to >10mg/ml (correction for non-ideality)

  • Ken Williams

    Director of W.M. Keck Biotechnology Resource Laboratory at Yale University School of Medicine

    NIH

    1S10 RR014776 01 “SEC/L Li ht S tt i I t t ti ”1S10 RR014776-01 “SEC/Laser Light Scattering Instrumentation” 1S10 RR023748-01 "Asymmetric flow FFF and Composition Gradient/Light Scattering System"

    Users of SEC/LS Service

    Light Scattering Services contributed to> 40 publications

    Full list at: http://info.med.yale.edu/wmkeck/biophysics/publications_biophysics_resource.pdf

    http://info.med.yale.edu/wmkeck/biophysics

    [email protected]