linear algebraic groups and their lie algebras

82
Linear algebraic groups and their Lie algebras Daniel Miller Fall 2014 Contents 1 In tr oduct ion  2 1.1 Disc laimer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Notationa l conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Main re fe rences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 A bes tiary of e xample s  . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Coordinate rings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Structure theory for line ar alg ebraic groups  . . . . . . . . . . . . . . 6 2 Lie algebras  7 2.1 De nition and rst properti es  . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The main exampl es . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Homomorphisms and the adjoint repre sen tation  . . . . . . . . . . . . 8 2.4 T ang ent spa ce s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Functor s o f points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Ane group sc hemes an d Hopf algebras  . . . . . . . . . . . . . . . . 12 2.7 Examples of group sc hemes  . . . . . . . . . . . . . . . . . . . . . . . 13 2.8 Lie algebra o f an alg ebraic group  . . . . . . . . . . . . . . . . . . . . 14 3 Solvabl e groups, unipot en t group s, and tori  19 3.1 One-dime nsi ona l groups  . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Solv able gr oups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Quotients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Unipotent groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Review of canonical lt rat ion  . . . . . . . . . . . . . . . . . . . . . . 27 3.6 Jordan decomposition  . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.7 Diagonalizable gro ups  . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.8 T ori  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Semisi mple gr oups  37 4.1 Quotients rev isited    . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Centralizers, normalizers, and transport er sc heme s  . . . . . . . . . . 39 4.3 Bo re l subg roups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1

Upload: daniel-miller

Post on 03-Mar-2016

54 views

Category:

Documents


0 download

DESCRIPTION

Notes from a course at Cornell

TRANSCRIPT

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 1/81

Linear algebraic groups and their Lie algebras

Daniel Miller

Fall 2014

Contents

1 Introduction   2

1.1 Disclaimer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Notational conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Main references   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.4 A bestiary of examples   . . . . . . . . . . . . . . . . . . . . . . . . . . 31.5 Coordinate rings   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.6 Structure theory for linear algebraic groups   . . . . . . . . . . . . . . 6

2 Lie algebras   7

2.1 Definition and first properties   . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The main examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.3 Homomorphisms and the adjoint representation   . . . . . . . . . . . . 82.4 Tangent spaces   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.5 Functors of points   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.6 Affine group schemes and Hopf algebras   . . . . . . . . . . . . . . . . 122.7 Examples of group schemes   . . . . . . . . . . . . . . . . . . . . . . . 132.8 Lie algebra of an algebraic group   . . . . . . . . . . . . . . . . . . . . 14

3 Solvable groups, unipotent groups, and tori   19

3.1 One-dimensional groups   . . . . . . . . . . . . . . . . . . . . . . . . . 203.2 Solvable groups   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.3 Quotients   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.4 Unipotent groups   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.5 Review of canonical filtration   . . . . . . . . . . . . . . . . . . . . . . 273.6 Jordan decomposition   . . . . . . . . . . . . . . . . . . . . . . . . . . 283.7 Diagonalizable groups   . . . . . . . . . . . . . . . . . . . . . . . . . . 303.8 Tori   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Semisimple groups   374.1 Quotients revisited     . . . . . . . . . . . . . . . . . . . . . . . . . . . 374.2 Centralizers, normalizers, and transporter schemes   . . . . . . . . . . 394.3 Borel subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 2/81

Linear algebraic groups    2

4.4 Maximal tori   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424.5 Root systems   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.6 Classification of root systems   . . . . . . . . . . . . . . . . . . . . . . 474.7 Orthogonal and symplectic groups   . . . . . . . . . . . . . . . . . . . 514.8 Classification of split semisimple groups   . . . . . . . . . . . . . . . . 53

5 Reductive groups   55

5.1 Root data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565.2 Classification of reductive groups   . . . . . . . . . . . . . . . . . . . . 575.3 Chevalley-Demazure group schemes . . . . . . . . . . . . . . . . . . . 59

6 Special topics   60

6.1 Borel-Weil theorem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606.2 Tannakian categories   . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Automorphisms of semisimple Lie algebras . . . . . . . . . . . . . . . 666.4 Exceptional isomorphisms   . . . . . . . . . . . . . . . . . . . . . . . . 676.5 Constructing some exceptional groups   . . . . . . . . . . . . . . . . . 676.6 Spin groups   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696.7 Differential Galois theory   . . . . . . . . . . . . . . . . . . . . . . . . 706.8 Universal enveloping algebras and the Poincare-Birkhoff-Witt theorem   716.9 Forms of algebraic groups   . . . . . . . . . . . . . . . . . . . . . . . . 726.10 Arithmetic subgroups   . . . . . . . . . . . . . . . . . . . . . . . . . . 746.11 Finite simple groups of Lie type . . . . . . . . . . . . . . . . . . . . . 76

References   79

1 Introduction

The latest version of these notes can be found online at  http://www.math.cornell.edu/~dkmiller/bin/6490.pdf. Comments and corrections are appreciated.

1.1 Disclaimer

These notes originated in the course MATH 6490: Linear algebraic groups and theirLie algebras, taught by David Zywina at Cornell University. However, the noteshave been substantially modified since then, and are not an exact reflection of thecontent and style of the original lectures. In particular, the notes often switch froma somewhat elementary approach to a more sheaf-theoretic approach. Any errorsare solely the fault of the author.

1.2 Notational conventions

We follow Bourbaki in writing N, Z, Q. . . for the natural numbers, integers, rationals,. . . . The natural numbers are N = {1, 2, . . .}.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 3/81

Linear algebraic groups    3

If  A  is a commutative ring,  M   is an  A-module, and  a ∈ A, we write  M/a   forM/(aM ). In particular,  A/a is the quotient of  A  by the ideal generated by  a. Allabelian groups will be treated as  Z-modules. So  A  is an abelian group and n ∈ Z,the quotient  A/n means A/n · A even if  A is written multiplicatively.

The notation  X /S  will mean “X   is a scheme over  S .” If  S  = Spec(A), we will

write X /A to mean that  X  is a scheme over Spec(A).We write   tx   for the transpose of a matrix  x.Examples are closed with a triangle  .Content that can be skipped will be delimited by a star  . Usually this material

will be much more advanced.

1.3 Main references

The standard texts are  [Bor91;  Hum75;  Spr09]. In these, the requisite algebraic

geometry is done from scratch in an archaic language. A good reference for modern(scheme-theoretic) algebraic geometry is   [Har77], and a (very abstract) modernreference for algebraic groups is the three volumes on group schemes  [SGA 3I; SGA3II; SGA 3III ] from the Seminaire de Geometrie Algebrique . A source lying somewhatin the middle is Jantzen’s book  [Jan03].

1.4 A bestiary of examples

Let  k  be an algebraically closed field whose characteristic is  not   2. For example,

k  could be  C  or  F p(t). For now, we define a  linear algebraic group   over k  to be asubgroup G ⊂ GLn(k) defined by polynomial equations.

Example 1.4.1  (General linear).  The archetypal example of an algebraic group isGLn(k) = {g ∈ Mn(k) : g  is invertible}. As a subset of  GLn(k), this is defined bythe empty set of polynomial equations.  

Example 1.4.2  (Special linear).   Let  SLn(k) = {g ∈ GLn(k) : det(g) = 1}. This isdefined by the equation det(g) = 1.  

Example 1.4.3  (Orthogonal).   Let  On(k) = {

g ∈

 GLn(k) : g tg  = 1}

. This is cutout by the equations

nj=1

gijgkj  = δ ik

for 1 i, k n.  

Example 1.4.4   (Special orthogonal).  This is SOn(k) = On(k) ∩ SLn(k).  

Example 1.4.5.  This group doesn’t have a special name, but for the moment wewill write  U n(k) for the group of strictly upper triangular matrices:

U n(k) =

1   · · · ∗. . .

  ...1

⊂ GLn(k).

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 4/81

Linear algebraic groups    4

Recall that a matrix  g ∈ GLn(k) is  unipotent   if (g − 1)m = 0 for some  m 1. Allelements of  U n(k) are unipotent. The group  U n(k) is defined by the equations

{gij  = 0 for  j < i, gii  = 1}.

Example 1.4.6   (Multiplicative).   We write   Gm(k) =   k× for the multiplicativegroup of  k  with its obvious group structure. Note that  Gm = GL(1).  

Example 1.4.7   (Additive).   Write   Ga(k) =  k, with its additive group structure.

There is a natural isomorphism ϕ :  Ga∼−→ U 2  given by  ϕ(x) =

1   x

1

. Since

1   x

11   y

1 = 1   x + y

1 ,

this is a group homomorphism, and it is easy to see that  ϕ is an isomorphism of theunderlying varieties.  

Example 1.4.8.   For any  n    0,   Gna (k) =  kn with the usual addition is a linear

algebraic group. We could embed it into GL2n(k) via 2×2 blocks and the isomorphismGa

∼−→ U 2   in Example 1.4.7.  

Example 1.4.9  (Tori).   For any n 0, we have a  torus  of rank  n, namely

T (k) =

∗. . .

⊂ GLn(k).

This is clearly isomorphic to  Gnm(k). We call any linear algebraic group isomorphic

to some  Gnm  a torus.  

This list almost exhausts the class of simple algebraic groups over an algebraically

closed field. All of these groups make sense over an arbitrary field. But over non-algebraically closed fields (or even base rings that are not fields) thinking of algebraicgroups in terms of their sets of points doesn’t work very well.

1.5 Coordinate rings

The standard references [Bor91; Hum75; Spr09] all treat algebraic groups in termsof their sets of points in an algebraically closed field. This leads to convolutedarguments, and (sometimes) theorems that are actually wrong. It is better to use

schemes. Since we will (almost) never use non-affine schemes, we can study algebraicgroups via their coordinate rings.

Example 1.5.1.   Consider  G =  GLn(k). For g = (gij) ∈ Mn(k), we have  g ∈ G  if and only if  det(g) = 0. But this isn’t an honest algebraic equation. We can remedy

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 5/81

Linear algebraic groups    5

this by noting that det(g) = 0 if and only if there exists  y ∈ k  such that det(g) ·y = 1.Thus we can define the  coordinate ring   k[G] of  G, as

k[G] = k[xij , y]/(det(xij)y − 1).

For   k-algebras   A, B, write   homk(A, B) for the set of   k-algebra homomorphismsA → B. There is a natural identification

homk(k[G], k) = GLn(k).

For  ϕ :  k[G] → k, put  gij  = ϕ(xij) and  b =  ϕ(y). Then  ϕ  is well-defined exactly if det(g) · b  = 1. So  ϕ   is uniquely determined by the choice of an invertible matrixg ∈ GLn(k). Since  b is determined by  g  and  g  can be chosen arbitrarily in  GLn(k),this correspondence is a bijection. So in some sense,  k[G] recovers GLn(k).  

Now let  k  be an arbitrary field. For concreteness, you could think of one of  Q,R,  C, or  F p. Put  A =  k[xij , y]/(det(xij)y − 1), and define  GLn(R) = homk(A, R)for any  k-algebra  R. We will think of “GL(n)/k” as  Spec(A), which is a topologicalspace with structure sheaf (essentially)  A. The punchline is that the coordinate ringk[G] of an algebraic group  G  determines everything we need to know about  G.

Example 1.5.2.   Let k be a field not of characteristic 2. For d ∈ k×, let Gd ⊂ A2/k be

the subscheme cut out by x2−dy2 = 1. In other words, k[Gd] = k[x, y]/(x2−dy2 −1).The group operation is

(x1, y1) · (x2, y2) = (x1x2 + dy1y2, x1y2 + x2y1).

We would like to realize Gd  as a matrix group. Consider the map  ϕd  : Gd → GL(2)/k

given by (x, y) →

x dyy x

. As an exercise, check that this is an isomorphism

between Gd  and the subgroup {g11 = g22, x12 = dx21}  of GL(2)/k.

If  k = k, then consider the composite of  Gd  → GL(2)/k∼−→ GL(2)/k, the second

map being given by

g →   √ 

d1 g

  √ d

1 −1

.

It sends (x, y) ∈   Gd   to

  a b

√ d

b√ 

d a

. This has the same image as   ϕ1   :   G1 →

GL(2)/k. So if  k = k, then  Gd  G1.  

 Write  Ad   =  k[x]/(x2 − d). A more conceptual definition of  Gd   is that it isthe restriction of scalars  Gd  = RAd/k Gm. That is, for any  k-algebra  A, we haveGd(A) = Gm(A ⊗k Ad).  

Example 1.5.3.   Set k  = R. We claim that G1  G−1. We give a topological proof.The group  G1(R) ⊂  A2(R) is cut out by  x2 − y2 = 1, hence non-compact. ButG−1(R) = {x2 + y2 = 1}   is compact. Thus  G1  G−1   over  R. But we have seenthat  G−1  G1  “over  C.” As an exercise, convince yourself that  G1  Gm.  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 6/81

Linear algebraic groups    6

It turns out that “twists of   Gm   over   k   up to isomorphism” are in bijectivecorrespondence with  k×/2, via the correspondence  d → Gd.

This is easy to see. The k-forms of Gm is in natural bijection with H1(k, Aut Gm) =H1(k, Z/2). Kummer theory tells us that H1(k, Z/2) = k×/2.  

1.6 Structure theory for linear algebraic groups

Let G be linear algebraic group over  k. There is a filtration of normal subgroups

G

∪   finite

connected   G◦

∪   semisimple

solvable   RG∪   torus

unipotent   RuG

∪1

reductive

Here, G◦ is the  identity component  (for the Zariski topology) of  G. The quotientπ0(G) =  G/G◦ is a finite group. We write RG   for the  radical   of  G, namely themaximal smooth connected solvable normal subgroup of  G. Finally,

 RuG   is the

unipotent radical   of  G, namely the largest smooth connected unipotent subgroupof  G. The quotient  G◦/RG  is semisimple, and the quotient  G◦/RuG  is reductive.In general, we say a connected algebraic group  G   is  semisimple   if  RG  = 1, andreductive   if  RuG = 1.

We’ve seen examples of tori and unipotent groups, and everybody knows plentyof finite groups. Here is a more direct definition of semisimple groups that allows usto give some basic examples.

Example 1.6.1 (Semisimple).   Let k  = C, and let G  be a connected linear algebraicgroup over  k. We say that  G  is  simple  if it is non-commutative, and has no propernontrivial closed normal subgroups. We say G   is  almost simple   if the only suchsubgroups are finite.

For example,  SL(2) is almost simple, because its only nontrivial closed normalsubgroup is {±1}.

A group  G is semisimple  if we have an isogeny  G1 × · · · × Gr → G  with the  Gi

almost simple. Here an  isogeny  is a surjection with finite kernel.  

Over  C, the almost simple groups (up to isogeny) are:

label group dimensionAn  (n 1) SL(n + 1)   n2 − 1Bn  (n 2) SO(2n + 1)   n(2n + 1)Cn   (n 3) Sp(2n)   n(2n + 1)Dn  (n 4) SO(2n)   n(2n − 1)

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 7/81

Linear algebraic groups    7

We make requirements on the index in these families to prevent degenerate cases(e.g. B1 = 1) or matching (e.g. A2 = C2). There are five   exceptional groups 

label dimensionE6   78

E7   133E8   248F4   52G2   14

Later on, we’ll be able to understand why this list is complete.

2 Lie algebras

A Lie algebra is a linear object whose representation theory is (in principle) man-ageable. To any linear algebraic group  G we will associate a Lie algebra  g =  Lie(G),and study the representation theory of  G via that of  g.

2.1 Definition and first properties

Fix a field  k. Eventually we’ll avoid characteristic 2, and some theorems will onlybe valid in characteristic zero.

Definition 2.1.1.  A  Lie algebra  over  k   is a  k-vector space  g  equipped with a map[·, ·] : g × g → g  such that the following hold:

•   [·, ·]   is bilinear (it factors through  g ⊗ g).

•   [x, x] = 0  for all  x ∈ g  ( [·, ·]  factors through  2

g).

•  The Jacobi identity   [x, [y, z] ] + [y, [z, x] ] + [z, [x, y]] = 0  holds for all  x, y, z ∈ g.

We could have defined a Lie algebra over  k  as being a  k-vector space  g  togetherwith [

·,

·] : 2

g

 → g  satisfying the Jacobi identity. We call [

·,

·] the  Lie bracket .

The Lie bracket satisfies a number of basic properties. For example, [x, y] =−[y, x] because

0 = [x + y, x + y] (alternating)

= [x, x] + [x, y] + [y, x] + [y, y] (bilinear)

= [x, y] + [y, x].   (alternating)

Later on, we’ll use an alternate form of the Jacobi identity:

[x, [y, z]] − [y, [x, z]] = [[x, y], z].   (∗)

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 8/81

Linear algebraic groups    8

2.2 The main examples

Example 2.2.1.   Let   V   be any   k-vector space. Then the zero map 2 V  →   V 

trivially satisfies the Jacobi identity. We call any Lie algebra whose bracket isidentically zero  commutative   (or abelian ).  

Example 2.2.2  (General linear).  Again, let V   be a k-vector space. The Lie algebragl(V ) = Endk(V ) as a  k-vector space, with bracket [X, Y ] = X  ◦ Y  − Y  ◦ X . It is agood exercise (which everyone should do at least once in their life) to check thatthis actually is Lie algebra. When  V   = kn, we write  gln(k) instead of  gl(kn).  

Often, we will just write  gln  instead of  gln(k). We will also do this for the other“named” Lie algebras.

Example 2.2.3   (Special linear).   Put   sln(k) = {X  ∈   gln(k) :   tr x   = 0}. Since

tr[x, y] = 0, this is a Lie subalgebra of  gln. In fact, [gln, gln] ⊂ sln.   Example 2.2.4  (Special orthogonal).   Put  son(k) = {x ∈ gln(k) :   tx = −x}. Thisis a Lie subalgebra of  gln(k) because if  x, y ∈ son(k), then

t[x, y] =  ty tx − tx ty

= (−y)(−x) − (−x)(−y)

= −[x, y].

Example 2.2.5  (Symplectic).   Let J n  =

  −1n1n

∈ gl2n(k). Put

 sp2n(k) = {x ∈ gl2n(k) : J x + txJ  = 0}.

As an exercise, check that this is a Lie subalgebra of  gl2n.  

As an exercise, show that  R3 with the bracket [u, v] = u × v  (cross product) is aLie algebra over  R.

Theorem 2.2.6  (Ado).  Any finite dimensional Lie algebra over  k   is isomorphic toa Lie subalgebra of some  gln(k).

Proof.  In characteristic zero, this is in [Lie1–3, I §7.3]. The positive-characteristiccase is dealt with in [Jac79, VI §3].

Another good exercise is to realize  R3 with bracket [u, v] = u × v as a subalgebraof some  gln(R).

2.3 Homomorphisms and the adjoint representation

Definition 2.3.1.   A  homomorphism  of Lie algebras  ϕ :  g → h   is a  k-linear mapsuch that  ϕ([x, y]) = [ϕx, ϕy].

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 9/81

Linear algebraic groups    9

If   ϕ   :   g →   h   is a homomorphism of Lie algebras, then   a   =   ker(ϕ) is a Liesubalgebra of  g. This is easy:

ϕ[x, y] = [ϕ(x), ϕ(y)]

= [0, 0]

= 0.

Definition 2.3.2.  A Lie subalgebra  a  of  g   is an   ideal  if  [a, g] ⊂ a, i.e.   [a, x] ∈ a   for all  a ∈ a,  x ∈ g.

Equivalently,  a ⊂  g   is an ideal if [g, a] ⊂  a. If  a ⊂ g   is an ideal, we define thequotient algebra   g/a  to be  g/a  as a vector space, with bracket induced by that of  g.So

[x + a, y + a] = [x, y] + a.

Let’s check that this makes sense. If  a1, a2 ∈ a, then

[x + a1, x + a2] = [x, y] + [x, a2] + [a1, y] + [a1, a2]

≡ [x, y] (mod  a).

If   ϕ   :   g →   h   is a Lie homomorphism, then we get an induced isomorphismg/ ker(ϕ)

  ∼−→ im(ϕ) ⊂ h.

Example 2.3.3.   Give   k   the trivial Lie bracket. Then   tr   :   gln(k) →   k   is a ahomomorphism. Indeed,

tr[x, y] = tr(xy) − tr(yx) = 0.

We could have defined  sln(k) = ker(tr); this is an ideal in  gln, and  gln(k)/ sln(k)  ∼−→

k.  

Definition 2.3.4.   Let  g  be a Lie algebra over  k. The  adjoint representation  of  g   is the map  ad : g → gl(g)  defined by  ad(x)(y) = [x, y]   for  x, y ∈ g.

It is easy to check that  ad :  g → gl(g) is  k-linear, that is  ad(cx) = c ad(x) andad(x + y) = ad(x) + ad(y). It is bit less obvious how the adjoint action behaves withrespect to the Lie bracket. We compute

ad([x, y])(z) = [[x, y], z]

=(∗) [x, [y, z]] − [y, [x, z]]

= (ad(x)ad(y))(z) − (ad(y)ad(x))(z).

Thus  ad[x, y] = [ad(x), ad(y)] and we have shown that  ad   :  g →  gl(g) is a homo-morphism of Lie algebras. If  n  =  dimk(g)  < ∞, then  ad   :  g →  gl(g)   gln(k) isan interesting finite-dimensional representation of  g. If  dim(g)  >  1, it cannot be

surjective, and there are easy ways for it to fail to be injective.

Definition 2.3.5.   Let  g  be a Lie algebra over  k. The   center  of  g  is 

Z(g) = {x ∈ g  : [x, y] = 0  for all  y ∈ g}.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 10/81

Linear algebraic groups    10

Note that Z(g) = ker(ad). There is a natural injection  g/ Z(g) → gl(g).

Definition 2.3.6.  A Lie algebra  g   is   simple   if it is non-commutative, and has noideals except  0  and  g.

Just as with simple algebraic groups, there is a classification theorem for simpleLie algebras. Even better, since Lie algebras are more “rigid” than algebraic groups,we don’t have to worry about isogeny.

Theorem 2.3.7.   Let  k  be an algebraically closed field of characteristic zero. Up toisomorphism, every Lie algebra is a member of the following list:

An   ( n 1)   sln+1

Bn   ( n 2)   so2n+1

Cn   ( n 3)   sp2n

Dn   ( n 4)   so2n

exceptional    e6,   e7,  e8,   f4,  g2

The classification theorem for algebraic groups is proved via the classificationtheorem for Lie algebras, which ends up being a matter of combinatorics.

2.4 Tangent spaces

For the sake of clarity, we give a scheme-theoretic definition of algebraic groups:

Definition 2.4.1.   Let  S  be a scheme. An  algebraic group over  S  is an affine groupscheme of finite type over  S .

For the moment, we will say that an algebraic group  G  over  S   is  linear   if  G is asubgroup scheme of GL(L  ) for some locally free sheaf  L    on  S .

Fix a field   k, and let   G ⊂   GL(n)/k   be a linear algebraic group cut out bypolynomials  f 1, . . . , f  r. For any  k-algebra R, we define

G(R) = {g ∈ GLn(R) : f 1(g) = · · · =  f r(g) = 0}.

This is a functor  Algk →

 Set. Since  G   is a subgroup scheme of  GL(n)/k, the setG(R) inherits the group structure from  GLn(R). So we will think of  G as a functorG :  Algk → Grp. By the Yoneda Lemma, the variety  G   is determined by its functorof points  G :  Algk → Set.

We are especially interested in the  k-algebra of   dual numbers ,  k[ε] =  k[x]/x2.Informally, ε  should be thought of as a “infinitesimal quantity” in the style of Newtonand Leibniz. The scheme  Spec(k[ε]) should be thought of as a “point together witha direction.”

 For the moment, let  k  be an arbitrary base ring,  X /k   a scheme. We definethe  n-Jet space   of  X  to be the scheme JnX  whose functor of points is (JnX )(A) =X (A[t]/tn+1). By [Voj07], this functor is representable, so JnX  is actually a scheme.The first jet space J1X  is called the tangent space  of  X , and denoted TX . The mapsA[t]/tn+1 A[t]/tn induce projections Jn+1X  → JnX . In particular, the tangentspace of  X  comes with a canonical projection  π : TX  → X .  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 11/81

Linear algebraic groups    11

Consider G(k[ε]). As a set, this consists of invertible  n × n matrices with entriesin   k[ε] on which the  f i   vanish. The map   ε →   0 from  k[ε] →  k   induces a grouphomomorphism  π   :  G(k[ε]) →  G(k). We will consider this map as the “tangentspace” of  G(k). For each g ∈ G(k), the fiber  π−1(g) is the “tangent space of  G atg.”

Note that

π−1(g) = {g + εv : v ∈ Mn(k) : f i(g + εv) = 0 for all  i}.

For each s, the polynomial  f s  has a Taylor series expansion

f s(xij) = f s(g) +i,j

∂f s∂xi,j

(g)(xi,j − gi,j).

Since f s(g) = 0, we get  f s(g + εv) = εi,j∂f s∂xi,j (g)vi,j . It follows that

π−1(g) =

g + εv : v ∈ Mn(k) :i,j

∂f s∂xij

(g)vij  = 0 for all 1 s r

.

We will be especially interested in  g =  π−1(1). We will turn this into a Lie algebrausing the group structure on  G.

 From the scheme-theoretic perspective, the identity element 1 ∈ G(k) comes

from a section  e :  Spec(k) → G  of the structure  G → Spec(k). The scheme-theoretic Lie algebra  of  G   is the fiber product

g =  e∗1 = T(G) ×G Spec(k).

By definition,   g(A) =   ker(G(A[ε]) → G(A))   for any   k-algebra   A. Just as withalgebraic groups, we will write  g/k   for  g  thought of as a group scheme over  k, and

 just  g  for  g(k).  

2.5 Functors of pointsRecall that schemes can be thought of as functors  Algk → Set. For example, affinen-space is the functor An(A) = An. In fact, this is an algebraic group, the operationcoming from addition on  A. Moreover,  An is  representable   in the sense that

An(A) = homk(k[x1, . . . , xn], A),

via (a1, . . . , an) → (xi → ai). Similarly,  SL(n)/k  sends a  k-algebra A to  SLn(A). Itis represented by the ring  k[xij ]/(det(x)

−1). In general, we take some polynomials

f 1, . . . , f  r ∈   k[x1, . . . , xn], and consider the subscheme   X   =   V (f 1, . . . , f  r) ⊂   An

which represents the functor

X (A) = {a ∈ An : f 1(a) = · · · =  f r(a) = 0}.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 12/81

Linear algebraic groups    12

This has coordinate ring k[x1, . . . , xn]/(f 1, . . . , f  r). Note that any  finitely generatedk-algebras is of this form. In other words, all affine schemes of finite type over  k  aresubschemes of some affine space.

Clasically, one gives  X (k) the Zariski topology . If  f  ∈ k[X ] = A1(X ), we get (bydefinition) a function  f   : X (k)

 → k. We define open subsets of  X (k) to be those of 

the form {x ∈ X (k) : f (x) = 0}. More scheme-theoretically, we say that an  open subscheme   of  X  is the complement of any  V (f ) for f  ∈  k[X ].

 We can think of the Zariski topology as giving a Grothendieck topology on thecategory of affine schemes over  k. It is subcanonical, i.e. all representable functorsare sheaves. So if we formally put  Aff k  = (Algk)◦, then the category of schemes overk  embeds into  Shzar(Aff k). When working with algebraic groups, often it is betterwith the etale or fppf topologies. In particular, we will think of quotients as livingin Shfppf (Aff k).  

Definition 2.5.1.   Let  k  be a feld. A  variety  over  k   is a reduced separated scheme of finite type over  k.

In particular, an affine variety is determined by a reduced  k-algebra. We candirectly associate a “geometric object” to a   k-algebra   A, namely its   spectrum Spec(A) = {p ⊂ A prime ideal}. Finally, we note that if  X  = Spec(A) is of finitetype over  k  and if  k = k, then  X (k) = homk(A, k) is the set of maximal ideas in  A.

2.6 Affine group schemes and Hopf algebras

An affine group  G/k  will give us a functor  G :  Algk → Grp. As such, it should havemorphisms

m :  G × G → G   “multiplication”

e : 1 = Spec(k) → G   “identity”

i :  G → G   “inverse”

These correspond to ring homomorphisms

∆ : A → A ⊗k A   “comultiplication”ε :  A → k   “counit”

σ : A → A   “coinverse”

Obviously the maps on groups satisfy some axioms like associativity etc. These canbe phrased by the commutativity of diagrams like

G × G × G G × G

G × G G.

id×m

m×id   m

m

Most sources do not give all these diagrams explicitly. One that does is the book[Wat79].

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 13/81

Linear algebraic groups    13

It is a good exercise to show that we have the following maps for the additiveand multiplicative groups:

group ring comultiplication coident. coinverseGa   k[x]   x → x ⊗ 1 + 1 ⊗ x x → 0   x → −x

Gm   k[x±1

]   x → x ⊗ x x → 1   x → x−1

The analogue of associativity for coordinate rings and comultiplication is the com-mutativity of the following diagram:

A A ⊗k A

A ⊗k A A ⊗k A ⊗k A.

∆   id⊗∆

∆⊗id

The tuple (A, ∆, ε , σ) is called a   Hopf algebra . In principle, all theorems aboutalgebraic groups can be rephrased as theorems about Hopf algebras, but this is notvery illuminating. The one advantage is that it is possible to speak of Hopf algebrasfor which the ring A is not  commutative. These show up in algebraic number theory,combinatorics, and physics.

Theorem 2.6.1.   If  G   is an affine group scheme of finite type over  k, then it is a linear algebraic group over  k.

Proof.   This is [SGA 3I, VIB  11.11]. Essentially, one looks at the action of  G  onthe (possibly infinite-dimensional) vector space  k[G]. A general theorem yields afaithful finite-dimensional representation  V , and we get  G  as a subgroup-scheme of GL(V ).

  If   S   is a dedekind scheme (noetherian, one-dimensional, regular) and   G/S 

is a affine flat separated group scheme of finite type over   S , then the obviousgeneralization of  Theorem 2.6.1 holds for  G; it is a closed subgroup of  GL(L  ) forL   a locally free sheaf on  S   [SGA 3I,  VIB  13.5]. Interestingly, this fails for moregeneral base schemes.  

2.7 Examples of group schemes

So all affine group varieties over  k  embed into  GL(n)/k  as an algebraic group. Wecan think of an algebraic group in several ways:

1. As a group-valued functor on Algk.

2. As a commutative Hopf algebra over k.

3. As a subgroup of GLn(k) cut out by poynomials.Example 2.7.1.   The group of   n-th roots of unity   is  µn. Its coordinate ring isk[x]/(xn − 1). So

µn(A) = {a ∈ A  :  an = 1},

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 14/81

Linear algebraic groups    14

with the group operation coming from multiplication in  A. Note that  µn ⊂  Gm.If the base field  k  has characteristic  p   n, then  µn(k) is a cyclic group of order  n.However, if  n =  p, then  x p − 1 = (x − 1) p. So the coordinate ring  k[x]/((x − 1) p)is non-reduced. This is our first example of a group scheme that is  not   a groupvariety. One realization of this is that  µ p(F p) = 1. These problems can only occur

in characteristic  p > 0. If  G  is a group scheme over a characteristic zero field, thenG   is automatically reduced.

Let  φ :  Gm → Gm  be the homomorphism  x → x p. Note that  ker(φ) = µ p. OnF p-points, this map is an isomorphism, but  φ  is  not  an isomorphism of algebraicgroups.  

Let   G/k   be a linear algebraic group. Recall that we defined the   Lie algebra g = Lie(G) of  G  to be the functor on  k-algebras given by

g(A) = ker G(A[ε]/ε2)

 → G(A) .

In subsection 2.4, we saw that if  G ⊂  GL(n)/k   is cut out by  f 1, . . . , f  r, then thek-valued points could be computed as

g =

X  ∈ Mn(k) :i,j

∂f α∂xij

(1n) · X ij  = 0

.

Example 2.7.2  (Special linear).   Consider  SL(n)/k ⊂ GL(n)/k, cut out by  det = 1.Its Lie algebra  sln  = Lie( sln) is

 sln  = {1 + xε :  x ∈ Mn(k) and det(1 + xε) = 1} .

The expansion of determinant is det(1 + xε) = 1 + tr(x)ε + O(ε2). Thus

 sln  = {x ∈ Mn  : tr(x) = 0} .

As a functor on  k-algebras,  sln(A) = {x ∈ Mn(A) : tr x = 0}.  

Example 2.7.3  (Orthogonal).  Recall that O(n) ⊂ GL(n) is cut out by  g tg = 1. So

Lie(On) = {

1 + xε : (1 + xε) t(1 + xε) = 1}

= {1 + Xε :  x + tX  = 0} {X  ∈ Mn  :  tx = −x}= son.

If the characteristic of the base field is not 2, then dim( son) = n(n − 1)/2.  

2.8 Lie algebra of an algebraic group

Fix a field   k. Let   G/k   be a linear algebraic group. For any   k-algebra   A, writeA[ε] = k[t]/t2. Then  A → G(A[ε]) is a new group functor, and we can define theLie algebra  of  G  to be

Lie(G)(A) = ker(G(A[ε]) → G(A)) .

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 15/81

Linear algebraic groups    15

A priori, this is a group functor. Often, we will write  g =  Lie(G) to mean Lie(G)(k).If  G ⊂ GL(n) is cut out by  f 1, . . . , f  r, then

g = {1 + εx :  x ∈ Mn(k) and  f α(1 + εx) = 0 for all  α} .

The group operation is addition on  x, i.e. (1 + εx)(1 + εy) = 1 + ε(x + y). Thus  g  isa  k-vector space.

This section will contain many “high-level” interludes on the functorial definitionof  Lie(G). They are all strongly influenced by the exposition in  [SGA 3I, II §3–4].Let  O   :  Algk →  Algk  be the functor  A →  A. Note that  O   is represented by  k[t].Thus   A1

/k  has the structure not only of a group scheme, but of a  k-ring scheme,

or (k, k)-biring in the sense of   [BW05]. We define an  O -module   to be a functorV   :  Algk →  Set  such that for each  A, the set  V (A) is given an  O (A) = A-modulestructure in a functorial way.

If  S  : Algk →

 Set  is a functor, we will write SchS 

 for the category of representablefunctors  X   :  Algk →  Set  together with a morphism  X  →  S . A morphism (X  →S ) →  (Y  →  S ) in  SchS   is a morphism of functors  X  →  Y   making the followingdiagram commute:

X Y 

S.

There is an easy generalization of  O  to a ring object  O  ∈ SchS . It sends a scheme

X  to the ring H

0

(X,O X) of regular functions on  X .For a scheme  X , the first jet space J1X   is naturally an  O -module in  SchX . We

could be fancy and say that for any ring  A, A[ε] is naturally an abelian group object

in  AlgA/A, or we could define the  O -module structure on J1X   π−→ X   directly. For

ϕ : Spec(A) → X , we need to give

(J1X )/X(A) = {f  ∈ (J1X )(A) : π ◦ f  = ϕ}the structure of an A-module. Given a ∈ A, define σa  : A[ε] → A[ε] by ε → aε. Thisis a ring homomorphism, so it induces  σa  : J1X (A) → J1X (A). The restriction of 

this map to (J1X )/X(A) is the desired action of  A. See [SGA 3I, II 3.4.1] for a morecareful proof that this gives (J1X )/X  the structure of an  O -module in  SchX .

The point of all this is that if  M   is an  O -module in  SchY   and  f   : X  → Y   is amorphism of schemes, then  f ∗M , defined by

(f ∗M )(Spec(A)  p−→ X ) = M (Spec(A)

  p−→ X   f −→ Y )

is naturally an  O -module in  SchX . So if  G  is an algebraic group, J1X  is naturallyan  O -module in  SchG, and the morphism  e : 1 → G  gives  g =  e∗J1G  the structureof an  O -module in  Schk.  

Example 2.8.1  (Symplectic).   Let J  =   −1n

1n

. Recall that

Sp2n(A) =

g ∈ GL2n(A) :   tgJ g = J 

.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 16/81

Linear algebraic groups    16

Let’s compute the Lie algebra of Sp2n. For  X  ∈ M2n(A), we have

t(1 + εx)J (1 + εx) = (1 + ε tx)J (1 + εx)

= J  + ε(txJ  + Jx).

So  sp2n(A)  {x ∈ M2n(A) :   txJ  + Jx = 0}.  

Algebraic groups can be highly non-abelian, and so far all we’ve done is giveg =  Lie(G) the structure of a vector space. We’d like to give  g the structure of a Liealgebra.

Let f   : G → H  be a homomorphism of algebraic groups. Then  f   : G(A) → H (A)is a homomorphism for all   k-algebras   A. A morphism  f   :   G →   H   correspondsby the Yoneda Lemma to a unique element   ϕ ∈   homk(k[H ], k[G]). For all   A,the induced map  G(A) →  H (A) is defined by  ψ →  ψ ◦ ϕ  via the identificationsG(A) = hom(k[G], A) and H (A) = hom(k[H ], A).

Example 2.8.2.  Recall that  Gm(A) = A× = hom(k[x±1], A). All homomorphismsf   :  Gm →  Gm  come from  x → xn for some  n ∈  Z. On functors of points, this isa → an for  a ∈ A×.  

As before, let  f   : G → H  be a morphism of algebraic groups. Let g = Lie(G),h = Lie(G). There is an induced map  Lie(f ) :  g → h. On functors of points, it isinduced by the inclusions  g ⊂ J1G,  h ⊂ J1H  and the fact that  f   : J1G → J1H   is agroup homomorphism. That is, for each k-algebra  A,  f ∗  : g(A) → h(A) is induced

by the commutative diagram

G(A[ε])   H (A[ε])

g(A)   h(A).

f ∗

In particular, a representation   ρ   :   G →   GL(n) induces a map on Lie algebrasg → gln.

  The natural way of stating the above is that   Lie   is a functor from groupschemes over  k   to  O -modules in  Schk. What’s more, if  G   is a group scheme andg =  Lie(G), then by [SGA 3I, II 3.3], there is a natural isomorphism of  A-modulesg(k) ⊗k A

  ∼−→ g(A). So the functor  g is actually determined by the vector space  g(k).This justifies our passing between  g  and  g(k).  

Let’s construct the Lie bracket on the Lie algebra of an algebraic group. Recallthat for a Lie algebra  g, we defined a map  ad :  g → gl(g) = Endk(g) by ad(x)(y) =[x, y]. The bracket on  g  is clearly determined by the adjoint map.

For  g =  Lie(G), we’ll define the adjoint map directly, then use this to give  g  thestructure of a Lie algebra. For any  g

 ∈ G(A), we have an action  ad(g) : GA

 → GA

given by   x →  gxg−1 for any   B ∈  AlgA. So we have a homomorphism of groupfunctors ad : G → Aut(G). In particular,  G(k) acts on  G by k-automorphisms.

 The general philosophy, due to Grothendieck and worked out carefully in SGA,is that “everything is a functor.” That is, we think of every object as living in the

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 17/81

Linear algebraic groups    17

category of functors  Algk → Set. For example, if  X   and  Y   are schemes over k, thenhom(X, Y ) is the functor whose

hom(X, Y )(A) = homSchA(X A, Y A).

We recover the usual hom-set as  hom(X, Y )(k). Similarly, we define  Aut(G)(A) =AutGrpA(GA). These functors are not usually representable, but they are sheaves forall the reasonable Grothendieck topologies on  Schk. See [SGA 3I, I §1–3, II §1] for acareful exposition along these lines.  

By functoriality, there is a natural homomorphism Aut(G) → Aut(g). Composingthis with the map  ad :  G → Aut(G) gives a map  ad :  G → Aut(g). Explicitly, themap  ad :  G(A) → Aut(g)(A) = Aut(gA) sends  g  to the automorphism  x → gxg−1

for any   x ∈   G(B[ε]),   B ∈   AlgA. It is easy to see that this action respects   O -module structure on  g, so we in fact have a representation  ad :  G → GL(g). Since

g(A) = g(k)⊗k A, we can think of  g as an honest k-vector space and define  GL(g) asthe functor A → AutA(g⊗k A). In either case, we have a morphism  ad  :  G → GL(g)of linear algebraic groups.

Apply  Lie(−) to the adjoint representation   ad   :  G →  GL(g). We get a mapad :  g → Lie(GL(g)) =  gl(g). We claim that  g  together with [x, y] = ad(x)(y) is aLie algebra.

Example 2.8.3.   Let G  =  GL(n). We wish to verify that our functorial definition of ad :  gln → gl(gln) agrees with the elementary definition  ad(x)(y) = [x, y]. Start withthe action of  GL(n) on  gl

n. For any k-algebra A, this is the action by conjugation

of GLn(A) ⊂ GLn(A[ε]) on  gln(A) = ker(GLn(A[ε]) → GLn(A)). This is because

g · (1 + εx)(g−1) = 1 + ε ad(g)(x).

So the functorial and elementary definitions of ad : GL(n) → GL(gln) agree.Now let’s differentiate   ad   :   GL(n) →   GL(gln). For   A ∈   Algk, we have a

commutative diagram:

gln(A) GLn(A[ε]) GLn(A)

gl(gln)(A) GL(gln ⊗ A[ε]) GL(gln ⊗ A)

ad ad ad

All that remains is the simple computation

ad(1 + εx)(y) = (1 + εx)y(1 − εx)

= y  + [x, y]ε

So as an endomorphism of  gln ⊗ A[ε],  ad(1 + εx) is of the form 1 + ε[x, −]. So whenwe identify 1 + εx with x, we get that ad(x) = [x, −] as desired. See [SGA 3I, II 4.8]for a proof in much greater generality.  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 18/81

Linear algebraic groups    18

This example yields the general fact that  Lie(G) is a Lie algebra. Choose anembedding  G →  GL(n). By construction, the Lie functor is limit-preserving, sog   →   gln. The bracket on   g  (as a subspace of   gln   is induced by the bracket ongln. We have seen that the functorial definition of the bracket on  gln  matches theelementary definition, so  gln  is a Lie algebra and  g  is a Lie subalgebras of  gln.

Does  Lie(G) determine G? The answer is an easy no! For example,  SO(n) andO(n) both have Lie algebra  son. Also  SL(n) and  PSL(n) both have Lie algebra  sln.There is are the easy example  Lie(Ga) = Lie(Gm) = gl1. Finally,  Lie(G) = Lie(G◦),so  Lie(G) does not depend on the group  π0(G) = G/G◦ of connected componentsof  G. However, given a semisimple Lie algebra  g, there is a unique split connected,simply-connected semisimple algebraic group  G  with Lie(G) = g.

Example 2.8.4.   Let’s go over the Lie bracket on   GL(n) in a more elementarymanner. We have

gln  = ker (GLn(k[ε]) → GLn(k)) = {1 + εx :  x ∈ Mn(k)}   ∼−→ Mn(k).

We’ll write elements of  Mn(k[ε]) as x + yε; these should be thought of as a “point”  xtogether with an “infinitesimal direction”  y. The adjoint map is the homomorphismad   :   GL(n) →   GL(gln), defined on   A-points as the map   GLn(A) →   GL(gln(A))given by ad(g)(x) = gxg−1. So for  A =  k[ε], the group GLn(k[ε]) acts on  Mn(k[ε])by conjugation. Take any 1 + εb ∈   GLn(k[ε]), and any  x +  εy ∈  Mn(k[ε]). Wecompute:

(1 + εb)(x + εy)(1−

εb)−1 = (x + εy + εbx)(1−

εb)

= x + εy + ε(bx − xb)

= x + εy + ε[b, x]

= (1 + ε[b, −])(x + εy).

Thus  ad(1 + εb) = 1 + ε[b, −] as an element of  Endk(gln) = gl(gln). Summing it allup, we have a commutative diagram:

gln   gl(gln)

Mn   End(Mn)

ad

 

ad

so that ad(x)(y) = [x, y].  

As we have already seen,  Lie(G) does not determine  G. Even worse, the functorLie  is neither full nor faithful. It’s not faithful because, for example, if Γ is a finitegroup and G  a connected group, then Aut(Γ) → Aut(Γ×G), but since (G×Γ)◦ ⊂ G,any automorphism of Γ acts trivially on  Lie(Γ × G). To see that  Lie  is not faithful,

note that  hom(gl1, gl1) is a one-dimensional vector space, while  hom(Gm, Gm) = Z.Theorem 2.8.5.   Let  k  be a field of characteristic zero,  G/k  a linear algebraic group.Let  g =  Lie(G). The map  H  → Lie(H )  from connected closed subgroups of  G  to Lie subalgebras of  g   is injective and preserves inclusions.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 19/81

Linear algebraic groups    19

Proof.   If  H 1 ⊂ H 2, use the functoriality of forming Lie algebras to see that Lie(H 1) ⊂Lie(H 2) as subalgebras of   g. The nontrivial part is to show that   Lie(H ), as asubalgebra of  g, determines H . Let H 1, H 2  be be two closed connected subgroups of G  such that  h =  Lie(H 1) = Lie(H 2). Then H 3 = (H 1 ∩ H 2)◦ is a closed connectedsubgroup of  G. Since fiber products are computed pointwise and the Lie functor

is exact, we have   Lie(H 3) =   h. By   Theorem 2.8.7,   the   H i   are all smooth, sodim(H i) = dim h. But the only way  H 3 ⊂ H 1  can both be smooth and irreduciblewith the same dimension is for  H 1 = H 3. Similarly  H 2 = H 3, so H 1 = H 2.

Example 2.8.6.  The subgroup  Gm 

aa−1

 and  Ga 

1   ∗

1

 of  GL(2)

have Lie algebras that are abstractly isomorphic, but distinct as subalgebras of  gl2.Thus  Lie(H ), seen as an abstract Lie algebra, does not determine  H  as a subgroupof  G.  

Theorem 2.8.5 fails in positive characteristic. Also, surjectivity need not hold,see e.g.  GL(5). If we instead work in the category of smooth manifolds and Liegroups, then every  Lie subalgebra comes from a subgroup.

Theorem 2.8.7   (Cartier).   Let   k   be a field of characteristic zero,   G/k   a linear algebraic group. Then  G  is smooth.

Proof.   The idea is that for   k   =   C,   G(C) must be smooth at “most” points   g.But any two points in  G(C) have diffeomorphic neighborhoods, so  G(C) itself is

smooth. For a careful proof in much greater generality, see [SGA 3I, VIB   1.6]. EvenSGA assumes that  G   is locally of finite type, but this is not necessary. See  http://mathoverflow.net/questions/22553 for some discussion and references.

Example 2.8.8.   Consider  µ p  = ker(Gm p−→  Gm) over  k  =  F p. That is,  µ p(A) =

{a ∈ A :  a p = 1}. The coordinate ring of  µ p   is  k[x]/(x p − 1). Note that

Lie(µ p)(A) = {1 + εx :  x ∈ A  and (1 + εx) p = 1}= {1 + εx : 1 + (εx) p = 1}

= A.

In other words,  µ p ⊂  GL(1) has Lie algebra  gl1. Since  µ p   is connected over   F p,this provides a counterexample to  Theorem 2.8.5   in characteristic   p. Moreover,µ p(F p) = 1, so “µ p  has no points.”  

If, on the other hand, the base field has characteristic not  p, then (1 + εx) p =1 + pεx, which is 1 exactly when  x = 0. So Lie(µ p) = 0 as expected.

3 Solvable groups, unipotent groups, and toriRecall that if  G/k  is an algebraic group, there is a canonical filtration

1 ⊃ RuG ⊂ RG ⊂ G◦ ⊂ G.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 20/81

Linear algebraic groups    20

Each subgroup in the filtration is normal in  G. The  neutral component   G◦ of  G, isdefined as a functor on  k-schemes by

G◦(S ) = {g : S  → G  :  g(|S |) ⊂ |G|◦},

where |G|◦

is the connected component of 1 in the topological space underlying G. By[SGA 3I, VIA 2.3.1, 2.4], the functor G◦ represents an open, geometrically irreducible,subgroup scheme of  G.By [SGA 3I, VIA  5.5.1], the quotient  π0(G) = G/G◦ is etaleover k.

One calls RG   the   radical   of   G, an RuG   the   unipotent radical . All possiblequotients in the filtration have names:

•   G◦/G is  finite 

•  G◦/

RG  is semisimple 

•   G◦/RuG  is  reductive 

• RG/RuG is a torus 

• RuG is  unipotent   .

3.1 One-dimensional groups

For simplicity, assume   k   is algebraically closed. Let   G/k   be a one-dimensional

smooth connected linear algebraic group. Currently, we have two candidates for  G,the additive group  Ga  and the multiplicative group  Gm, given by

Ga(A) = (A, +)

Gm(A) = A×

for all  k-algebras A.

Theorem 3.1.1.  Any one-dimensional connected smooth linear algebraic group over an algebraically closed field is isomorphic to a unique member of 

 {G

a, G

m}.

Proof.  As a variety over k, G  is smooth and one-dimensional. Thus there is a uniquesmooth proper curve C /k  with an open embedding G → C . The set S  = C (k)G(k)

is finite. Take  g ∈ G(k). Then φg   : G  ∼−→ G  given by x → g · x is an automorphism

of curves. We can think of  φg  as a rational map  C  → C ; by Zariski’s main theorem,

this extends uniquely to an automorphism   φg   :   C   ∼−→   C . We obtain a group

homomorphism φ :  G(k) → Aut(C ).Let g  be the genus of  C  (if  k  = C, this is just the number of “holes” in the closed

surface C (C)). By [Har77, IV ex 5.2], if  g   2, then Aut(C ) is finite. It follows thatg   1. Since  S   is finite, there is an infinite subgroup  H  ⊂ G(k) that acts triviallyon  S . Write  Aut(C, S ) for the group of automorphisms of  C   that are trivial on  S ;there is an injection  H → Aut(C, S ). If  g = 1, then  Aut(C, S ) is finite [Har77, IVcor 4.7].

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 21/81

Linear algebraic groups    21

We’ve reduced to the case  g = 0. We can assume  G ⊂ C  = P1/k  = A1

/k ∪{∞}. It

is known that Aut(P1) = PGL(2) as schemes, so in particular  Aut(P1/k) = PGL2(k)

[Har77, p. IV 7.1.1]. The action of  PGL2(k) is via fractional linear transformations:

a b

c dx =

 ax + b

cx + d .

For any distinct  α, β,γ  ∈ P1(k), there is a unique  g ∈ PGL2(k) such that  g(α) = 0,g(β ) = 1, and  g(γ ) = ∞ [this is equivalent to  M 0,3 = ∗, it can be verified by a directcomputation]. If #S   3, then this shows that  Aut(P1

/k, S ) = 1, which doesn’t work.

We now get two cases, #S  ∈ {1, 2}. So without loss of generality,  G =  P1/k {∞}

or  G =  P1/k {0, ∞}. So as a variety,  G =  Ga  or  Gm.

We’ll treat the case  G =  P1/k {0, ∞}. We can assume 1 ∈ P1 is the identity of 

G. Pick g ∈ G(k) ⊂ k×; then φg   : x → gx must be of the form  x →  ax+bcx+d . Moreover,

φg{0, ∞}  = {0, ∞}. Either φg(x) = ax   for  a ∈ k×, or  φg(x) = a/x. In the lattercase,   φg   has a fixed point, namely

 √ a. But translation has no fixed points, so

φg(x) = ax. Since  g = φg(1) = a, it follows that  G =  Gm.

The group  Gm  is reductive (better, a torus), and  Ga  is unipotent. For a general(i.e., not necessarily linnear) connected one-dimensional algebraic group, there aremany possibilities, namely elliptic curves. Even over   C, the collection of ellipticcurves is one-dimensional when interpreted as a variety in the appropriate sense.

3.2 Solvable groups

Let  G/k  be an algebraic group, and let  g =  Lie(G). It turns out that  Lie(G◦) = g.There is a canonical sub-Lie algebra   rad(g) ⊂   g; in characteristic zero, this willdetermine a connected linear algebraic subgroup RG ⊂ G.

For the moment, let  g  be an arbitrary  k-Lie algebra. Let Dg  = [g, g] be thesubspace of  g  generated by {[x, y] : x, y ∈ g}. The subspace Dg  is actually an ideal,and the quotient  g/Dg   is commutative. Moreover, Dg  is the smallest ideal in  g withthis property.

Every Lie algebra comes with a canonical descending filtration D•g, called thederived series . It is defined by

D1g = Dg

Dn+1g = D(Dng).

Definition 3.2.1.  A Lie algebra  g is   solvable  if the filtration  D•g  is separated, that is if  Dng = 0  for some  n.

Lemma 3.2.2.  A Lie algebra  g  is solvable if and only if there exists a decreasing  filtration   g  =  g0 ⊃ · · · ⊃  gn   = 0   with each   gi+1   an ideal in   gi, and with   gi/gi+1

commutative.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 22/81

Linear algebraic groups    22

Proof. ⇒. This follows from the fact that Dig/Di+1g  is abelian for each  i.⇐. Since g0/g1 is commutative, we get Dg ⊃ g1. More generally, we get Dig ⊃ gi

by induction, so  gi  = 0 for  i  0 implies Dig = 0 for  i  0.

Lemma 3.2.3.   Let   g   be a finite-dimensional Lie algebra. Then   g   has a unique 

maximal solvable ideal; it is called the   radical  of  g, and denoted  rad(g).

Proof.   Let a be an ideal of  g that is solvable, and has dim(a) maximal. Let  b be anysolvable ideal. Then  a+ b is an ideal and (a+ b)/a  is solvable. From the general factthat solvable Lie algebras are closed under extensions, we get that  a + b   is solvable,so  a + b  =  a, whence  b ⊂ a.

Definition 3.2.4.  A Lie algebra  k   is   semisimple  if  rad(g) = 0.

Example 3.2.5.  Consider the Lie algebra

bn  = {x ∈ gln  : xi,j  = 0 for all  i > j}.

We claim that  bn  is solvable. This follows from the fact that

Drbn  = {x ∈ gln  : xi,j=0   for all  i > j − r}.

To see that this is true, note that it is trivially true for  r = 0, so assume it is truefor some  r, and let  x, y ∈ Drbn. Note that

[x, y]i,j  =k

(xi,kyk,j − yi,kxk,j)

=

i−rkj+r

(xi,kyk,j − yi,kxk,j) (∗)

Moreover, when   i > j + r  + 1, then all of the terms in   (∗)  are zero, whence theresult. In some sense,  bn   is the “only” example of a solvable Lie algebra over analgebraically closed field.  

Theorem 3.2.6  (Lie-Kolchin).   Let   k   be an algebraically closed field,   g   a finite-dimensional solvable  k-Lie algebra. Then there is an injective Lie homomorphism g → bn  for some  n.

Proof.  In characteristic zero, this follows directly from Corollary 2 of [Lie1–3, I §5.3]applied to the adjoint representation.

Example 3.2.7.  One can check that:

rad(gl2) = 1

1Dn(gl2) = sl2   for all n 1

This is because  sl2  is simple (has no non-trivial ideals).  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 23/81

Linear algebraic groups    23

Definition 3.2.8.   Let  G/k   be a linear algebraic group. We say   G   is   solvable   if there is a sequence of algebraic subgroups  G =  G0 ⊃ G1 ⊃ · · · ⊃ Gn  = 1  such that 

1. each  Gi+1   is normal in  Gi,

2. each  Gi/Gi+1

 is commutative.

Example 3.2.9.   Let   G   =   B(n) ⊂   GL(n) be the subgroup of upper-triangularmatrices (the letter  B  represents “Borel”). This is solvable, as is witnessed by thefiltration

G1 = {g ∈ GL(n) : gii  = 1 for all  i}Gr  = {g ∈ B(n)2 : gij  = 0 for all  i < j + r}   r 1.

The map   G0

 →  Gn

m   defined by (aij)

 →  (a11, . . . , ann) induces an isomorphism

G0/G1 ∼−→ Gnm. Similarly  G1 → Gn−1a   defined by (aij) → (a1,2, . . . , an−1,n) inducesan isomorphism  G1/G2

∼−→ Gn−1a   . In general, for i 0, we have  Gi/Gi+1

∼−→ Gn−ia   .

We could have chosen our filtration in such a way that Gi/Gi+1 ∈ {Ga, Gm}.  

Definition 3.2.10.   Let  G/k   be a linear algebraic group. The   derived  group DG

(or   G, or   Gder) is the smallest normal subgroup DG   of   G   such that   G/DG   is commutative.

The basic idea is that DG is the algebraic group generated by {xyx−1y−1 : x, y ∈

G}.Theorem 3.2.11.   Let  G/k  be a smooth linear algebraic group. Then  DG exists and is smooth, and if  G  is connected then so is  DG.

Proof.   This essentially follows from [SGA 3I, VIB  7.1].

Just as for Lie algebras, we can define a filtration

D1G = DG

Dn+1

G = D(Dn

G).

Theorem 3.2.12.   A linear algebraic group  G   is solvable if and only if  DnG = 1 for some  n.

Example 3.2.13.   If  G ⊂ B(n) ⊂ GL(n), then  G   is solvable. Indeed, this followsfrom D•G ⊂ D•B(n).  

Theorem 3.2.14 (Lie-Kolchin).   Suppose  k   is algebraically closed. Let  G ⊂ GL(n)/kbe a connected solvable algebraic group. Then there exists   x ∈  GLn(k)   such that 

xGx−1

⊂ B(n).Proof.   Let V   = k⊕n, and consider V  as a representation of  G via the inclusion G →GL(V ). It is sufficient to prove that V  contains a one-dimensional subrepresentation,for then we could induct on  dim(V ). For simplicity, we assume  G   is smooth. If  G  is

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 24/81

Linear algebraic groups    24

commutative, then the set  G(k) is a family of mutually commuting endomorphismsof  V . It is known that such sets are mutually triangularisable, i.e. can be conjugatedto lie within  B(n). (This follows from the Jordan decomposition.)

In the general case, we may assume the claim is true for  DG. Recall thatX∗(

DG) = hom(

DG, Gm) is the group of  characters   of 

 DG. The group  G  acts on

X∗(DG) by conjugation:(g · χ)(h) = χ(ghg−1).

Even better, we can define X∗(DG) as a group functor:

X∗(DG)(A) = homGrp/A((DG)/A, (Gm)/A).

By [SGA 3II, 11.4.2], this is represented by a smooth separated scheme over  k. Wedefine a subscheme

∆(A) =

 {χ

 ∈ X∗(

DG)(A) : χ   factors through  G/A 

→ GL(V )/A

}.

Note that ∆ is finite and nonempty, and  G  is connected. Thus the induced action of G  on ∆ is trivial, so G  fixes some  χ ∈ ∆(k). Let  V χ  be the suprepresentation of  V generated by all  χ-typical vectors, i.e.

V χ(A) = v ∈ V /A : g · v = χ(g)v   for all  g ∈ G(A)}.

After replacing  V   by V χ, we may assume DG  acts on  V   by a character  χ. That is,as a subgroup of  GL(n), DG ⊂ Gm. Since the determinant map kills commutators,DG ⊂ Gm ∩ SL(n) = µn, so DG  is finite. Since  G  connected, Theorem 3.2.11 tells

us that DG = 1, so  G  is abelian, and we’re done.Example 3.2.15.   If  k  is algebraically closed and  G/k ⊂ GL(n)/k   is solvable, thenthere exists a filtration  G = G0 ⊃ · · · ⊃  Gn  = 1 such that  G0/G1   Gr

m, and allhigher  Gi/Gi+1    Ga. We will see that this property determines  G1. We knowthere is  v ∈ k⊕n which is a common eigenvector of all  g ∈ DG(k). This gives us acharacter  χ : DG → Gm.  

Example 3.2.16.  This shows that Theorem 3.2.14 does not hold over non-algebraicallyclosed fields. Let

G/R = a   −bb a ⊂ GL(2)/R.

Note that  G(R)  C× (in fact, G = RC/RGm) viaa   −bb a

↔ a + bi.

The group G  is commutative (hence solvable), but it is not conjugate to  B(2) by an

element of  GL2(R). Indeed, note that

  −1

1   is not diagonalizable in  GL2(R)

because it has eigenvalues ±i.   For a general group, we’ll have a subgroup RG, the   radical   of   G. It will

be the largest connected normal solvable subgroup of   G. It will turn out thatrad(g) = Lie(RG).

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 25/81

Linear algebraic groups    25

3.3 Quotients

Let G/k  be an algebraic group,  N  ⊂ G  a sub-algebraic group. As functors of points,N (A) is a normal subgroup of  G(A) for all  k-algebras A.

Example 3.3.1.   Let  k = R, and consider  µ2 = ker(Gm

(−)2

−−−→ Gm) over  k. Shouldwe consider the sequence

1 → µ2 → Gm2−→ Gm → 1

to be exact? On  C-points, this is the sequence

1 → {±1} → C×   2−→ C× → 1

which is certainly exact. So we will write  Gm  =  Gm/µ2. Note however that the

sequence for R-points is 1 → {±1} → R×   2−→ R×, which is not  exact on the right.  

In general, if 1 → N  → G → H  → 1 is an “exact sequence” of algebraic groups,we will not necessarily have surjections from the A-points of  G to the  A-points of  H .

Definition 3.3.2.   Let  N /k ⊂ G/k  be a sub-algebraic group. A  quotient  of  G  by  N 

is a homomorphism  G  q−→ Q  of algebraic groups over  k  with kernel  N , such that if 

G  φ−→ G vanishes on  N , then there is a unique  ψ : Q → G such that the following 

diagram commutes:

1   N G Q

G

q

φψ

Theorem 3.3.3.  Quotients exist in the category of (possibly non-smooth) affine group schemes of finite type over  k.

Proof.   This is [Mil14, 10.16].

If  G/H  is the quotient of  G by a subgroup H , it is generally true that (G/H )(k) =G(k)/H (k).

 There is a more abstract, but powerful approach to defining quotients. Let  Schkbe the category of schemes over  Spec(k). We can regard any scheme over  k  as anfppf sheaf on  Schk  via the Yoneda embedding. If  H  ⊂ G  is a closed subgroup-scheme,we write  G/H   for the quotient sheaf of  S  → G(S )/H (S ) in the fppf topology. By[SGA 3I,  VIA  3.2], this quotient sheaf is representable. By general nonsense, it willsatisfy more elementary definition of quotient.  

3.4 Unipotent groups

Recall that for the moment,   B(n) ⊂  GL(n) is the subgroup of upper triangularmatrices and  U (n) ⊂ B(n) is the subgroup of  strictly   upper-triangular matrices.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 26/81

Linear algebraic groups    26

Recall that in our filtration of  B(n) ⊂ GL(n), we had B(n)/U (n)  Gnm, and all

further quotients were  Gra   for varying  r. We’d like to generalize this to an arbitrary

connected solvable groups over algebraically closed fields. For the moment though,k  need not be algebraically closed.

Definition 3.4.1.   Let   G/k   be an algebraic group. We say   G   is   unipotent   if it admits a filtration  G =  G0 ⊃ · · · ⊃ Gn  = 1  of closed subgroups defined over  k  such that 

1. each  Gi+1   is normal in  Gi,

2. each  Gi/Gi+1  is isomorphic to a closed subgroup of  Ga.

Clearly, unipotent groups are solvable. If  k  has characteristic zero, we can assumeGi/Gi+1  Ga. If  k  has characteristic  p > 0, then we have to worry about things

like  α p  = ker(Ga p

−→ Ga). Fortunately, by [SGA 3II, XVII 1.5], the only possible

closed subgroups of  Ga  over a field of characteristic  p are 0,  Ga  and extensions of (Z/p)r by α pe .

Theorem 3.4.2.   Let  G/k  be a connected linear algebraic group. Then  G  is unipotent if and only if it is isomorphic to a closed subgroup of some  U (n)/k.

Proof.  This follows directly from [SGA 3II, XVII 3.5].

If  G/k   is unipotent and  ρ :  G → GL(V ) is a representation, then for all  g ∈ G(k),the matrix ρ(g) is unipotent, i.e. (ρ(g)

−1)n = 0 for some  n 1. Indeed, by [SGA

3II,  XVII 3.4], for any such representation, there is a  G-stable filtration  fil• V   forwhich the action of   G   on   gr•(V ) is trivial. In other words,   ρ   is conjugate to arepresentation which factors through some  U (n), and elements of  U (n)(k) are allunipotent. Conversely, by [SGA 3II, XVII 3.8], if  k  is algebraically closed and everyelement of  G(k) ⊂ GLn(k) is unipotent, then  G  is unipotent when considered as analgebraic group.

Theorem 3.4.3.   Let  G/k  be a connected solvable smooth group over a perfect field k. Then there exists a unique connected normal  Gu ⊂ G  such that 

1.   Gu  is unipotent,

2.   G/Gu  is of multiplicative type .

Proof.   This is [Mil14, XVII 17.23].

Recall that an algebraic group  G/k   is  of multiplicative type  if it is locally (in thefpqc topology) the form  A → hom(M, A×), for M  an (abstract) abelian group [SGA3II, IX 1.1]. Over a perfect field, any group of multiplicative type is locally of thisform after an etale base change. In particular, if  k  has characteristic zero,  G/Gu

will be a torus. If moreover  k = k, then  G/Gu   Grm. In general,  G/Gu  will be a

closed subgroup of a torus.

Example 3.4.4.   If  G =  B(n) ⊂ GL(n), then Gu = U (n), the subgroup of strictlyupper-triangular matrices.  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 27/81

Linear algebraic groups    27

3.5 Review of canonical filtration

For this section, assume  k   is a perfect field.Let G/k  be a smooth connected linear algebraic group. In [cite], we defined RG,

the radical of  G, to be the largest normal subgroup of  G  that is connected and

solvable.The  unipotent radical  RuG of  G, is by definition (RG)u. As in subsection 1.6,we have a diagram

G

∪   finite

connected   G◦

∪   semisimple

solvable  R

G∪   torus

unipotent   RuG

∪1

reductive

So the group RuG  is unipotent, RG   is solvable. The quotient RG/RuG   is atorus (we could define a torus to be a solvable group with trivial unipotent radical.)

The quotient  G/

RG   is  semisimple , and  G/

RuG   is   reductive . There is a good

structure theory for semisimple groups.

Definition 3.5.1.   Let  k  be a perfect field. A connected linear algebraic group  G/k

is   reductive  if  RuG = 1.

Over a non-perfect field  k, we say G/k  is reductive if  Ru(Gk) = 1. If  k  is perfect,then Ru(Gk) descends uniquely to a group RuG  defined over  k, but this is not truein general. Over a non-perfect field, one calls G  pseudo-reductive   if we only haveRuG = 1. The main example of a pseudo-reductive group which is not reductiveis any group of the form   RK/k G, where   K/k   is purely inseparable and   G/K   isreductive. There is a reasonably satisfying structure theory for pseudo-reductivegroups, worked out in [CGP10].

Example 3.5.2.   The group  GL(n) is reductive, even though R GL(n) =   Gm   isnontrivial.  

Definition 3.5.3.  A connected linear algebraic group  G  is   semisimple  if  RG = 1.

Example 3.5.4.   The group  SL(n) is semisimple. The subgroup µn  = Z(SLn) isa solvable normal subgroup, but it’s not connected (or not smooth, if the basecharacteristic divides  n).  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 28/81

Linear algebraic groups    28

3.6 Jordan decomposition

To begin with, let  k  be an algebraically closed field,  V   a finite-dimensional  k-vectorspace. Let  x ∈ gl(V ). Then we can consider the action of a polynomial ring  k[x] onV   via  x. By the fundamental theorem of finitely generated modules over a principal

ideal domain [Alg4–7, VII §2.2 thm.1], we have  V   = λ V λ, where for  λ ∈  k, wedefineV λ  = {v ∈ V   : (x − λ)nv = 0 for some  n 1}.

The λ for which  V λ = 0 are called  eigenvalues   of  x, and  dim(V λ) is the  multiplicity of  λ. By a further application of the fundamental theorem for modules over a PID,we get that each  V λ 

i k[x]/(x − λ)ni .

The k-vector space  k[x]/(t − λ)n has basis {vi  = (t − λ)n−i}ni=1. Moreover,

tv1 = λv1

tv2 = λv2 + v2  · · ·When we write  x with respect to this basis, we get the  n × n matrix  J n(λ) which isλ  along the diagonal, 1 just above the diagonal, and zeros everywhere else.

For a general endomorphism  x ∈ gl(V ), we end up with a direct sum decomposi-tion (with respect to some basis)  g =

J ni(λi).

In all of this, we used  k  =  k. Over a general field k, we’ll be able to write amatrix  x  as the sum of a diagonal matrix and a strictly upper triangular (hencenilpotent) matrix. Suppose we have written x =  xss + xn, where  xss   is diagonal and

xn   is nilpotent. It turns out that  xss   is uniquely determined, and is a polynomial inx. That is, there exists a polynomial  f  ∈  k[x], possibly depending on  x, such thatxss = f (x), and similarly for  xn.

For the remainder of this section, let  k  be an arbitrary perfect field,  V   a finite-dimensional k-vector space.

Definition 3.6.1.   An element  x ∈ gl(V )  is   semisimple  if it is diagonalizable after base-change to an extension of  k.

Definition 3.6.2.   An element  x ∈

 gl(V )   is   nilpotent  if  xn = 0  for some  n 1.

Definition 3.6.3.   An element  x ∈ GL(V )  is  unipotent  if  x − 1  is nilpotent.

Theorem 3.6.4  (Additive Jordan decomposition).  For any  x ∈ gl(V ), there exists unique elements  xss ∈ GL(V ),  xn ∈ gl(V ), such that 

1.   x =  xss + gn,

2.   xss   is semisimple,

3.   xn   is nilpotent, and 4.   [xss, xn] = 0.

Moreover, there exist polynomials  f, g ∈ k[x]  such that  xss  = f (x)  and  xn  = g(x).

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 29/81

Linear algebraic groups    29

Proof.  Case 1: the eigenvalues of  x  lie in  k. Then by the theory of Jordan normalform, we get existence of a decomposition. Suppose  x =  xss + xn  = yss + yn  are twodistinct decompositions. Then  yss − yss = −yn + hn, and  xss,  xn  commute with  tss,tn. This is because xss   and  xn   are polynomials in  x. It follows that −xn +  yn   isnilpotent. The matrices xss,  yss  commute, so they are simultaneously diagonalizable.

So  xss − yss   is still semisimple. But  xss − yss  is also nilpotent, so  xss  = yss.Case 2: the eigenvalues of   x  may not lie in  k. Take a Galois extension K/k

containing all the eigenvalues of  x. (For example, we could let  K  be the extensionof  k  generated by the eigenvalues of  x.) We can write  x =  xss + xn, where  xss, xn ∈gl(V ) ⊗ K . For any  σ ∈ Gal(K/k), we have  σ(x) = x, because  x ∈ gl(V ). But thenx  =  σ(xss) +  σ(xn), and this is another additive Jordan decomposition of  x. Byuniqueness in the first case, we see that  xss   and  xn  are fixed by  σ. Since  σ   wasarbitrary, xss  and xn  lie in  gl(V ).

For a more careful proof, see [Alg4–7, VII §5.8 thm.1].Example 3.6.5.  This shows that the perfectness hypothesis on  k  is necessary. Let

k  =  F2(t). Consider the matrix x =

  1

t

. This has characteristic polynomial

x2 − t, so its only eigenvalue is√ 

2   appearing with multiplicity two. So the only

way we could give  x  a Jordan decomposition is

√ t √ 

t

+

−√ t   1

t   −√ t

. The

problem is, this doesn’t work after a separable base change. More concretely, thisdoesn’t descend back to  k.  

Theorem 3.6.6   (Multiplicative Jordan decomposition).   Let  k  be a perfect field,V   a finite-dimensional   k-vector space. For any   g ∈   GL(V ), there exists unique gss, gu ∈ GL(V )  such that 

1.   g = gssgu,

2.   gss   is semisimple,

3.   gu   is unipotent, and 

4.   gss  and  gu  commute.

Proof.  Recall that we can write  g = gss + gn. Just rewrite it as  gss(1 + g−1ss   gn), and

note that  g−1ss   gn   is nilpotent because  gn   is nilpotent and  gss  commutes with gn. So

gu = 1 + g−1ss   gn. Uniqueness is similarly easy.

We’d like to connect the theory of Jordan decomposition with algebraic groups.Let  G/k  be a linear algebraic group,  ρ :  G → GL(n) a representation. For  g ∈ G(k),we can write  ρ(g) = hsshu. It is a beautiful fact that  hss  = ρ(gss),  hu  = ρ(gu) foruniquely determined  gss, gu

 ∈ G(k).

Similarly, let  g  be a  k-Lie algebra,  ρ :  g → gl(V ) a faithful representation. Forx ∈ g, the decomposition  ρ(x) = ρ(x)ss + ρ(x)n  comes from a uniquely determineddecomposition   x   =   xss  + xn. However, the decomposition   x   =   xss  + xn   is notfunctorial – the decomposition may be different for a different embedding  g → gl(V ).

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 30/81

Linear algebraic groups    30

Let   f   :   G →   H  be a homomorphism of linear algebraic groups defined overa perfect field   k. Let   g ∈   G(k). Then   f (g)ss   =   f (gss) and   f (g)u   =   f (gu). Inother words, the Jordan decomposition is functorial. It follows that if  G/k   is anaffine algebraic group (without a choice of embedding   G →   GL(n)), then themultiplicative Jordan decomposition within G is well-defined, independent of any

choice of embedding.

3.7 Diagonalizable groups

Let  k  be a field; recall that we are working in the category of fppf sheaves on  Schk.The affine line   A1(S ) = Γ(S,O S ) is such a sheaf. We have already written   Ga

for the affine line considered as an algebraic group. Since Γ(S,O S ) is naturally acommutative ring, we can consider  A1 as a  ring scheme , i.e. a commutative ringobject in the category of schemes. We will write  O   for  A1 so considered.

Thus if  G/k   is an affine algebraic group, the coordinate ring of  G  is

O (G) = hom(G, A1).

We will be interested in

X∗(G) = homGrp/k(G, Gm) ⊂ O (G),

the set of  characters   of  G.

Lemma 3.7.1.   The set  X∗(G)   is linearly independent in  O (G).

Proof.  We may assume k  is algebraically closed. Let χ1, . . . , χn be distinct charactersof  G, and suppose there is some relation

 ciχi  = 0 in  O (G) with the  ci ∈  k. If 

n = 1, there is nothing to prove. In the general case, we may assume  c1 = 0. Thereexists a  k-algebra A and  h ∈ G(A) such that  χ1(h) = χn(h). Note that

ciχn(h)χi(g) =

ciχi(h)χi(g) = 0,

for all  g ∈ G. This implies

n−1i=1

ci(χn(h) − χi(h))χi(g) = 0

for all  g ∈  G(B) for   A-algebras  B. Thus χ1, . . . , χn−1   are linearly dependent inO (G)⊗kA. The only way this can happen is for χ1, . . . , χn−1 to be linearly dependentin  O (G). Induction yields a contradiction.

The set  X∗(G) naturally has the structure of a group, coming from the grouplaw on  Gm. If  χ1, χ2

 ∈ X(G), then

(χ1 + χ2)(g) = χ1(g)χ2(g).

Warning : this notation is confusing, because the group law in   Gm   is writtenmultiplicatively. But the group law on X∗(G) will always be written additively.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 31/81

Linear algebraic groups    31

Example 3.7.2.  As an exercise, check that X∗(Ga) = 0.  

Example 3.7.3.  One has  X∗(SL2) = 0. More generally,  X∗(SLn) = 0 for all  n.  

Example 3.7.4.   Let’s compute   X∗(Gm) =   homGrp(Gm, Gm). We claim thatX∗(Gm)

   Z   as a group, with   n

 ∈  Z   corresponding to the character   t

  →  tn.

Indeed,   O (Gm) =   k[t±1], so we have to classify elements   f  ∈   k[t±1] such that∆(f ) = f  ⊗ f . It is easy to check that these are precisely the powers of  t. Alterna-tively, use the fact that  O (G) has a basis consisting of the obvious characters; bylinear independence of characters, these are the only ones.  

It is easy to check that  X∗(G1 × G2) = X∗(G1) ⊕ X∗(G2). Thus X∗(Gnm) = Zn.

A tuple  a = (a1, . . . , an) ∈ Zn corresponds to the character (t1, . . . , tn) → taii   .

Example 3.7.5.  There is a canonical isomorphism  X∗(µn) = Z/n, even if  n is notinvertible in  k. There is an obvious inclusion  Z/n

→ X(µn) sending  a

 ∈ Z/n to the

character  t → ta. This inclusion is an isomorphism.  

In classical texts, if the base field has characteristic   p >   0, then   X(µ p) = 0because they only treat k-points. In fact, in such texts, they have “µ p  = 1.”

From Example 3.7.4 and Example 3.7.5, we see that all finitely generated abeliangroups arise as X(G) for some  G.

Theorem 3.7.6.   Let   G/k   be a linear algebraic group. Then the following are equivalent:

1.   G  is isomorphic to a closed subgroup of some  Gnm.

2.   X∗(G)  is a finitely generated abelian group, and forms a  k-basis for  O (G).

3.   Any representation  ρ :  G → GL(n)  is a direct sum of one-dimensional repre-sentations.

Proof.   1 ⇒ 2. An embedding  G → Gnm   induces a surjection  O (Gn

m) O (G). Theimage in  O (G) of a character  χ ∈  O (Gn

m) is a character, and  O (Gnm) has a basis

consisting of characters. The image of a basis is a generating set, so we’re done.

Alternatively, see [Mil14, 14.8].2 ⇒ 3. This is [Mil14, 14.11].3 ⇒   1. By Theorem 2.6.1, there exists an embedding  G →  GL(n), and by 3,

we can assume the image of  G  lies in the subgroup of diagonal matrices, which isisomorphic to  Gn

m.

Definition 3.7.7.   Let   G   be a linear algebraic group. If   G   satisfies any of the equivalent conditions of  Theorem 3.7.6 , we say that  G  is   diagonalizable.

It is possible to classify diagonalizable groups. Let M  be a finitely generated

abelian group, whose group law is written multiplicatively. The basic idea isto construct an algebraic group  D(M ) such that there is a natural isomorphismX∗(D(M )) = M . We first define D(M ) as a functor  Algk → Grp  by

D(M )(A) = homGrp(M, A×).

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 32/81

Linear algebraic groups    32

This is representable, with coordinate ring the group ring

k[M ] =

m∈M 

cm · m :  cm = 0 for only finitely many  m

.

In other words,   k[M ] is the free   k-vector space on   M . Addition is formal, andmultiplication is defined by (c1m1)(c2m2) = c1c2(m1m2), the multiplication  m1m2

taking place in  M . It is easy to check that D(M )(A) = hom(k[M ], A).There is a canonical isomorphism  X∗(D(M )) = M . Given  m ∈ X∗(D(M )), we

get a character  χm : D(M ) → Gm  defined on  A-points by

χm(φ) = φ(m) (φ :  M  → A×).

We will see that this is an isomorphism.The operation “take D(

−)” is naturally a contravariant functor from the category

of finitely generated abelian groups to the category of diagonalizable groups over  k.By [SGA 3II, VIII 1.6], it induces an (anti-) equivalence of categories

D : {f.g. ab. groups} {diagonalizable gps. over  k} : X∗ .

So diagonalizable groups are exactly those of the form D(M ) for a finitely generatedabelian group  M . More concretely, every diagonalizable group will be of the form

Gnm × µn1 × · · · × µnr .

3.8 Tori

Let k  be a field. Recall that we have an equivalence of categories:

X∗ : {diagonalizable groups  /k} {f.g. ab. groups} : D .

Here X∗(G) =∗ hom(G, Gm) and D(M )(A) = hom(M, A×).

Definition 3.8.1.  An algebraic group  G/k   has  multiplicative type   if  Gk   is diago-nalizable.

 The general definition is in [SGA 3III ,  IX 1.1]. An affine group scheme  G/S 

is said to be of multiplicative type if there is an fpqc cover S  →  S  such that  GS 

is diagonalizable. One says  G   is  isotrivial   if  S  →  S  may be taken to be a finiteetale cover. By [SGA 3II, X 5.16], all groups of multiplicative type over a field areisotrivial. So if  G/k  is of multiplicative type, there exists a finite separable extensionK/k  such that  GK   is diagonalizable.  

Definition 3.8.2.  An algebraic group  G/k   is a  split torus   if  G  Gnm   for some  n.

The group  G  is a   torus   if  Gk  is a split torus over  k.

 As above, the general definition in [SGA 3II, IX 1.3] is that G/S  is a torus if thereis an fpqc cover S  →  S  such that  GS    Gn

m/S . As with groups of multiplicative

type, if   T /k   is a torus, then there is a finite separable extension   K/k   such thatT K    Gn

m/K .  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 33/81

Linear algebraic groups    33

Example 3.8.3 (Nonsplit tori).  Recall that if  K/k  is a field extension and G/K  is analgebraic group, then the Weil restriction  RK/k G is the algebraic group representingthe functor  A →  G(A ⊗k  K ) on  k-algebras  A. Consider  G  =  RK/k Gm. For anyk-algebra A, we have (by definition)  G(A) = (A ⊗k K )×. Note that  G(A) acts onK A  via multiplication, so there is an embedding  RK/k Gm 

→ GL(K )/k. If  K/k   is

Galois, there is a canonical isomorphism of  k-algebras  K  ⊗k  K    ∼−→ Γ K , whereΓ = Gal(K/k). It sends x ⊗ y  to the tuple (xγ (y))γ . Now for A ∈ AlgK , we compute

G(A ⊗k K ) = G(A ⊗K  (K  ⊗k K ))

= G

A ⊗K 

Γ

=

ΓG(A).

Thus (RK/k Gm)K    = 

Γ Gm/K , hence   RK/k Gm   is a torus. But   RK/k Gm   isnot diagonalizable. If it were, by Theorem 3.7.6 the representation  RK/k Gm   →GL(K )/k  would factor through the diagonal, whence all coordinates of the image of (RK/k Gm)(k) = K × would be in  k, which is clearly false.  

Example 3.8.4.  A specific case of  Example 3.8.3 that is of special interest is whenthe field extension is  C/R. One writes  S =  RC/RGm, and calls a representationρ   :   S →   GL(V ) a  Hodge structure   on   V . The natural embedding   RC/RGm   →GL(C)/R  can be made explicit via

S(A) = (A ⊗R C)×

= {((a, b) ∈ A × A :  a2 + b2 ∈ A×}

a   −bb a

⊂ GL2(A).

See §2 of Deligne’s paper [Del71] for more on Hodge structures.  

Just as we have a nice classification of diagonalizable groups, we’d like to havea classification theorem for tori (or, more generally, groups of multiplicative type).For general groups  G/k, we define

X∗(G) = homGrp/ksep

Gksep, Gm/ksep

.

This is an abelian group, and naturally has an action of Γk  = Gal(ksep/k). Indeed,for  γ  ∈ Γk, let  γ  : Spec(ksep) → Spec(ksep) be the induced map. The pullback  γ ∗Gis defined on  ksep-algebras A by

(γ ∗G)(A) = G(A ⊗γ  ksep).

In other words,   A   is viewed as a   ksep-algebra via   γ , so that   x · a   =   γ (x)a. If χ ∈ X∗(G), the character  γχ  is defined by the commutative diagram, in which the

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 34/81

Linear algebraic groups    34

outer squares are pullbacks:

Gksep   γ ∗Gksep   γ ∗Gm/ksep   Gm/ksep

ksep ksep ksep ksep

γ ∗χ

γ −1

γ 

(∗)

Here we have written ksep instead of  Spec(ksep) in order to save space. On ksep-points,this map is (γχ)(g) = γ (χ(γ −1g)).

Example 3.8.5.   Let K/k  be a finite Galois extension with Γ =  Gal(K/k). We haveseen in Example 3.8.3 that there is a natural isomorphism  X ∗(RK/k Gm) = Z[Γ] of abelian groups. It is a good exercise to check that this isomorphism respects theΓ-action, i.e. that  X ∗(RK/k Gm) = Z[Γ] as Γ-modules.  

Example 3.8.6.   Let  S be the group in Example 3.8.4.  Then over  R, all charactersare powers of 

det :

a   −bb a

→ a2 + b2.

But over  C, there are two characters,

z :

a   −bb a

→ a + bi

z : a   −bb a

→ a − bi.

The group   X∗(GC) has some extra structure, namely an action of the groupGal(C/R) = c. The generator   c   interchanges   z   and   z. So under the obviousisomorphism X∗(G)  Z2, the action of  Gal(C/R) is c · (n1, n2) = (n2, n1). More-over, H0(R, X∗(G)) = detZ, and the kernel of det on  G  is

Sdet=1 = a   −b

b a : a2 + b2 = 1 ⊂ GL(2)/R.

The group  Sdet=1 fits inside a short exact sequence 1 → Sdet=1 → S → Gm → 1, soon the level of characters, we have a short exact sequence of  Z[Gal(C/R)]-modules

0 → X∗(Gm) → X∗(S) → X∗(Sdet=1) → 0.

Complex conjugation c  acts on the quotient  X∗(Sdet=1) as multiplication by −1.  

Theorem 3.8.7.   Let  k  be a field,  Γ = Gal(ksep/k). Then the functor  X∗ induces 

an exact anti-equivalence of categories 

{groups of mult. type over  k}   ∼−→ { f.g. ab. groups with cont.  Γ-action }.

Proof.   This is [SGA 3II, X 1.4].

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 35/81

Linear algebraic groups    35

In general, we call the action of a profinite group Γ on a discrete set  X  continuous if the map Γ × X  → X   is continuous. Equivalently, for each x ∈ X , the stabilizerStabΓ(x) is open. The action of Γ on X∗(G) is as given in (∗).

 In the proof of  Theorem 3.2.14, we saw that it is possible to view  X∗(G) asa group scheme. This makes it possible to recover the Galois action on  X∗(G) in

a more natural manner. It is a basic fact (see [SGA 1, V 8.1]) that the categoryof finite sets with continuous Γk-action is equivalent to the category of finite etalecovers of  Spec(k). Thus the category of sets with continuous Γk-action is equivalentto the category of sheaves on  ket.

In light of this, we construct  X∗(G) as a scheme; its restriction to  ket   recoversthe usual definition of X∗(G). Put

X∗(G)(A) = homGrp/A

GA, Gm/A

.

If  G  is of multiplicative type, then by [SGA 3II,  XI 4.2], the group functor  X∗

(G) isrepresented by a smooth separated  k-scheme. The restriction of this scheme to  ket

recovers the usual definition of X∗(G).  

Example 3.8.8.   Let k  be a field of characteristic = 2. The Kummer theory tells usthat quadratic extensions K/k  are all of the form  k(

√ d)/k for d ∈ k×/2 = H1(k, µ2).

Since 2 ∈ k×, we have  µ2 = Z/2 = Aut(Gm). Thus  k-forms of  Gm  are classified byH1(k, Z/2) = k×/2. We can work this out explicitly. For  c ∈ H1(k, µ2), let  kc/k  bethe corresponding quadratic extension, and let  c∗Gm  be defined by

c∗Gm = kerRkc/k Gm → GL(kc)/k det−−→ Gm .

The group  c∗Gm  can be written explicitly asa bcb a

: a2 − cb2 = 1

⊂ GL(2)/k.

The isomorphism type of  c∗Gm  depends only on the class of  c  in k×/2. Moreover,X∗(c∗Gm)    Z, with the action of Γk   factoring through   Gal(kc/k) and being

multiplication by −1 on the unique generator of Gal(kc/k).   Note that general tori can be extremely difficult to classify. For example, when

k   =   Q, the category of tori over   Q   is anti-equivalent to the category of finitelygenerated abelian groups with ΓQ-action. The group ΓQ  can be recovered from itsfinite quotients, but it is still very mysterious.

Example 3.8.9.   Over  R, if we have an involution  c  acting on a lattice  Zn, thenwith respect to some basis,  c  wiill have the form

1⊕a ⊕ −1⊕b ⊕   11 ⊕cSo any torus over  R breaks up as a product of copies of  Gm, copies of  S, and copiesof  Sdet=1.  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 36/81

Linear algebraic groups    36

Over a general field, any torus is a quotient of products of  RK/k Gm   for varyingK/k.

If  T   is a diagonalizable group and  ρ :  T  →  GL(V ) a representation of  T , thenwe have a direct sum decomposition

V   = χ∈X∗(T )

V χ,

where V χ = {v ∈ V   : ρ(g)v =  χ(g)v   for all  g}. The χ for which V χ = 0 will be calledthe  weights   of  V . To summarize, every representation of a split torus is semisimple,the direct sum of a bunch of characters.

For  T  of multiplicative type, all representations are semisimple. The irreduciblerepresentations are given by Galois orbits in X∗(T ).

Tori have strong rigidity properties which will be useful later. Recall that if 

T 2, T 2  are tori, we write  hom(T 1, T 2) for the scheme over k  whose functor of points is

hom(T 1, T 2)(S ) = homGrp/S (T 1S , T 2S ) .

By  [SGA 3II,  XI 4.2], this is represented by a smooth scheme over   k. If   X /k   isa scheme, a  family of homomorphisms   from  T 1   to  T 2   parameterized by  X   is justa morphism   X  →   hom(T 1, T 2). By general nonsense, it is equivalent to give amorphism   φ   :   X  ×  T 1 →   T 2   such that for all   x ∈   X (S ), the map   T 1S  →   T 2S given by   t →   φ(x, t) is a homomorphism. We say a family of homomorphisms

φ :  X  → hom(T 1, T 2) is  constant   if the morphism  φ is constant, i.e. if  φ(x) does notdepend on x. Alternatively, the morphism X ×T 1 → T 2 factors as X ×T 1   T 1

φ−→ T 2.

Theorem 3.8.10  (Rigidity of tori).   Let  k  be a field,  T /k   a torus,  X /k  a connected variety. Any family  X  → hom(T, T )  of homomorphisms is constant.

Proof.  We’ll use two facts.

1. For n 1, let   nT  = ker(T   n−→ T ). Then {nT }  is dense in  T   [SGA 3II, IX 4.7].

2.   For each  n 

 1 invertible in  k, the scheme   nT   is finite etale over  k. (Thisfollows from etale descent.)

The family   X  →   hom(T, T ) induces, for each   n   invertible in   k, a family   X  →hom(nT, n), which by [SGA 3II, X 4.2] is finite etale. Since  X   is connected, eachX  → hom(nT, nT ) is constant. By the first fact, we obtain that  X   is constant.

Example 3.8.11.  This shows that Theorem 3.8.10 fails for groups that are not tori.Let  G =  SL(2). Then the map  G × G → G  given by (g, h) → ghg−1 is a perfectlygood family of homomorphisms that is not constant. One has  PSL(2) → Aut(SL2),

with image of index two. The other coset is generated by  g →  t

g−1

.  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 37/81

Linear algebraic groups    37

4 Semisimple groups

Let  k  be an algebraically closed field of characteristic zero. Let  G/k  be a reductivealgebraic group. That is,  G is connected and RuG = 1. We will associate to  G  somecombinatorial data, called the  root datum . The root datum of  G will characterize  G

up to isomorphism, will not depend on the field  k, and will completely determinethe representation theory of  G. Much of the theory will depend on the notions of maximal torus  and Borel subgroup. To prove basic properties of these, we need to beable to take quotients, and it is to this that we now turn. The theory of quotientsrequires quite a bit of, sophistication, and may safely be skipped at first reading.

4.1 Quotients revisited    

The “morally correct” place to take quotients is in the category of fppf sheaves.

Definition 4.1.1.  A finite family  {f i   :  X i →  X }  of morphisms of schemes is an fppf cover  if it is jointly surjective (on points), and each  X i → X   is flat, of finite presentation, and quasi-finite.

We write  fppf  for the topology generated by fppf covers. Recall that a topologyis called  subcanonical  if each representable functor is a sheaf. Also, a  sieve  on  X   isa subfunctor of  hX  = hom(−, X ). We reproduce the following theorem from SGA.

Theorem 4.1.2.

1.   A sieve  S   on  X   is a cover for the fppf topology if and only if there is an open affine cover  {X i}  of  X   together with affine fppf covers  {X ij → X i}  such that each  X ij → X   is in  S .

2. A presheaf  F   on  Sch  is an fppf sheaf if and only if:

(a)   F   is a Zariski sheaf.

(b)  For each fppf cover   X  →  Y , where   X   and   Y   are affine, the following diagram is an equalizer:

F (X )   F (Y )   F (Y  ×X  Y ).

3. The fppf topology is subcanonical.

4.   If  {X i →  X }  is jointly surjective and each  X i →  X   is faithfully flat and of  finite presehtation, then  {X i → X }  is an fppf cover.

Proof.   This is [SGA 3I, IV 6.3.1].

A good general source for topologies and sheaves is the book [MLM94]. Fromit, we get that the category  Shfppf (SchS ) is a   topos . That is, limits, colimits andmore exist in the category of sheaves on  SchS . However, it can be quite tricky tocheck whether a given colimit of schemes (taken in the fppf topology) is actuallyrepresented by a scheme.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 38/81

Linear algebraic groups    38

Let k  be a field. For the remainder, we’ll work in the category of fppf sheaves onSchk. We’ll call such sheaves  spaces .

Definition 4.1.3.   Let  G  be a  k-group space. A  k-space  X   is called a   G-space   if it is equipped with a morphism  G × X  → X , such that for each  S  ∈ Schk, the map

G(S ) × X (S ) → X (S )  gives an action of the group  G(S )  on the set  X (S ).

If  G/k  is an algebraic group and X /k  is a variety, we call X  a G-variety , or variety with  G-action . (Recall that for us, a  variety   over  k  is a separated scheme of finitetype over  k.) The representability of quotients  G\X  is a subtle one, but fortunatelywe only need to take quotients  G/H , where  H  ⊂ G  is an algebraic subgroup.

Theorem 4.1.4.   Let   G/k   be an algebraic group,   H  ⊂   G   an algebraic subgroup.Then the fppf quotient  G/H   is a variety over  k. If  G  is smooth, so is  G/H , and if  H is normal, then  G/H  has a unique structure of a group scheme for which  G

 → G/H 

is a homomorphism.

Proof.   This is [SGA 3I, VIA  3.2].

A major theorem whose proof uses quotients is the Borel fixed point theorem. Tostate it, we need some terminology. Following  [EGA 2, II 5.4.1], we say a morphismf   : X  → Y  of schemes is proper  if it is separated, of finite type, and if for all  Y  → Y ,the induced morphism  X Y  →   Y   is closed. We call a variety   X /k   proper if thestructure map  X  → Spec(k) is proper. There is a valuative criterion for properness[EGA 2,   II 7.3.8]. One considers pairs (A, K ), where  A   is a valuation ring withmorphism Spec(A) → Y , and  K  is the field of fractions of  Y . A morphism  X  → Y is proper if and only if for all such pairs, the map  X /Y  (A) → X /Y  (K ) is a bijection.If  f   : X  → Y  is a morphism of varieties over  C, then by [SGA 1, XII 3.2], f  is properif and  f   : X (C) → Y (C) is proper in the topological sense. (Following [Top1–4, I§10.2 th.1], a map  f   : X  → Y  between Hausdorff spaces is proper if it is closed, andthe preimage of any compact set is compact.)

Theorem 4.1.5.   Let  k  be an algebraically closed field,   G/k   a connected solvable group, and  X /k  a proper non-empty  G-variety. Then  X G

= ∅.

Proof.  We induct on the dimension of  G. If  G  is one-dimensional, then  G  is one of {Ga, Gm}, so neither G  nor any of its nontrivial quotients are proper. For  x ∈ X (k),let  Gx  =  StabG(x). Either Gx  = G, in which case  x ∈ X G(k), or  Gx   is finite, inwhich case we have an embedding  G/Gx → X  given by  g → gx. By passing to theclosure of the image of this map, we may assume the image of  G/Gx   in  X   is dense.Thus  X  G/Gx   is a  G-stable finite nonempty (because  G   isn’t proper) variety onwhich G  acts, hence  X G ⊃ X  G/Gx.

In the general case, choose a one-dimensional normal subgroup   H  ⊂   G. By

induction, X H 

= ∅, and by the first part of the proof,  X G

= (X H 

)G/H 

= ∅.For a more careful proof, see [Mil14, 18.1].

Checking the valuative (or topological) criteria for properness can be prettydifficult. There is a special class of morphisms, called  projective morphisms , that

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 39/81

Linear algebraic groups    39

are automatically proper. Let  S  be a base scheme, and  E  a quasi-coherent sheaf onS . Define a functor  P(E ) on  SchS   by

P(E )(X ) = {(L  , ϕ) : L    is invertible and  ϕ : E X   L  }/  .

That is, P(E )(X ) is the set of isomorphism classes of pairs (L  , ϕ), where L   is a linebundle on X   and ϕ : E X   L    is a surjection. By [EGA 2, II 4.2.3], this functor isrepresentable. Following [EGA 2, II 5.5.2], a morphism f   : X  → Y   is called projective if it factors as  X → P(E ) Y , where  E   is a coherent  O Y  -module,  X → P(E ) isa closed immersion and  P(E ) Y   is the canonical morphism. Equivalently,  X   isisomorphic to  Proj(A  ) for some sheaf  A    =  A  •   of graded  O Y  -algebras, which isgenerated as an  O Y  -algebra by  A  1, and for which  A  1   is coherent. By [EGA 2, II5.5.3], projective morphisms are proper. In particular, if we work over a base field  k,all closed subschemes of  P(V ) for a finite-dimensional  k-vector space  V  are proper.

You need to be careful when taking quotients. As motivation, suppose  G/k   is analgebraic group and  Z  ⊂ Z(G) is a central subgroup. For any  k-algebra  A, we havea long exact sequence

1 → Z (A) → G(A) → (G/Z )(A) → H1fppf (A, Z ) → · · ·

So (G/Z )(A) is “easy” to understand when  Z  is “cohomologically trivial” in somesense. Conversely, when  Z  has nontrivial cohomology,  G/Z  tends to be trickier tostudy directly.

Example 4.1.6.  Consider the algebraic group  PGL(n) =  GL(n)/Gm. See [Con,1.6.3] for a careful construction. It is well-known that  H1(A, Gm) =  Pic(A), thegroup of isomorphism classes of invertible   A-modules. Thus if   A   is a Dedekinddomain with non-trivial class group, the map   GLn(A)/A× →   PGLn(A) is   not surjective. But since Pic(k) = 0 for all fields  K , one has PGLn(k) = GLn(k)/k×.  

Example 4.1.7.   This problem presents itself even earlier with PSL(n) =“SL(n)/µn.”The problem is, by Kummer theory,  H1(k, µn) = k×/n whenever  n is invertible ink. So, for example,  SL2(R) →  PSL2(R) should not be surjective, because it has

cokernel  H1

(R,µ2) = Z/2. It turns out that the quotient sheaf  SL(n)/µn   is actuallyPGL(n). For this reason, we will only use notation PSL(n) when taking its  k-valuedpoints. See  http://mathoverflow.net/questions/16145/ for more discussion of this.  

4.2 Centralizers, normalizers, and transporter schemes

Here we define some constructions scheme-theoretically that will be used extensivelyin the structure theory of reductive groups. Fix a base scheme  S , and let  G/S   be a

group scheme. If  X, Y  ⊂ G  are subschemes, the   transporter scheme   TranspG(X, Y )and the  strict transporter scheme   stTranspG(X, Y ) are given by their functors of 

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 40/81

Linear algebraic groups    40

points:

TranspG(X, Y )(T ) = {g ∈ G(T ) : ad(g)(X T ) ⊂ Y T }= {g ∈ G(T ) : gX (T )g−1 ⊂ Y (T ) for all  T  → T }

stTranspG(X, Y )(T ) = {g ∈ G(T ) : ad(g)(X T ) = Y T }.

Similarly, if  u, v : X  → G  are morphisms, one defines

TranspG(u, v)(T ) = {g ∈ G(T ) : ad(g) ◦ uT   = vV }.

This enables us to define, for a subgroup-scheme  H  ⊂ G,

CG(H ) = TranspG(H → G, H → G) (the  centralizer )

NG(H ) = stTranspG(H, H ) (the   normalizer ).

We reproduce the following theorem from SGA.

Theorem 4.2.1.   Let  k  be a field,  G/k  a group scheme of finite type.

1.   If  X, Y  ⊂ G  are closed subschemes, then  TranspG(X, Y ) and  stTranspG(X, Y )are represented by closed subschemes of  G.

2.   If  u, v : X  → G  are two morphisms of schemes over  k, then  TranspG(u, v)   is represented by a closed subscheme of  G.

Proof.  This is essentially [SGA 3I, VIB  6.2.5].

Corollary 4.2.2.   Let  k  be a field,  G/k  a group scheme of finite type, and  H  ⊂ G  a closed subgroup scheme. Then  CG(H ) and  NG(H ) are represented by closed subgroupschemes of  G

Clearly CG(H ) ⊂ NG(H ).

4.3 Borel subgroups

For this section,  k  is an algebraically closed field of characteristic zero.

Definition 4.3.1.   Let  G/k  be a linear algebraic group. A  Borel subgroup  of  G   is a connected solvable subgroup  B ⊂ G  that is maximal with respect to those properties.

Theorem 4.3.2.   Let  G/k  be a linear algebraic group. Then all Borel subgroups of G  are conjugate.

Proof.   Let B1, B2  be two Borel subgroups. By [Mil14, 18.11.a], the variety  G/B1   is

proper. By Theorem 4.1.5, the left-action of  B2  on  G/B1  admits a fixed point  gB1.One has  B2 ⊂ ad(g)(B1); by maximality  B2 = ad(g)(B1).

In general, one calls the quotient  G/B   of  G  by a Borel subgroup   B   the   flag variety   of  G.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 41/81

Linear algebraic groups    41

Example 4.3.3.   If  G =  GL(n), then by Theorem 3.2.14, the subgroup  B  of upper-triangular matrices is a Borel subgroup. We will see that  G/B   is proper. Indeed,we will work in much greater generality. Let S  be a base scheme and  E   a locallyfree  O S -module. If  X /S   is a scheme, write   E X   for the pullback of   E   to  X . WriteGL(E ) for the functor  X 

 → AutO X (E X). This is an open subscheme of  V(E ∨

⊗E ),

so it is representable.Let n = rk(E ); for  r < n, let Gr(E , r) be the functor given by

Gr(E , r)(X ) = {E X   F   : F  is a locally free  O X -module of rank  r}/  .

By [Nit05,   ex.2], this is representable. note that Gr(E , 1) =  P(E ), so  Gr(E , 1) isprojective. More generally, for each  r  the operation “take  r-th wedge power” givesa closed embedding  Gr(E , r)   →  P(

rE ), so all the  Gr(E , r) are projective. Put

Gr(E ) =

r<n Gr(E , r); this is projective via the Segre embedding  [EGA 2, II 4.3.3]

P(E ) × · · · × P(n−1 E ) → P(E  ⊗ · · · ⊗n−1 E ).

Suppose   E  admits a descending filtration  fil• E   such that each quotient   E r   =E / filr has rank  r. Define a closed subgroup of GL(E ) by

B(X ) = {g ∈ GL(E )(X ) : g   preserves fil•}.

This is a Borel subgroup of  GL(E ). We will realize the relative flag variety  G/B  asa closed subscheme of  Gr(E ). If  X /S  is a scheme, a  flag (relative to   E )  on  X   is adiagram  E X   =  V  n  

 · · ·   V  0  = 0 of locally free quotients of   E X , where each  V  r

has rank  r. Write  V  •  for such a flag. Define a functor Fl(E ) by

Fl(E )(X ) = {flags relative to  E   on X }/  .

The rule V  • → (V  r)r  gives a closed embedding Fl(E ) → Gr(E ). See [DG80, I §2 6.3]for a proof when  S  = Spec(Z) and  E   = Zn.

Our filtration fil• E   induces an element of  Fl(E )(S ), namely {E   E / filr}r. Theaction of  GL(E ) on E  induces a right action of  GL(E ) on Fl(E ), in which an element

g ∈ GL(E )(X ) acts on a flag  E   V  •  by  E   g−→ E   V  •. Moreover,  B ⊂ GL(E ) acts

trivially. Assume  S   is locally noetherian. Then by [SGA 3I, V 10.1.1], the quotientGL(E )/B  exists and comes with an embedding  GL(E )/B → Fl(E ). We claim thatthis map is surjective, hence an isomorphism. Indeed, Zariski-locally, it comes downto checking that  GL(An)/B(A) → Fl(An) is surjective, which is a basic fact fromlinear algebra. Thus GL(E )/B

  ∼−→ Fl(E ).  

We will be mainly interested in when  S  = Spec(k) and  V   = kn. In this case, wewrite  Gr(n, r) = Gr(kn, r) and  Fl(n) = Fl(kn). Thus  GL(n)/B

  ∼−→ Fl(n) → Gr(n).More generally, we have the following fact.

Theorem 4.3.4.   Let  G  be a linear algebraic group,  B ⊂ G  a Borel subgroup. Then G/B   is a projective variety.

Definition 4.3.5.   Let  G  be a linear algebraic group. A closed subgroup  P  ⊂  G   is parabolic  if  G/P   is proper.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 42/81

Linear algebraic groups    42

Theorem 4.3.6.  A subgroup  P  ⊂  G  is parabolic if and only if  P  contains a Borel subgroup of  G.

Proof. ⇐. Suppose P   contains a Borel subgroup  B. Then the inclusion  B ⊂  P induces a map  G/B   G/P . Since  G/B  is proper, by [EGA 2, II 5.4.3], so is  G/P .

Alternatively, see [SGA 3II, XVI 2.5] for a proof over a general base.⇒. Consider the action of  B  on the proper variety  G/P . By Theorem 4.1.5,there is a fixed point   gP . One obtains  ad(g−1)(B) ⊂   P , so   P   contains a Borelsubgroup.

In light of this result, we could have defined a Borel subgroup to be a minimalparabolic subgroup.

4.4 Maximal tori

For this section,  k   is an algebraically closed field of characteristic zero. Let  G/k  bea linear algebraic group. A  maximal torus   in  G is a subgroup scheme  T  ⊂  G  that isa torus, and is maximal with respect to this property. In our setting, any torus in  Gis contained in a maximal torus.

Example 4.4.1.   Let   G   =   GL(n). Then we can choose   T   to be the subgroupconsisting of diagonal matrices. This is a maximal torus because all tori arediagonalizable, so any torus in  GL(n) is conjugate to a subgroup of  T . A Borelsubgroup consists of upper-triangular matrices.  

Theorem 4.4.2.   Let  G/k   be a linear algebraic group. Then all maximal tori are conjugate.

Proof.   If   G   is solvable, this is [Mil14,  17.40]. Essentially, one uses the fact thatG =  T  RuG  for any maximal torus  T .

If   G   is a general group, then different maximal tori   T 1, T 2   will live in Borelsubgroups B1, B2. By Theorem 4.3.2, the subgroups  B1  and  B2  are conjugate, sowe may as well assume  T 1  and T 2  are maximal tori in the same Borel subgroup B.But then we can use the fact that the theorem holds for solvable groups.

Example 4.4.3.   Let ρ :  G → GL(V ) be a representation, where  G  is a connectedsolvable group. Then  G  acts on  P(V ) via  GL(V ), so Theorem 4.1.5 tells us that  Gfixes a vector, i.e. that  V   contains a  G-invariant line.  

Lemma 4.4.4.   Let   T  ⊂   G   be a torus. Then the quotient   WG(T ) =  CG(T )◦ =NG(T )◦, hence the quotient  NG(T )/ CG(T )  is finite etale.

Proof.   There is an obvious family  NG(T )◦ × T  →  T  given by (y, t) →  yty−1. ByTheorem 3.8.10, this is constant, hence NG(T )◦

⊂ CG(T ).

One calls WG(T ) the  Weyl group  of the pair (G, T ). It is finite etale over k.

Lemma 4.4.5.   Let  G/k  be a connected reductive group. Then  RG = Z(G)◦.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 43/81

Linear algebraic groups    43

Proof.   Note that RG   is a torus. Since RG   is normal in   G, there is a familyG × RG → RG  given by (y, t) → yty−1. Again by Theorem 3.8.10, this is trivial,hence RG ⊂ Z(G). The result follows.

Lemma 4.4.6.   Let  G  be a connected linear algebraic group that admits a faithful 

irreducible representation  ρ :  G → GL(V ). Then  G  is reductive.

Proof.  We may assume that  G ⊂ GL(V ). Let  H  = RuG; the space  V H  is nonzerosince  H  is unipotent. In fact, since  H  is normal in  G,  V H  is a subrepresentation of V . Since  V   is simple,  V H  = V . But  G ⊂ GL(V ), so  H  = 1.

Corollary 4.4.7.   The groups  GL(n),  SL(n),  SO(2n)  and  Sp(2n)  are reductive.

Proof.   Apply Lemma 4.4.6 to the standard representations. For  SO and Sp, use thefact that the group preserves a nondegenerate bilinear form.

Theorem 4.4.8.   Let  k  be a field,  G/k  a reductive group. If  T  ⊂  G   is a torus, then CG(T )  is reductive. If  T   is maximal, then  CG(T ) = T .

Proof.   This is [SGA 3III , XIX 1.6].

4.5 Root systems

Let  k  be a field,  G/k  a reductive group,  g =  Lie(G). In subsection 2.8, we defineda canonical representation  ad :  G

 → GL(g). Let  T 

 ⊂ G  be a maximal torus. We

are interested in the representation  ad |T   : T  →  GL(g). For simplicity, assume  T   isdiagonalizable (i.e. , a  split   torus). By Theorem 3.7.6, there is a decomposition

g =

α∈X∗(T )

gα,

where for   α ∈   X∗(T ), the space   gα   = {x ∈   g   :   tg   =   α(t)g   for all  t ∈   T }. LetR(G, T ) = {α ∈ X∗(T ) 0 : gα = 0}. Then we have a decomposition

g =  g0 ⊕ α∈R(G,T )

gα.

We call R(G, T ) ⊂ X∗(G) the set of  roots   of  G. This is a finite set.Let  V  be the span of  R(G, T ) in X∗(T )R  = X∗(T ) ⊗ R. The finite set  R(G, T )

sitting inside the real vector space  V   is an example of a “root system.” Generalroot systems break up into irreducibles, and there is a combinatorial classificationof irreducible root systems into types An, Bn, Cn, Dn, G2, F4, E6, E7, E8. The rootsystem R(G, T ) ⊂ V   will recover  G/ Z(G).

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 44/81

Linear algebraic groups    44

Example 4.5.1.  We will work out the root datum of  SL(n + 1) for  n    1. Wechoose the maximal torus

T   =

diag(a1, . . . , an+1) : ai ∈ Gm  and

ai  = 1

=∗ . . .

∗ ⊂ SL(n + 1).

Define χi  : T  →  Gm  by χi(diag(a1, . . . , an+1)) = ai. Then (χ1, . . . , χn) induces anisomorphism between T  and the subgroup of  Gn+1

m   consisting of (a1, . . . , an+1) witha1 · · · an+1) = 1. Thus X∗(T ) = { aiχi  :

ai  = 0}.

The Lie algebra  sl(n + 1) is spanned by  t  = Lie(T ) and the set

{E i,j  = (δ i,aδ j,b)a,b} ⊂ sl(n + 1).Moreover, one can check that

ad (diag(a1, . . . , an+1)) (E i,j) =  aiaj

E i,j.

Thus, the root decomposition of  sl(n + 1) is

 sl(n + 1) = t ⊕i=j

E i,j.

So  R(SLn+1, T ) = {χi − χj   : i = j}. We think of  R(SLn+1) as a subset of the realvector space { aiχi  : ai ∈ R  and

 ai  = 0}.  

With this example in mind, we move towards the general definition of a rootsystem. Fix a finite-dimensional  R-vector space  V . For  α ∈ V   0, a  reflection   onV   with vector  α   is a linear map  s :  V  → V   such  s(α) = −α, and for which thereexists a decomposition  V   = Rα ⊕ U  such that α|U  = 1. Note that if  s is a reflectionwith vector  α, then s(v) − v ∈ Rα  for all  v ∈ V .

Lemma 4.5.2.   Let  V   be a finite-dimensional   R-vector space,  R ⊂ V   a finite set which spans   V , and   α ∈  V   0. There exists at most one reflection   s   of   V   with vector  α  such that  s(R) = R.

Proof.  This is [Lie4–6, VI §1.1 lem.1]. Suppose  s, s are two such reflections. Defineu =  s(s)−1. Note that  u(α) = α. Moreover,  u  induces the identity on  V /α. Thisimplies u  is unipotent. But u(R) = R, so un = 1 for some  n 1. This means that uis semisimple. The only way an operator can be both unipotent and semisimple isfor  u = 1.

Definition 4.5.3.   Let  V  be a finite-dimensional  R-vector space. A subset  R ⊂ V 0is a  root system  in  V   if the following hold:

1.   R  is finite and spans  V .

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 45/81

Linear algebraic groups    45

2.   For each   α ∈   R, there is a (unique) reflection   sα   with vector   α   such that sα(R) = R.

3. For each  α, β  ∈ R,  sα(β ) − β  ∈ Zα.

Often, we will speak of “a root system  R,” and tacitly assume that the vectorspace  V  has been given. One calls the elements of  R roots   of  R.

Let  R ⊂ V   be an arbitrary root system. For any root  α ∈ R, the reflection  sαacts on α  by −1, that is,  sα(α) = −α. Thus  α ∈ R ⇒ −α ∈ R.

Definition 4.5.4.   A root system  R   is  reduced  if whenever  cα ∈ R   for some  c ∈ R,α ∈ R, then  c = ±1.

Definition 4.5.5.   Let  R  be a root system. The  Weyl group  of  R   is the subgroupW   = W(R)  of  GL(V )  generated by  {sα  : α ∈ R}.

Since each sα  preserves R, the group  W  preserves R. Moreover, since  R  spansV , an element   w ∈   W   is determined by its restriction   w|R ∈   Perm(R). ThusW → Perm(R), so  W  is finite with cardinality   (#R)!.

For an arbitrary root system  R ⊂ V , there always exists a nondegenerate innerproduct ·, · :  V  × V  → R  that is W -invariant in the sense that wu,wv = u, vfor all  w ∈ W . Existence of such an inner product follows from the “unitary trick.”If  G  is an arbitrary compact group acting continuously on a Hilbert space  V , definea new inner product by

u, vG  =  Ggu,gv dg.

Then ·, ·G   is  G-invariant.Fix a   W -invariant inner product ·, ·   on   V . For   α ∈   R, we can write   V   =

Rα ⊕ (Rα)⊥. One has

sα(v) = v − 2v, αα, αα.

Condition 3 in the definition of a root system comes down to requiring that 2 β,αα,α ∈  Z

for all  α, β  ∈ R. For the remainder, put  n(β, α) = 2

β,α

α,α .

Example 4.5.6.   Let  V   =  R, and  R  = {±α}   for some  α = 0. This is the uniqueone-dimensional reduced root system, up to isomorphism.  

Definition 4.5.7.   Let  R1 ⊂  V 1,  R2 ⊂  V 2   be root systems. The  direct sum of  R1

and  R2  has vector space  V 1 ⊕ V 2, with root system  {R1 × 0} {0 × R2}.

We call a root system   reducible   if it can be written as the direct sum of twononzero root systems, and   irreducible   otherwise. From [Lie4–6, VI §1.2 prop.5], we

see that a root system R ⊂ V  is reducible if and only if  V  is reducible as a  W -module.Moreover, the decomposition of a root system into irreducibles is determined by thedecomposition of  V   into irreducible  W -modules.

Definition 4.5.8.   A subset  S  ⊂ R  is a   base  if 

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 46/81

Linear algebraic groups    46

1.   S  is a basis of  V 

2.   For any  β  ∈ R, write  β  =

α∈S  mαα. Then either all  mα   0  or all  mα   0.

Let  S  ⊂  R  be a base; one calls the  α ∈  S   simple roots . Let   R+ ⊂  R  be thecollection of  β 

 ∈ R   such that in the decomposition  β   = α∈S 

 mα

α, one has allmα   0. If we put R− = −R+, then by [Lie4–6, VI §1.6 th.3], one has R  =  R+ R−.

Theorem 4.5.9.   Let  R  be a root system.

1. A base for  R  exists.

2. If  S 1, S 2 ⊂ R  are bases, then there exists  w ∈ W   such that  w(S 1) = S 2.

3.   R =

w∈W  w(S ).

4.   W   is generated by  {sα  : α ∈ S }.

Proof.  These all follow from various results in [Lie4–6,  VI §1.5]. Namely, 1 and 4follow from parts (ii) and (vii) of Theorem 2. The claim 3 follows from Proposition15, and 2 follows from the corollary to that proposition.

Let R ⊂ V  be a reduced root system,  W   = W(R), and ·, ·  a  W -invariant innerproduct on V . Fix α, β  ∈ R that are linearly independent. Let φ be the angle between

α  and  β , determined by α, β   = |α| · |β | cos φ. We have  n(β, α) = 2 |β||α| cos φ ∈ Z.

Moreover, n(α, β )n(β, α) = 4 cos2 φ ∈ {

0, 1, 2, 3, 4}

, so the possibilities for φ  are verylimited. In fact, we can write them all down:

n(α, β )   n(β, α)   φ   |β |/|α|0 0   π/2 ?1 1   π/3 1

−1   −1 2π/3 1

1 2   π/4√ 

2−1   −2 3π/4

√ 2

1 3   π/6√ 

3

−1   −3 5π/6 √ 3Even with this finite list, classifying reduced root systems directly is tricky. We

will classify them via a type of graph (with extra data) called a  Dynkin diagram .The following definition is from [Lie4–6, VI §4.2].

Definition 4.5.10.   A Dynkin graph  is a pair  (Γ, f ), where  Γ is an undirected graph and 

f   : {(γ 1, γ 2) ∈ Γ × Γ : γ 1   and  γ 2  are connected by an edge } → R

satisfies  f (γ 1, γ 2)f (γ 2, γ 1) = 1  whenever the expression is defined.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 47/81

Linear algebraic groups    47

If  R ⊂ V  is a reduced root system, we define a Dynkin graph (Df ), = Dyn(R)as follows. Choose a base  S   of   R. The vertices of   D   are elements of   S . Givenα =  β  ∈  S , put  f (α, β ) =   n(α,β)

n(β,α) . For any two vertices  α, β  ∈   R, after possibly

switching  α  and  β , we will have  f (α, β ) ∈ Z. In  Dyn(R), there are |f (α, β ) edgesbetween α  and β . From the above table, we see that there are at most 3 edges.

By [Lie4–6,   VI §4.2], the Dynkin diagram  Dyn(R) only depends on  R, in thesense that the choice of another basis yields a Dynkin graph that is canonicallyisomorphic to the first one. Moreover,  Dyn(−) induces an injection from the setof isomorphism classes of reduced root systems to the set of isomorphism classesof Dynkin graphs. Moreover,  R  is irreducible if and only if  Dyn(R) is connected,the decomposition of  R  into irreducibles matches the decomposition of  Dyn(R) intoconnected components, and Aut(R)/ W(R)

  ∼−→ Aut(Dyn R).

4.6 Classification of root systemsWe begin with what will turn out to be a complete list of examples of reducedroot systems, following   [Lie4–6, VI §4]. For some of the more complicated rootsystems (e.g. E8) we only give the associated Dynkin diagram. When drawingDynkin diagrams, if  f (i, j) >  1, we place an inequality sign  >  over the arrows fromi  to j. For example, if  f (i, j) = 2, we put  i ⇒ j .

Example 4.6.1   (type An,  n    1).   Let  n    1. Let  V   = {x ∈  Rn+1 : 

xi  = 0},and give   Rn+1 the standard basis  e1, . . . , en+1  and standard inner product ·, ·.

The root system An ⊂ V   is

An  = {ei − ej   : i = j}.

Clearly An   is finite and spans  V . For each root  α, put

sα(v) = v − 2v, αα, αα =  v − v, αα.

If  i < j, then it is easy to check that

sei−ej (a1, . . . , an+1) = (a1, . . . , aj , . . . , ai, . . . , an+1) (ai  and aj  swapped)

For all  α, β  ∈  An, one has  sα(β ) − β  = −β, αα, and β, α ∈ {0, ±1, ±2}, so An

is indeed a root system. It is clearly reduced. The group W(An) is generated byall linear transformations of the form “swap   ith and   jth coordinates.” Thus wecan identify  W(An) with the set of permutation matrices in  GL(V ). Note that thestandard inner product ·, ·  on V   is  W -invariant. The Dynkin diagram of An   is

• • · · · • •  (n  vertices).

Example 4.6.2   (type A1 × A1).  This root system lives inside  V   =  R2 and  R  ={±(α, 0), ±(0, β )}. We draw it as:

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 48/81

Linear algebraic groups    48

α

−α

β −β 

The Dynkin diagram of A1 × A1  is a disjoint union of two points.  

Example 4.6.3  (type A2).  This root system can be drawn as living in  R2 with thestandard metric. It looks like:

The roots lie on the unit circle and at multiples of the angle   π/3. The Dynkindiagram is   • •   .  

Example 4.6.4  (type Bn, n 2).   Let V   = R

n

and the roots be {±ei}∪{±ei± ej   :i < j}. The Dynkin diagram of Bn   is

• • · · · • • •   (n vertices).

Example 4.6.5  (type B2).  This root system lives in  R2, and looks like

The Dynkin diagram Dyn(B2) is   • •   .  

Example 4.6.6  (type Cn,  n 2).  The ambient vector space is  V   = Rn, and the

set of roots is {±2ei}∪{±ei ± ej   : i < j}. The Dynkin diagram is

• • · · · • • •   (n vertices).

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 49/81

Linear algebraic groups    49

Example 4.6.7  (type Dn,  n 4).  The ambient vector space is  V   = Rn, and theset of roots is {ei}∪{±ei ± ej   : i < j}. The Dynkin diagram is

• • · · · • • •(n vertices).

Example 4.6.8  (type E6).  The space V   is the subspace of  R8 consisting of vectorsx  such that  x6 = x7 = −x8. The roots are {±ei ± ej   : i < j   5}, together with all

±1

2

e8 − e7 − e6 +

5

i=1

(−1)ν (i)ei

,

where 

ν (i) is even. The Dynkin diagram is

• • • • •

Example 4.6.9  (type E7

).   Here V   is the hyperplane in  R8 orthogonal to e7

 + e8

.The set of roots is {±ei ± ej   : i < j   6}∪{±(e7 − e8)}, together with all

±1

2

e7 − e8 +

6i=1

(−1)ν (i)ei

,

where 

ν (i) is odd. The Dynkin diagram is

• • • • • •

Example 4.6.10  (type E8).  The vector space is  R8, and the set of roots consists

of  {±ei ± ej   : i < j}, together with all   12

8i=1(−1)ν (i)ei   for which

 ν (i) is even.

The Dynkin diagram is

•• • • • • • •

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 50/81

Linear algebraic groups    50

Example 4.6.11  (type F4).  The space is  R4, the set of roots is {±ei}∪{±ei ± ej   :e < i}, together with   1

2 (±e1 ± e2 ± e3 ± e4). The Dynkin diagram is

• • • •

Example 4.6.12  (type G2).  This is one of the exceptional root systems. It livesinside  R2 and looks like:

The inner collection of roots is a copy of A2. The outer collection has radius√ 

3,and is rotated by  π/6. The Dynkin diagram of G2   is • •.  

It is possible to classify the Dynkin diagrams of irreducible reduced root systems.

Theorem 4.6.13.   Let  R  be an irreducible reduced root system,  D =  Dyn(R). Then D  is a unique one of:

•   An   ( n 1)

•   Bn   ( n 2)

•   Cn   ( n 3)

•   Dn   ( n 4)

•   E6,  E7,  E8

•   F4

•   G2

Proof.   This is [Lie4–6, VI §4.2 th.3].

From the examples in [Mil14, Ch.23], we see that we can obtain all the infinitefamilies of root systems from algebraic groups:

group root systemSL(n + 1) An

SO(2n + 1) Bn

Sp(2n) Cn

SO(2n) Dn

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 51/81

Linear algebraic groups    51

Automorphisms of a reductive group will be classified by automorphisms of thecorresponding root system. So we will make use of the following table:

root system outer automorphismsA1   1

An  (n 2)   Z/2Bn   1Cn   1D4   S 3

Dn  (n 5)   Z/2E6   Z/2

E7, E8, F4, G2   1

4.7 Orthogonal and symplectic groups

In Example 4.5.1, we showed that the root system of  SL(n + 1) has type An. Here,we work out the root systems of  Sp(2n) and SO(2n). Our computations will workover any field k  of characteristic zero, so we will tacitly exclude  k  from the notation.

Example 4.7.1   (Orthogonal).   Write 1n   for the identity   n × n   matrix, and let

J  =

  1n

1n

. We define

O(2n) =

 {g

 ∈ GL(2n) :   tgJ g = J 

}SO(2n) = O(2n) ∩ SL(2n).

This is not the same as our definition in Example 1.4.3, in which we used the pairingx, y =

xiyi. The problem is, the definition in that example does not give a split

group, i.e. there is no split maximal torus. The basis  1√ 

2,

  1√ 2

,

  1√ −2

, −   1√ −2

realizes an isomorphism between  SO(2n) and {g ∈  SL(2n) :  t

g · g  = 1}, but onlyafter base change to the field  Q(

√ 2,

√ −2).It is easy to verify that

 so2n  =

a bc   − ta

: a, b, c ∈ Mn   and   tb = −b, tc = −c

.

For a tuple  λ = (λ1, . . . , λn) ∈ Gnm, write

diag∗(λ) = diag(λ1, . . . , λn, λ−11   , . . . , λ−1

n   ).

Let T   = {diag∗ λ :  λ ∈ Gnm}; since  ZSO(2n)(T ) = T , this is a maximal torus. Clearly

X∗(T ) =

Zχi, where each character χi  is defined by  χi(diag∗(λ)) = λi.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 52/81

Linear algebraic groups    52

Let t  =  Lie(T ). For any i, j, let ei,j  be the matrix with a 1 in the (i, j) entry and0 elsewhere. For t ∈ T   and x ∈ so2n, we compute:

ad(t)(x) =

x   if  x ∈ t 

(χi − χj)(t) · x   if  x = eii

−eii  and i = j

(χi + χj)(t) · x   if  x =

  eij − eji

 and  i < j

(−χi − χj)(t) · x   if  x =

eij − eji

 and  i < j

Thus the set of roots is {±χi ± χj   :   i =   j} ⊂   X∗(T )R. This recovers the rootsystem Dn   =

 {±ei

 ± ej   :   i

 =   j

} ⊂  Rn of   Example 4.6.7.   A basis of Dn   is

{e1 − e2, . . . , en−2 − en−1, en−1 − en, en−1 + en}.  

Example 4.7.2  (Symplectic).  This time, let  J  =

  1

−1

. Recall the definitions:

GSp(2n) = {g ∈ GL(2n) :  tgJ g =  J }Sp(2n) = GSp(2n) ∩ SL(2n).

One can check that

 sp(2n) = Lie(Sp2n) = {x ∈ gl(2n) :   txJ  + J  tx = 0}=

a bc   − ta

: a, b, c ∈ Mn   and   tb =  b

.

If we define   diag∗ as in   Example 4.7.1,   then the group   Sp(2n) has a maximaltorus  T   = {diag∗(λ) :  λ ∈  Gn

m}. The group  X∗(T ) has basis {χ1, . . . , χn}, whereχi(diag∗(λ)) = λi. Put  t  = Lie(T ). For  t ∈ T ,  x ∈ sp2n, we have

ad(t)(x) =

x   if  x ∈ t 

(χi − χj)(t) · x   if  x = eii

−eii

 and i = j

(χi + χj)(t)x   if  x =

  eij  + eji

 and  i  j

(−χi − χj)(t) · x   if  x =

eij  + eji

 and  i  j

It follows that the set of roots is

{±χi ± χj   : i = j}∪{±2χi} ⊂ X∗(T ).

This recovers the root system Cn  = {±ei±ej   : i = j}∪{±2ei} ⊂ Rn of  Example 4.6.6.A base for Cn   is {e1 − e2, . . . , en−1 − en, 2en}.  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 53/81

Linear algebraic groups    53

 Both SO(2n) and  Sp(2n) are special cases of a more general construction thatstarts with an arbitrary algebra with involution. We follow [Ber10,  VIII.21]. Let  kbe an arbitrary field of characteristic not 2. An  algebra with involution  over  k   is a(possibly non-commutative) k-algebra R together with an anti-involution σ : R → R.The main examples are  R =  M2n(k) and  σ(x) = θ txθ−1 for some invertible matrix

θ, especially θ   either   1n1n

 or   1n−1n

.

Let (R, σ) be an algebra with involution. The group of  similitudes   of  R  is thefunctor Sim(R) from  k-algebras to groups, defined by

Sim(R, σ)(A) = {r ∈ (R ⊗k A)× : rσ(r) ∈ A×}.

Similarly, the group of  isometries   of  R  is the functor

Iso(R, σ)(A) = {

r ∈

 (R⊗k A)× : rσ(r) = 1

}.

Substituting in   Mn(k) with an orthogonal or symplectic involution recovers thespecial orthogonal and symplectic groups.  

4.8 Classification of split semisimple groups

Let k  be a field of characteristic zero. Recall that an algebraic group G/k  is said to besplit  if there is a maximal torus  T  ⊂  G  which is split. We will use our classificationof root systems to classify split semisimple groups over  k.

Definition 4.8.1.   A homomorphism  f   : G → H  of algebraic groups is an   isogeny if 

1.   f   is surjective, and 

2.   ker(f )  is finite.

In characteristic   p, one has to be very careful, as a lot of nice properties of isogenies fail to hold. For example, in characteristic zero  ker(f ) is a finite normalsubgroup of  G, hence G  acts on ker(f ) by conjugation. If  G  is connected, this actionmust be trivial, so  ker(f )

 ⊂ Z(G). Thus, in characteristic zero, all isogenies are

central.

Definition 4.8.2.   Two semisimple groups   G/k,   H /k   are   isogenous   if there is a semisimple group  J /k  with isogenies  J   G,  J   H .

It is not obvious, but “being isogenous” is an equivalence relation.

Theorem 4.8.3.   Let  k  be an algebraically closed field of characteristic zero. Then G →  R(G, T )   induces a bijection between the set of isogeny classes of connected semisimple groups and isomorphism classes of reduced root systems.

Proof.  This follows from [Mil14, 23.14-15].

Unfortunately, we cannot substitute “isomorphism” for “isogeny” in the statementof this theorem.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 54/81

Linear algebraic groups    54

Example 4.8.4.  Work in characteristic zero, and let PGL(n) = GL(n)/ Z(GL(n)).Then   PGL(n) and   SL(n) have the same root systems. Moreover, the sequence1 → µn → SL(n) → PGL(n) → 1 is exact. So  SL(n) and  PGL(n) are isogenous butone can check that they are not isomorphic.  

The way we have defined “isogenous” as a relation on semisimple groups, it isnot obvious that the relation is transitive. It turns out that the isogeny class of  Gcontains two distinguished groups denoted  Gad and Gsc. The first,  Gad = G/ Z(G)is obviously isogenous to   G  via the quotient map   G     Gad. By [Mil14,   21.38],there is also an initial isogeny   Gsc →   G. One calls   Gad the  adjoint form   of   G,and Gsc the simply connected form   of  G. They (tautologically) fit into a sequenceGsc G Gad of isogenies. So we could have said that two semisimple groups  Gand  H  are isogenous if and only if  Gsc  H sc.

If we want to classify connected semisimple groups up to isomorphism, we need

a finer invariant than the root system, namely the  root datum . We’ll cover root datain more detail in subsection 5.1.  For now, all we need is that a root datum can begiven by a reduced root system  R ⊂ V   together with a group  Q(R) ⊂ X  ⊂ P (R).Recall that if  R ⊂ V , we define

Q(R) = Z · R ⊂ V    (root lattice)

P (R) =

x ∈ V   :

 2x, αα, α  ∈ Z  for all  α ∈ R

  (weight lattice).

The letter  P  for “weight lattice” is possibly inspired by the French word  poid   for

“weight.”Let G be a semisimple group, T  ⊂  G  a maximal torus. Let R  =  R(G, T ) ⊂ X∗(T ).

The inclusion  R ⊂ X∗(T )R   is a root system. Put X  = X∗(T ); then  Q(R) ⊂ X  ⊂P (R). The quotient group  P (R)/Q(R) is finite, so there are only finitely manypossibilities for  X .

The group G  is simply connected if and only if  X  = P (R), and adjoint if and onlyif  X  = Q(R). We already know that each isogeny class has a unique simply connectedsimply connected (resp. adjoint) group. Intermediate quotients  Gsc G Gad willcorrespond to quotients of the group  πal

1 (Gad) = P (R)/Q(R).

Example 4.8.5.   Start with  Sp(2n). Let T   be as in  Example 4.7.2. Recall thatX∗(T ) has basis {χ1, . . . , χn}, where  χi(diag∗(λ)) = λi. We showed that the set of roots is

{±χi ± χj   : i = j}∪{±2χi} ⊂ X∗(T ).

Now let  G =  Sp(2n)/{±1}; this contains a maximal torus  T /{±1}. Note thatX∗(T / ± 1) → X∗(T ); the image consists of those  α ∈ X∗(T ) : α(−1) = 1}. This isZ · R, so Sp(2n)/{±1} =  Sp(2n)ad, as we already knew from  Z(Sp2n) = µ2. It turnsout that Sp(2n) is simply connected.  

The following table is a complete list of the possible isomorphism classes of almost simple algebraic groups over an algebraically closed field of characteristic zero.Recall that an algebraic group is  almost simple   if its only normal proper subgroupsare finite.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 55/81

Linear algebraic groups    55

R P/Q Gsc Gad groups in betweenAn  (n 1)   Z/(n + 1) SLn+1   SLn+1 /µn+1   SLn+1 /µd,  d | n + 1Bn  (n 2)   Z/2 Spin2n+1   SO2n+1

Cn   (n 3)   Z/2 Sp2n   Sp2n /µ2

Dn   (n odd)   Z/4 Spin2n   SO2n /µ2   SO2n

Dn   (n  even)   Z/2 × Z/2 Spin2n   SO2n /µ2   SO2n, HSpin2n

G2   1 G2   G2

F4   1 F4   F4

E6   Z/3 (E6)sc (E6)ad

E7   Z/2 (E7)sc (E7)ad

E8   1 E8   E8

Let G  be a simply connected semisimple group over  k. Then G 

Gi, where

each Gi   is simply connected and almost simple. Each of the  Gi  will be one of:

SL(n + 1), Spin(n), Sp(2n), G2, F4, (E6)sc, (E7)sc, E8.

Here, we call an algebraic group  G almost simple  if all closed normal subgroups  N are either trivial (in the sense that  N  = 1 or  N  = G) or finite. Similarly, if  G is anadjoint group, then  G Gi   in which each  Gi  is a simple adjoint group.

Example 4.8.6.   The group  G  =  SL(2) × SL(2) has an (obvious) decompositioninto almost simple factors. We have Z(G) = µ2 × µ2. So the quotients of  G  are:

G,G/(µ2 × 1), G/(1 × µ2), G/∆(µ2), G/(µ2 × µ2).

The group SL(2)×(SL(2)/µ2) is neither adjoint nor simply connected. Here ∆(µ2) ={(x, x) :  x ∈  µ2}. The group G/∆(µ2) does not have a product factorization. Itis (obviously) a quotient of  SL(2) × SL(2), but is not directly isomorphic to anyH 1 × H 2   for positive-dimensional  H i.  

Example 4.8.7.  Let A be a finite abelian group. We can write A =  Z/d1⊕···⊕Z/dn.Then  GA  = SL(d1) × · · · × SL(dn) has  Z(GA)  A. So all finite abelian groups ariseas centers of semisimple algebraic groups.  

5 Reductive groups

Let  k  be an algebraically closed field of characteristic zero. Let  G/k  be a reductivegroup, i.e. RuG   = 1. A good example is GL(n). We could like to determine  Gup to isomorphism via some combinatorial data. Let T  ⊂ G  be a maximal torus.Better, let G/k  be a split reductive group and  k  arbitrary of characteristic zero. LetX  = X∗(T ). We have the adjoint representation ad : G

 → GL(g). Just as before,

we can writeg =  g0 ⊕

α∈R

gα,

where  gα = {x ∈ g  :  tx  =  α(t)x  for all  t}  and  R = {α ∈ X  0 : gα = 0}.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 56/81

Linear algebraic groups    56

Note that  R ⊂ X R  need not be a root system, since  R  may only span a propersubspace of   X R. For example, if   G   is itself a torus, then   R   =   ∅. However,R ⊂ V  ⊂ X R, where  V   = R · R, is a root system, and it determines the semisimplegroup   G/RG   up to isogeny. The datum “R ⊂   X ” is not in general enough todetermine G.

Let  X∗(T ) =  hom(Gm, T ). There is a perfect pairing (composition)  X∗(T ) ×X∗(T ) →   Z   =   hom(Gm, Gm). Here α, β    is the integer   n   such that   α ◦ β   is(−)n. From G  we’ll construct a root datum, which will be an ordered quadruple(X∗(T ), R(G, T ), X∗(T ), R(G, T )). Before doing this, we’ll define root data in general.

5.1 Root data

The following definitions are from [SGA 3III , XXI]. A  dual pair   is an ordered pair(X,  X ), where  X   and  X  are finitely generated free abelian groups, together with a

pairing ·, · :  X  ×  X  → Z  that induces an isomorphism  X   X ∨ = hom(X, Z). Let(X,  X ) be a dual pair, and suppose we have two elements  α ∈ X ,  α ∈  X . Define thereflections   sα  and sα  by

sα(x) = x − x, αα

sα(x) = x − α, xα.

Definition 5.1.1.   A   root datum  consists of an ordered quadruple   (X,R,  X,  R),such that 

•   (X,  X )  is a dual pair.

•   R ⊂ X   and  R ⊂  X  are finite sets,

•  There is a specified mapping  α →  α  from  R   to  R.

These data are required to satisfy the following conditions:

1. For each  α ∈ R, α, α = 2.

2. For each  α ∈

 R,  sα(R) ⊂

 R  and  sα( R) ⊂

 R.

It turns out that   α →  α   is a bijection, and that   R   and  R   are closed undernegation. If  R  = (X,R,  X,  R) is a root datum, the  Weyl group   of  R   is the groupW( R ) ⊂ GL(X ) generated by {sα   :  α ∈ R}. By [SGA 3III ,  XXI 1.2.8], the Weylgroup of a root datum is finite.

Definition 5.1.2.   Let  R 1   = (X 1, R1,  X 1,  R1)  and  R 2   = (X 2, R2,  X 2,  R2)   be root data. A  morphism  f   :  R 1 →  R 2  consists of a linear map  f   : X 1 → X 2  such that 

1.   f   induces a bijection  R1∼

−→ R2,

2. The dual map  f ∨ :  X 2 →  X 1   induces a bijection  R2∼−→  R1.

Definition 5.1.3.   Let  R  = (X,R,  X,  R)  be a root datum. We say  R   is   reduced   if  for any  α ∈ R, the only multiples of  α  in  R  are  ±α.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 57/81

Linear algebraic groups    57

Just as with root systems, there is a notion of a base for root data. If  N  ⊂  Q

and   S  ⊂   X , we write   N  ·  S   for the subset of   X Q   generated as a monoid by{ns : (n, s) ∈ N  × S }. We call a root  α ∈ R  indivisible  if there does not exist anyβ  ∈ R  for which  α =  nβ   for some  n > 1, i.e.  Q+ · α ∩ R = {α}.

Definition 5.1.4.   Let  R   = (X,R,  X,  R)   be a root system. A subset  ∆ ⊂  R   is a base  if it satisfies any of the following conditions (reproduced from [ SGA 3 III ,  XXI 3.1.5]):

1. All  α ∈ ∆  are indivisible, and  R ⊂ Q+ · ∆ ∪ Q− · ∆.

2. The set  ∆   is linearly independent, and  R ⊂ N · ∆ ∪ Z− · ∆.

3.   Each   α ∈  R   can be written uniquely as  

β∈R mββ , where all   mβ ∈  Z   and have the same sign.

If ∆ ⊂ R  is a base, write R+ = N ·∆ for the set of  positive roots  and R− = Z− ·∆for the set of  negative roots . One has  R =  R+ R−, and R− = −R+.

Write   RtDt   for the category of root data. There is a contravariant functor· :  RtDt → RtDt  which sends a root datum  R  = (X,R,  X,  R) to   ˇ R  = ( X,  R,X,R).This is clearly an anti-equivalence of categories. We will use this later to define thedual  of a split reductive group. If  G/k  is a split reductive group, then  G  will be asplit reductive group scheme over  Z, whose root datum is  R (G, T )∨.

We’ll write  RtDtred for the category of reduced root data.

Example 5.1.5.   Let   R ⊂   V   be a root system. As in   subsection 4.8,   we havelattices  Q(R) ⊂ V (R) ⊂ V . Choose a  W -invariant inner product ·, ·  on  V . GivenQ ⊂ X  ⊂ P , we can define a root datum as follows:

X  = X 

R =  R

X  = {v ∈ V   : α, v ∈ Z  for all  α ∈ R}

R =   2α

α, α

  : α

 ∈ R .

It is easy to check that this satisfies the required properties.  

For a classification of “reduced simply connected root systems,” see  [SGA 3III ,XXI 7.4.6].

5.2 Classification of reductive groups

Let  k  be a field of characteristic zero,  G/k  a (connected) split reductive group. Let

T  ⊂  G  be a split maximal torus. The  rank   of  G  is the integer  r = rk(G) = dim(T ).Let   g  =  Lie(G). As we have seen many times before, we can decompose   g  as arepresentation of  T :

g =  t ⊕α∈R

gα,

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 58/81

Linear algebraic groups    58

where   t  =  Lie(T ),   R  =  R(G, T ) is the set of   roots   of  G, and  gα   is the  α-typicalcomponent of  g. Recall that the  Weyl group  of  G  is  W(G, T ) = NG(T )/ CG(T ). By[SGA 3II, XII 2.1], the Weyl group is finite.

A good source for what follows is [Jan03,   II.1]. Let   α   :   T  →   Gm   be a root,and put   T α   = (ker α)◦; this is a closed (r

 − 1)-dimensional subgroup of   T . Let

Gα  = CG(T α); by Theorem 4.4.8, this is reductive. One has Z(Gα)◦ = T α. Fromthe embedding  Gα   →  G, we get an embedding of Lie algebras  Lie(Gα)  →  g. By[SGA 3III , IX 3.5], one has

Lie(Gα) = t ⊕ gα ⊕ g−α

and   gα, g−α   are both one-dimensional. In classical Lie theory, we could defineU α  = exp(gα). Since the exponential map does not make sense in full generality, weneed the following result. Recall that we interpret the Lie algebra of an algebraic

group as a new algebraic group.Theorem 5.2.1.   Let   T   act on   G   via conjugation. Then there is a unique   T -equivariant closed immersion  uα  : gα  → G  which is also a group homomorphism.

Proof.   This is [SGA 3III , XXII 1.1.i].

We let  U α  be the image of  uα. Since  gα  is one-dimensional, it is isomorphic toGa  as a group scheme. So we will generally write uα   :  Ga

∼−→  U α ⊂  G. The factthat  uα   is  T -equivariant comes down to:

tuα(x)t−1 = uα(α(t)x)   t ∈ T , x ∈ Ga.

The group  Gα  is generated by  T , U ±α  by Lie algebra considerations. So the groupG  is generated by  T   and {U α  : α ∈ R}.

Example 5.2.2   (type An).   Inside   SL(n + 1), the maximal torus   T   consists of diagonal matrices diag(t) = diag(t1, . . . , tn+1) for which  t1 · · · tn+1 = 1. The groupX∗(T ) is generated by the characters  χi(diag(t)) = ti. The roots are {χi−χj   : i = j}.For such a root, one can verify that  Gα  = CG(T α) consists of matrices of the form(gab) for which   gab   =   δ ab   unless   a   =   b   =   i,   a   =   b   =   j, or (a, b) = (i, j). So

Gα    SL(2). It follows that   U α   = 1 +  Gaeij . Note that indeed,   SL(n + 1) isgenerated by {U α  : α ∈ R}  and  T .  

Back to our general setup   T  ⊂   Gα ⊂   G. We can consider the “small Weylgroup” W(Gα, T ) ⊂ W(G, T ). Since rk(Gα/ Z(Gα)◦) = 1, we have W(Gα, T ) = Z/2.Let  sα  be the unique generator of  W(Gα, T ). It is known that  W   =  W(G, T ) isgenerated by {sα  : α ∈ R}. The group W  acts on X∗(T ). Indeed, if  w ∈ W , we havew = n  for some  n ∈ NG(T ). Define (w · χ)(t) = χ(n−1tn).

Recall that X∗(T ) = hom(Gm, T ). There is a natural pairing X∗(T )×X∗(T ) → Z,

for which α, β    is the unique  n  such that  αβ   is  t → tn

. That is,  α(β (t)) = tα,β

.This pairing induces an isomorphism X∗(T )  X∗(T )∨.

Theorem 5.2.3.   Let   α ∈   R. Then there exists a unique  α ∈   X∗(T )   such that sα(x) = x − x, αα   for all  x ∈ X∗(T ). Moreover, α, α = 2.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 59/81

Linear algebraic groups    59

Proof.   This is [SGA 3III , XXII 1.1.ii].

Equivalently,  sα(α) = −α. We put  R(G, T ) = {α :  α ∈ R}. The quadruple

 R (G, T ) = (X∗(T ), R(G, T ), X∗(T ), R(G, T ))

is the  root datum   of  G; it will determine  G up to isomorphism (not just isogeny).In defining coroots, we could also have used the fact that  Z(Gα)◦ = T α, which

implies T /T α  → Gα/T α   is a maximal torus of dimension 1. So the group  Gα/T α   issemisimple, and has one-dimensional maximal torus. Its Dynkin diagram has typeA1, so  Gα/T α  is either SL(2) or PGL(2).

Definition 5.2.4.   Let   k   be a field,   G/k   a split reductive group. A  pinning   of   Gconsists of the following data:

1. A maximal torus  T  ⊂  G.2. An isomorphism  T 

  ∼−→ D(M )  for some free abelian group  M .

3. A base  ∆ ⊂ R(G, T ).

4. For each  α ∈ ∆, a non-zero element  X α ∈ gα.

If  G1, G2  are pinned reductive groups, a morphism  f   :  G1 →  G2   is said to becompatible with the pinnings   if  f (T 1) =  f (T 2),  f   induces a bijection (written  f ∗)R1

−→ R2, and such that

f (uα(X 1,α)) = uf ∗α(X 2,f ∗α).

Let  RdGppinn/k   be the category of split reductive groups over  k  with pinnings. We

can define a pinning of a root system  R  = (X,R,  X,  R) to be the choice of a base∆ ⊂ R. Let  RtDtred,pinn be the category of pinned reduced root data. The followingcombines the “existence and uniqueness theorems” in the classification of reductivegroups.

Theorem 5.2.5.   The operation  G →  R (G, T )   induces an equivalence of categories 

RdGppinn/k

∼−→ RtDtred,pinn.

Proof.   See [SGA 3III , XXIII 4.1] for a proof that  R  is fully faithful, [SGA 3III , XXV2] for a proof of essential surjectivity.

5.3 Chevalley-Demazure group schemes

In Theorem 5.2.5, we classified split reductive groups over an arbitrary field. It turnsout that the classification works over an arbitrary (non-empty) base scheme. Moreprecisely, let  S  be a scheme,  G/S  a smooth affine group scheme of finite type. Wesay G is  reductive  if each geometric fiber  Gs   is reductive. A maximal torus   in G is asubgroup scheme  T  ⊂  G  of multiplicative type such that for all  s ∈ S , the geometric

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 60/81

Linear algebraic groups    60

fiber T s ⊂ Gs   is a maximal torus. Suppose there exists an abelian group  M  with anembedding  D(M )/S   → G  whose image is a maximal torus. Just as before, there isa decomposition  g =  t ⊕ gα, except now  g  (and the  gα) is a locally free sheaf onS . We say that  G  is  split  if the following conditions hold:

1. Each  gα  is a free  O S -module.

2.  Each root α (resp. each coroot  α) is constant, i.e. induced by an element of  M (resp. M ∨).

Given the obvious notion of “pinned reductive group over  S ,” the classification resultin Theorem 5.2.5 actually gives an equivalence of categories

RdGppinn/S 

∼−→ RtDtred,pinn.

In particular, for each reduced root datum  R , there is a reductive group scheme  GR/Z

with root datum  R , such that for any scheme  S , the unique (up to isomorphism)reductive group scheme with root datum  R  is the base-change  GR/S  = (GR/Z)S .In particular, if  k  is a field, the unique split reductive  k-group with root datum  R   isGR/k. One calls  GR/Z   the Chevalley-Demazure group scheme of type  R .

6 Special topics

6.1 Borel-Weil theorem

1

Let  k  be a field of characteristic zero,  G/k   an algebraic group. We write  Mod(G)for the category whose objects are (not necessarily finite-dimensional) vector spacesV   together with  ρ :  G → GL(V ). Here,  GL(V ) is the fppf sheaf (not representableunless  V   is finite-dimensional)  S  → GL(V O (S )). The action action of  G  on itself bymultiplication induces an action of  G on the (k-vector spaces)  O (G), which is notfinite-dimensional unless  G   is finite. By [Jan03,  I 3.9], the category  Mod(G) hasenough injectives; this enables us to define derived functors in the usual way.

Let   H 

 ⊂  G   be an algebraic subgroup. There is an obvious functor   resGH    :

Mod(G) →  Mod(H ) which sends (V, ρ   :  G →  GL(V )) to (V, ρ|H ). It has a rightadjoint, the  induction functor , determined by

homG(V, indGH  U ) = homH (resGH  V, U ).

We are especially interested in this when  U  is finite-dimensional, in which case wehave

indGH  U  = {f   : G → V(U ) : f (gh) = h−1f (g) for all  g ∈ G}.

Since the induction functor is a right adjoint, it is left-exact, so it makes sense to

talk about its derived functors R• indGH . It turns out that these can be computedas the sheaf cohomology of certain locally free sheaves on the quotient  G/H . Let

1Balazs Elek

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 61/81

Linear algebraic groups    61

π : G G/H  be the quotient map; for a representation  V   of  H , define an  O G/H -module  L  (V ) by

L  (V )(U ) = (V  ⊗ O (π−1U ))G.

By [Jan03, I 5.9], the functor  L  (−) is exact, and sends finite-dimensional repre-

sentations of  H   to coherent O 

G/H -modules. Moreover, by [Jan03, I 5.12] there is acanonical isomorphism

R• indGH  V   = H•(G/H,L  (V )).   (∗)

In general, both the vector spaces in  (∗)  will not be finite-dimensional. However,if  G/H  is proper, then finiteness theorems for proper pushforward [EGA 3I, 3.2.1]tell us that H•(G/H,F ) is finite-dimensional whenever F  is coherent. So we can useRi indGH  to produce finite-dimensional representations of  G  from finite-dimensionalrepresentations of  H .

Note : for the remainder of this section, “representation” means finite-dimensional representation, while “module” means possibly infinite-dimensional representation.

Let   G/k   be a split reductive group,   B ⊂   G   a Borel subgroup and   T  ⊂   B   amaximal torus. Let  N  = RuB; one has  B  T   N . In particular, we can extendχ ∈  X∗(T ) to a one-dimensional representation of  B   by putting  χ(tn) =  χ(t) fort ∈ T ,  n ∈ N .

Theorem 6.1.1.   Every irreducible representation of  G  is a quotient of   indGB χ   for a unique  χ

 ∈ X∗(T ).

Proof.   Let   V   be an irreducible representation of   G. The group   B   acts on theprojective variety   P(V ); by   4.1.5   there is a fixed point   v, i.e.   resGB V    containsa one-dimensional subrepresentation. This corresponds to a   B-equivariant mapχ → resGB V   for some χ ∈ X∗(T ). By the definition of induction functors, we get a

nonzero map indGB χ → V . Since  V  is simple, it must be surjective. Uniqueness of  χis a bit trickier.

One calls   χ   the   highest weight   of   V . A natural question is: for which   χ   isindGB χ   irreducible? By [Jan03, II 2.3],  indGB χ  (if nonzero) contains a unique simplesubrepresentation, which we denote by L(χ).

Recall that our choice of Borel  B ⊂  T   induces a base  S  ⊂  R(G, T ) ⊂  X∗(T ).We put an ordering on  X∗(T ) by saying that  λ   µ   if  µ − λ ∈ N · S . It is knownthat there exists  w0 ∈ W   = W(G, T ) such that  w0(R+) = R−. Finally, the set of dominant weights   is:

X∗(T )+  = {χ ∈ X∗(T ) : χ, α 0 for all  α ∈ R+}.

We can now classify irreducible representations of  G.

Theorem 6.1.2.   Any irreducible representation of   G   is of the form   L(χ)   for a unique  χ ∈ X∗(T )+.

Proof.   This is [Jan03, II 2.7].

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 62/81

Linear algebraic groups    62

The Borel-Weil theorem completely describes R• indGB(χ) for dominant  χ. Firstwe need some definitions. If  w ∈ W , the length  of  w, denoted l(w), is the minimal  nsuch that  w  can be written as a product  s1 · · · sn  of simple reflections. Let  S  be aset of simple roots,  ρ =   1

2

α∈R+ α. The “dot action” of  W  on character is:

w • χ =  w(χ + ρ) − ρ.

DefineC  = {χ ∈ X∗(T ) : χ + ρ, α  for all  α ∈ R+}.

It turns out that all  χ ∈ X∗(T ) are of the form  w • χ1   for some  χ1 ∈ C . Thus thefollowing theorem describes R• indGB χ  for all  χ.

Theorem 6.1.3  (Borel-Weil).   Let  χ ∈ C . If  c /∈ X∗(T )+, then  R• indGB(w • χ) = 0 for all  w ∈ W . If  χ ∈ X∗(T )+, then for all  w ∈ W ,

Ri indGB(w • χ) =L(χ)   i =  l(w)

0   otherwise 

Proof.   This is [Jan03, II 5.5].

Putting w = 1, we see that indGB(χ) = L(χ).

6.2 Tannakian categories

Throughout, k  is an arbitrary field of characteristic zero. We will work over  k, soall maps are tacitly assumed to be  k-linear and all tensor product will be over  k.Consider the following categories.

For G/k an algebraic group, the category Rep(G) has as objects pairs (V, ρ), whereV   is a finite-dimensional  k-vector space and  ρ :  G → GL(V ) is a homomorphism of k-groups. A morphism (V 1, ρ1) → (V 2, ρ2) in  Rep(G) is a  k-linear map  f   : V 1 → V 2such that for all   k-algebras   A   and   g ∈   G(A), one has   f ρ1(g) =   ρ2(g)f , i.e. thefollowing diagram commutes:

V 1 ⊗ A V 2 ⊗ A

V 1 ⊗ A V 2 ⊗ A.

ρ1(g)   ρ2(g)

Example 6.2.1  (Representations of a Hopf algebra).   Let H  be a co-commutativeHopf algebra. The category   Rep(H ) has as objects   H -modules that are finite-dimensional over  k, and morphisms are  k-linear maps. The algebra H  acts on atensor product U  ⊗ V  via its comultiplication ∆ : H  → H  ⊗ H .  

Example 6.2.2   (Representations of a Lie algebra).   Let  g  be a Lie algebra over  k.The category  Rep(g) has as objects  g-representations that are finite-dimensional asa  k-vector space. There is a canonical isomorphism  Rep(g) = Rep( U g), where U g  isthe universal enveloping algebra of  g.  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 63/81

Linear algebraic groups    63

Example 6.2.3  (Continuous representations of a compact Lie group).   Let  K   be acompact Lie group. The category  RepC(K ) has as objects pairs (V, ρ), where  V   is afinite-dimensional complex vector space and  ρ :  K  → GL(V ) is a continuous (hencesmooth, by Cartan’s theorem) homomorphism. Morphisms (V 1, ρ1) → (V 2, ρ2) areK -equivariant  C-linear maps  V 1

 → V 2.  

Example 6.2.4  (Graded vector spaces).  Consider the category whose objects arefinite-dimensional   k-vector spaces   V   together with a direct sum decompositionV    =

 n∈Z V n. Morphisms   U  →   V   are   k-linear maps   f   :   U  →   V   such that

f (U n) ⊂ V n.  

Example 6.2.5  (Hodge structures).   Let  V   be a finite-dimensional  R-vector space.A   Hodge structure   on   V   is a direct sum decomposition   V C   =

 V  p,q   such that

V  p,q  = V q,p. If  U, V  are vector spaces with Hodge structures, a morphism  U  → V   isa  R-linear map  f   : U 

 → V   such that  f (U 

 p,q) ⊂

 V  p,q

. Write  Hdg  for the category of vector spaces with Hodge structure.  

Let  Vect(k) be the category of finite-dimensional  k-vector spaces. For C  any of the categories above, there is a faithful functor  ω : C → Vect(k). In our examples,it is just the forgetful functor. The main theorem will be that for  π = Aut(ω), thefunctor ω  induces an equivalence of categories C   ∼−→ Rep(π). We proceed to makesense of the undefined terms in this theorem.

Our definitions follow [DM82]. As before,  k  is an arbitrary field of characteristiczero.

Definition 6.2.6.   A k-linear category is an abelian category  C such that each  V 1, V 2,the group  hom(V 1, V 2)  has the structure of a  k-vector space in such a way that the composition map  hom(V 2, V 3) ⊗ hom(V 1, V 2) → hom(V 1, V 3)   is  k-linear. For us, a rigid  k-linear tensor category   is a  k-linear category  C   together with the following data:

1. An exact faithful functor  ω : C → Vect(k).

2. A bi-additive functor 

 ⊗ :

 C × C → C.

3. Natural isomorphisms  ω(V 1 ⊗ V 2)  ∼−→ ω(V 1) ⊗ ω(V 2).

4. Isomorphisms  V 1 ⊗ V 2∼−→ V 2 ⊗ V 1   for all  V i ∈ C.

5. Isomorphisms  (V 1 ⊗ V 2) ⊗ V 3∼−→ V 1 ⊗ (V 2 ⊗ V 3)

These data are required to satisfy the following conditions:

1.  There exists an object  1 ∈ C   such that  ω(1)  is one-dimensional and such that the natural map  k

 → hom(1, 1)  is an isomorphism.

2. If  ω(V )   is one-dimensional, there exists  V −1 ∈ C  such that  V  ⊗ V −1  1.

3. Under  ω, the isomorphisms 3 and 4 are the obvious ones.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 64/81

Linear algebraic groups    64

By [DM82, Pr. 1.20], this is equivalent to the standard (more abstract) definition.Note that all our examples are rigid  k-linear tensor categories. One calls the functorω  a  fiber functor .

Let (C, ⊗) be a rigid  k-linear tensor category. In this setting, define a functorAut(ω) from  k-algebras to groups by setting:

Aut⊗(ω)(A) = Aut⊗ (ω : C ⊗ A → Rep(A))

=

(gV  ) ∈

V ∈C

GL(ω(V ) ⊗ A) :  gV 1⊗V 2  = gV 1 ⊗ gV 2 , andf gV 1  = gV 1f   for all  f, V 1, V 2

.

In other words, an element of  Aut(ω)(A) consists of a collection (gV  ) of  A-linearautomorphisms gV   : ω(V ) ⊗ A

  ∼−→ ω(V ) ⊗ A, where V  ranges over objects in C. Thiscollection must satisfy:

1.   g1 = 1ω(1)

2.   gV 1⊗V 2  = gV 1 ⊗ gV 2   for all  V 1, V 2 ∈ C, and

3. whenever f   : V 1 → V 2  is a morphism in C, the following diagram commutes:

ω(V 1)A   ω(V 2)A

ω(V 1)A   ω(V 2)A.

gV 1   gV 2

Typically one only considers affine group schemes G/k that are algebraic , i.e. whosecoordinate ring  O (G) is a finitely generated  k-algebra, or equivalently that admita finite-dimensional faithful representation. Let G/k  be an arbitrary affine groupscheme,   V   an arbitrary representation of   G   over   k. By   [DM82, Cor. 2.4], onehas   V   =   lim−→ V i, where   V i   ranges over the finite-dimensional subrepresentationsof   V . Applying this to the regular representation  G →   GL(O (G)), we see thatO (G) =   lim−→O (Gi), where   Gi   ranges over the algebraic quotients of   G. That is,an arbitrary affine group scheme  G/k  can be written as a filtered projective limit

G =  lim←− Gi, where each  Gi  is an affine algebraic group over  k. So we will speak of pro-algebraic groups instead of arbitrary affine group schemes.

If   V   is a finite-dimensional   k-vector space and   G  =   lim←− Gi   is a pro-algebraick-group, representations  G →  GL(V ) factor through some algebraic quotient  Gi.That is,  hom(G, GL(V )) = lim−→ hom(Gi, GL(V )). As a basic example of this, let Γbe a profinite group, i.e. a projective limit of finite groups. If we think of Γ as apro-algebraic group, then algebraic representations Γ → GL(V ) are exactly thoserepresentations that are continuous when  V  is given the discrete topology.

First, suppose C = Rep(G) for a pro-algebraic group  G, and that  ω : Rep(G) →Vect(k) is the forgetful functor. Then the Tannakian fundamental group  Aut

(ω)carries no new information [DM82, Pr. 2.8]:

Theorem 6.2.7.   Let   G/k   be a pro-algebraic group,   ω   :   Rep(G) →   Vect(k)   the 

 forgetful functor. Then  G  ∼−→ Aut⊗(G).

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 65/81

Linear algebraic groups    65

The main theorem is the following, taken essentially verbatum from [DM82,Th. 2.11].

Theorem 6.2.8.   Let  (C, ⊗, ω) be a rigid  k-linear tensor category. Then  π  =  Aut⊗(ω)is represented by a pro-algebraic group, and  ω   : C →  Rep(π)   is an equivalence of 

categories.Often, the group   π1(C) is “too large” to handle directly. For example, if  C

contains infinitely many simple objects, probably  π1(C) will be infinite-dimensional.For   V   ∈ C, let C(V ) be the Tannakian subcategory of  C   generated by   V . Oneputs  π1(C/V ) =  π1(C(V )). It turns out that  π1(C/V ) ⊂  GL(ωV ), so  π1(C/V ) isfinite-dimensional. One has  π1(C) = lim←− π1(C/V ).

Example 6.2.9   (Pro-algebraic groups).   If   G/k   is a pro-algebraic group, thenTheorem 6.2.7 tells us that if  ω   :  Rep(G) → Vect(k) is the forgetful functor, thenG = Aut⊗(G). That is,  G =  π1(RepG).  

Example 6.2.10   (Hopf algebras).   Suppose  H  is a co-commutative Hopf algebraover k. Then π1(RepH ) = Spec(H ◦), where H ◦ is the reduced dual  defined in [Car07].Namely, for any  k-algebra  A,  A◦ is the set of  k-linear maps  λ  :  A → k  such thatλ(a) = 0 for some two-sided ideal  a ⊂ A  of finite codimension. The key fact here isthat (A ⊗ B)◦ = A◦ ⊗ B◦, so that we can use multiplication  m :  H  ⊗ H  →  H   todefine comultiplication m∗ : H ◦ → (H ⊗ H )◦ = H ◦ ⊗ H ◦. From [DG80, II §6 1.1], if G is a linear algebraic group over an algebraically closed field  k  of characteristic zero,we get an isomorphism  O (G)◦ = k[G(k)] ⊗ U (g). Here  k[G(k)] is the usual group

algebra of the abstract group  G(k), and U (g) is the universal enveloping algebra of g = Lie(G), both with their standard Hopf structures.  

[Note: one often calls  O (G)◦ the “space of distributions on  G.” If instead  G is areal Lie group, then one often writes  H  (G) for the space of distributions on  G. LetK  ⊂ G  be a maximal compact subgroup,  M (K ) the space of finite measures on  K .Then convolution  D ⊗ µ → D ∗ µ induces an isomorphism U (g) ⊗ M (K )

  ∼−→ H  (G).In the algebraic setting,  k[G(k)] is the appropriate replacement for M (K ).]

Example 6.2.11   (Lie algebras).   Let  g  be a semisimple Lie algebra over  k. Thenby [Mil07],  G  =  π1(Repg) is the unique connected, simply connected algebraic groupwith Lie(G) = g. If  g is not semisimple, e.g.  g =  k, then things get a lot nastier. Seethe above example.  

Example 6.2.12  (Compact Lie groups).  By definition, the  complexification   of areal Lie group K  is a complex Lie group  K C  such that all morphisms K  → GL(V )factor uniquely through K C → GL(V ). It turns out that  K C  is a complex algebraicgroup, and so  π1(RepK ) = K C.  

Example 6.2.13  (Graded vector spaces).  To give a grading  V   =

n∈Z V n   on a

vector space is equivalent to giving an action of the split rank-one torus  Gm. On each

V n,  Gm  acts via the character  g → gn. Thus π1(graded vector spaces) =  Gm.   Example 6.2.14  (Hodge structures).   Let S =  RC/R Gm; this is defined by  S(A) =(A⊗C)× for R-algebras A. One can check that the category  Hdg  of Hodge structuresis equivalent to  RepR(S). Thus  π1(Hdg) = S.  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 66/81

Linear algebraic groups    66

6.3 Automorphisms of semisimple Lie algebras2

Let  k  be a field of characteristic zero,  g  a split semisimple Lie algebra over  k. Wewant to describe the group  Aut(g). It turns out  Aut(g) = Aut(Gsc), where  Gsc isthe unique simply connected semisimple group with Lie algebra  g. We can give

Aut(g) the structure of a linear algebraic group by puttingAut(g)(A) = Aut(gA).

Clearly Aut(g) ⊂ GL(g). Let   t  ⊂  g  be a maximal abelian subalgebra. Let  R ⊂ t ∨

be the set of roots,  S  ⊂ R  a base of ∆. We can define some subgroups of Aut(g):

Aut(g, t ) = {θ ∈ Aut(g) : θ(t ) = t }Aut(g, t , S ) = {θ ∈ Aut(g, t ) :   tθ(S ) = S }.

Lemma 6.3.1.   If  θ

 ∈ Aut(g, t ), then   tθ(R) = R.

Proof.  The definition of  R   is invariant under automorphisms of  t .

Let Aut(R) be the set of automorphisms of the Dynkin diagram associated to R.

Lemma 6.3.2.   The natural map  ε : Aut(g, t , S ) → Aut(R)  is surjective.

Proof.  Choose, for each  α ∈ R, a non-zero element  xα ∈ gα. The existence theorem[Lie7–9, VIII §4.4 th.2] tells us that to each automorphism  ϕ  of the Dynkin diagramof  R, there exists a unique  ϕ ∈ Aut(g, t , S, {xα}) inducing ϕ. Thus ε  :  Aut(t , t , S ) →Aut(R) splits.

We want to describe the kernel of  ε. Since  g   is semisimple, the adjoint mapg → Der(g) = Lie(Aut g) is an embedding, and thus  t 

  ∼−→ ad(t ). Let T  ⊂  Inn(g) bethe subgroup with Lie algebra ad(t ).

Lemma 6.3.3.   ker(ε) = T .

Proof.   Clearly  T  ⊂  ker(ε). Let  θ ∈  ker(ε). For any  α ∈  R, we have  θxα ∈  gβ   forsome  β . For t ∈ t , we compute:

[t,θxα] = [θt,θxα]

= θ[t, xα]= α(t)θxα,

so  α =  β . Moreover,  θ  acts on  g  exactly like an element of  t , so  θ ∈ T .

Lemma 6.3.4.   Aut(g) = Aut(g, t , S ) · Inn(g).

Proof.  Use the well-known facts that all Cartan subalgebras of  g  are conjugate, andthat moreover the Weyl group acts transitively on sets of simple roots.

We have arrived at the main result.

Theorem 6.3.5.   Aut(g) = Inn(g) Aut(R). In particular,  Out(g) = Aut(R).

This allows us to recover the table of automorphisms in  subsection 4.6.

2Sasha Patotski

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 67/81

Linear algebraic groups    67

6.4 Exceptional isomorphisms3

Terence Tao’s blog post at  http://terrytao.wordpress.com/2011/03/11/  is anexcellent reference for this section. From Theorem 4.8.3,   we know that the setof isogeny classes of split semisimple algebraic groups is the same as the set of 

isomorphism classes of Dynkin diagrams. In  Theorem 4.6.13, we classified theDynkin diagrams. In this classification, we just included, e.g. Dn   for n 4. If weinclude all the Dn  etc., the classification is no longer unique – we have to accountfor the “exceptional isomorphisms”

A1  B1  C1  D2  E1

B2  C2

D3  A3

D2

  A1

 ×A1.

The Dynkin diagram for D2  and A1 × A1   is disconnected – it is a disjoint unionof two points. We’ll explicitly construct the induced isogenies between algebraicgroups of different types.

Example 6.4.1  (A1  C1).  Since Sp(2) = SL(2), there is nothing to prove.  

Example 6.4.2   (A1  B1).  Define a pairing on  sl2  by x, y =  tr(xy) (the  Killing  form ). One easily verifies that the adjoint action of  SL(2) on   sl2  preserves thisform. Moreover, a general theorem of linear algebra tells us that any non-degeneratebilinear symmetric pairing on a three-dimensional vector space is isomorphic tothe orthogonal pairing. It follows that   Aut( sl2, ·, ·)    O(3), at least over analgebraically closed field. Since SL(2) is connected, ad(SL(2)) ⊃ SO(3). A dimensioncount tells us that  SL(2)/µ2  SO(3). Again, this only works over an algebraicallyclosed field.  

Example 6.4.3   (D2  A1 × A1).  We need to show that  SO(4) and SL(2) × SL(2)are isogenous. Let std  :  SL(2) → GL(2) be the standard representation, and considerthe representation  std std  of  SL(2) × SL(2). There is an obvious bilinear formform:

u1 ⊗ u2, v1 ⊗ v2 =  ω(u1, v1)ω(u2, v2),where  ω  is the determinant pairing  k2 × k2 → 2 k2  k  given by (x, y) → x ∧ y.The group SL(2) × SL(2) acts on std std by (g, h)(v ⊗ w) = (gv) ⊗ (gw). Thus wehave a representation  SL(2) × SL(2) → GL(4). The image preserves ·, ·, hence (bylinear algebra) lies inside  O(4), By connectedness and a dimension count, we seethat this is an isogeny SL(2) × SL(2) SO(4).  

6.5 Constructing some exceptional groups4

We roughly follow [SV00]. Let k  be a field of characteristic not 2 or 3. Recall that if V   is a  k-vector space and ·, · : V  × V  → k   is a symmetric bilinear form, we can

3Theodore Hui4Gautam Gopal

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 68/81

Linear algebraic groups    68

define a quadratic form  q  : V  → k  by q (v) = v, v. This correspondence is bijective;we can go backwards via the familiar identity

u, v = 1

2(q (u + v) − q (u) − q (v)).

Definition 6.5.1.   A   composition algebra  is a pair  (C, q ), where  C   is a unital, not-necessarily associative  k-algebra and  q  is a multiplicative non-degenerate quadratic on  C .

In other words, we require  q (xy) =  q (x)q (y) for all  x, y ∈  C . Since by [SV00,1.2.4],  q  is determined by the multiplicative strucure of  C , we will just refer to “acomposition algebra C .” Write e  for the unit of  C . Every composition algebra comeswith a natural involution  x →  x, defined by x = x, e − x.

Theorem 6.5.2.   Let  C  be a composition algebra. Then  dim(C ) ∈ {1, 2, 4, 8}.Proof.   This is [SV00, 1.6.2].

We call an 8-dimensional composition algebra an  octobian algebra . If  C   is anoctonian  k-algebra, we define an algebraic group Aut(C ) by putting

Aut(C )(A) = {g ∈ GL(C  ⊗ A) : g   is a morphism of normed  A-algebras},

for all (commutative, unital) k-algebras A. There is an obvious embedding Aut(C ) →O(C, q ).Theorem 6.5.3.   Let   C   be an octonian   k-algebra. Then   Aut(C )   is a connected algebraic group of type  G2.

Proof.  We mean that after base-change to an algebraic closure of  k, Aut(C ) becomesisomorphic to G2. This is [SV00, 2.3.5].

If   C   is a composition algebra and   γ   = (γ 1, γ 2, γ 3) ∈   (k×)3, we define a newalgebra H C,γ  to be as a set the collection of matrices

z1   c3   γ −11   γ 3c2

γ −12   γ 1c3   z2   c1

c2   γ −13   γ 2c1   z3

  ci ∈ k× and zi ∈ k.

Give  H C,γ  the product  xy =   12 (x · y + y · x) and quadratic form  q (x) =   1

2 tr(x2).

Definition 6.5.4.   An   Albert algebra   is a commutative, non-unital, associative k-algebra  A  such that  A ⊗ k  is isomorphic to a  k-algebra of the form  H C,γ   for some octobian algebra  C   and  γ 

 ∈ k×.

If  A is an Albert algebra, we can define an algebraic group  Aut(A) just as above.

Theorem 6.5.5.   If   A   is an Albert algebra, then   Aut(A)   is a connected simple algebraic group of type  F4.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 69/81

Linear algebraic groups    69

Proof.   Put  G  =  Aut(A). Call an element  u ∈  A   idempotent   if  u2 =  u. It turnsout that if   u   is idempotent, then either   u ∈ {0, e}, or   q (u) ∈ {1/2, 1}. Callthe idempotents with   q (u) = 1/2  primitive . Let   V  ⊂   A   be the set of primitiveidempotents; this is naturally a variety over  k. It turns out that  V   is 16-dimensionalclosed and irreducible and has a transitive  G-action. For some  v

 ∈ V , the group

Gv  = StabG(v) is the spin group of a nine-dimensional quadratic form, so dim(Gv) =36. It follows that  dim(G) = 16 + 36 = 52. Since  Gv   and  V   are irreducible,  G   isconnected. From the action of  G  on  e⊥ ⊂ A, we see that  G  is semisimple algebraic.The only 52-dimensional semisimple algebraic group over an algebraically closedfield is F4. For a more careful proof, see  [SV00, 7.2.1].

It turns out that any group of type F4  can be obtained as   Aut(A) for someAlbert algebra A. Consider the cubic form

det(x) = z1z2z3 − γ 

−1

3   γ 2z1q (c1) − γ 

−1

2   γ 3z2q (c2) − γ 

−1

2   γ 1z3q (c3) + c1c2, c3.

Let  GL(A, det) be the subgroup of  GL(A) consisting of those linear maps whichpreserve det.

Theorem 6.5.6.   Let  A be an Albert algebra. Then  GL(A, det) is a connected simple algebraic group of type  E6.

Proof.   This is [SV00, 7.3.2].

Unlike the case with groups of type F4, not all groups of type E6  can be obtainedthis way.

6.6 Spin groups5

The motivation for spin groups is as follows. Recall that up to isogeny, the simplealgebraic groups are  SL(n),  Sp(2n),  SO(n), or one of the exceptional groups. Recallthat each isogeny class has two distinguished elements, the simply connected andadjoint. For SO(n), we should expect there to be a simply connected group  Spin(n) =(Dn)sc, which is a double cover of SO(n).

Work over a field   k   of characteristic not 2. Let   V   be a   k-vector space,   q   aquadratic form on  V . The  Clifford algebra   Cl(V, q ) is the quotient of the tensoralgebra  T (V ) by the ideal generated by {v ⊗ v − q (v) : v ∈ V }. There is an obviousinjection  V →  Cl(V, q ), and  k-linear maps  f   :  V  →  A   into associative  k-algebraslift to  f   : Cl(V, q ) → A  if and only if  f (v)f (v) = q (v) for all  v ∈ V . This univeralproperty clearly characterizes Cl(V, q ). For brevity, write Cl(V ) = Cl(V, q ).

Example 6.6.1.   Let V   = R4, q  be the indefinite form of signature (3, 1), i.e. q (v) =

−v2

1 + v22 + v32 + v2

4 . We write  Cl(1,3)(R) for the Clifford algebra  Cl(V, q ); it has

presentation

Cl(1,3)(R) = Re1, e2, e3, e4/(e21 = −1, e2

2 = e23  = e2

4 = 1).

5Benjamin ?

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 70/81

Linear algebraic groups    70

This is used in the Dirac equation, which unifies special relativity and quantummechanics.  

There is a clear action   O(V, q ) →   Aut Cl(V ). In particular, the involutionα(v) = −v  induces an involution (also denoted  α) of  Cl(V ). This induces a grading

Cl(V ) = Cl0

(V ) ⊕ Cl1

(V ), where

Cl0(V ) = {x ∈ Cl(V ) : α(x) = x}Cl1(V ) = {x ∈ Cl(V ) : α(x) = −x}.

We define some algebraic groups via their functors of points:

Pin(V, q )(A) = {g ∈ Cl(V, q )A  : q (g) ∈ µ2(A)}Spin(V, q ) = Pin(V, q )

∩Cl0(V ).

There is a “twisted adjoint map”  ad   :  Pin(V, q ) →  O(V, q ), given by  ad(g)(v) =α(g)vg−1.

Theorem 6.6.2.  There is a natural exact sequence 

1 → µ2 → Spin(V, q ) → SO(V, q ) → 1.

Proof.   This is [Ber10, IV.10.21].

6.7 Differential Galois theory6

A good source for differential Galois theory is   [PS03]. Recall that if  A   is a ring,a   derivation   on   A   is an additive map   ∂   :   A →   A   satisfying the   Liebniz rule :∂ (ab) = a∂ (b) + ∂ (a)b. We write Der(A) for the group of derivations  A → A.

Definition 6.7.1.   A  differential ring   is a pair  (R, ∆), where  ∆ ⊂ Der(R)   is such that  ∂ 1∂ 2 = ∂ 2∂ 1   for all  ∂ 1, ∂ 2 ∈ ∆.

If ∆ = {∂ }, we write r

= ∂r for r ∈ R. The ring C  = {c ∈ R  :  ∂c = 0  for all  ∂  ∈∆}  is called the  ring of constants . If  R  is a field, we call (R, ∆) a  differential field .

Example 6.7.2.   Let  R = C ∞(Rn) and ∆ = {   ∂ ∂xi: 1 i n}. Then (R, ∆) is a

differential ring with  R as ring of constants.  

Example 6.7.3.   Let  k  be a field,  R = k(x1, . . . , xn), and ∆ = {   ∂ ∂xi: 1   i   n}.

Then (R, ∆) is a differential field with field of constants  k.  

We are interested in solving  matrix differential equations , that is, equations of 

the form  y

= Ay   for A ∈ Mn(k). A solution would be a tuple  y = (y1, . . . , yn) ∈ k

n

such that (y1, . . . , yn) = Ay. To a matrix differential equation we will associate twoobjects: a Picard-Vessiot ring  R, and a linear algebraic group DGal(R/k).

6Ian Pendleton

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 71/81

Linear algebraic groups    71

Definition 6.7.4.   Let   (k, ∂ )  be a differential field,   (R, ∂ )  a differential  k-algebra (so  ∂ R|k   =  ∂ k). Let  A ∈  Mn(k). A   fundamental solution matrix   to the equation y = Ay   is an element  Z  ∈ GLn(R)  such that  Z  = AZ .

It is easy to construct a (universal) fundamental solution matrix for the equation

y

= Ay. Let  S  = O (GLn) = k[yij , det(yij)−1

], and define a differential  ∂   : S  → S by  ∂ (yij) = (Ay)ij . It is easy to see that   S   represents the functor that sends adifferential  k-algebra R  to the set of fundamental solution matrices in  R.

If (R, ∆) is a differential ring, a  differential ideal   is an ideal  a ⊂  R  such that∂ (a) ⊂   a   for all   ∂  ∈   ∆. If    a   is a differential ideal, then   R/a   naturally has thestructure of a differential ring. Call a differential ring  simple   if it has no nontrivialdifferential ideals. Note that simple differential rings need not be fields, e.g. (k[t],   ∂ ∂t ).

Definition 6.7.5.   Let  A ∈ Mn(k). A  Picard-Vessiot ring   for the equation  y = Ayis pair  (R, Z ), where  R   is a simple differential  k-algebra which has a fundamental solution matrix  Z   for  y = Ay, such that  R is generated as a  k-algebra by the entries of  Z   and    1

detZ .

It is easy to prove that Picard-Vessiot rings exist. Let  S  be the differential ringconstructed above. For any maximal differential ideal  m ⊂ S , the quotient R =  S/mis a Picard-Vessiot ring. By [PS03, 1.20], Picard-Vessiot rings (for a given equationy = Ay) are unique.

Definition 6.7.6.   Let   (k, ∂ )  be a differential field,   A ∈  Mn(k). The  differential

Galois group of the equation  y

= Ay   is  DGal(R/k) = Aut(k,∂ )(R)   for any Picard-Vessiot ring  R   (for the equation  y = Ay).

Lemma 6.7.7.   The group  DGal(R/k)  is linear algebraic.

Proof.   See [PS03, 1.26].

Example 6.7.8.   If  k  =  C(x) and we consider the equation  y =   αx y  for α  =   n

m ∈  Q,

then the Picard-Vessiot ring is  R =  C(xn/m) and DGal(R/k) = Z/m.  

It is shown in [TT79] that over C

, all linear algebraic groups arise as differentialGalois groups. The “modern” approach to differential Galois theory uses D -modulesand Tannakian categories.

6.8 Universal enveloping algebras and the Poincare-Birkhoff-

Witt theorem7

Let  k  be a field,  Lie  be the category of Lie algebras over  k, and  Ass  be the categoryof unital associative k-algebras. There is an easy functor L :  Ass → Lie, that sends a

k-algebra A to the Lie algebra LA whose underlying vector space is  A, with bracket[a, b] = a · b − b · a.

7Daoji Huang

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 72/81

Linear algebraic groups    72

This has a left adjoint, denoted U . That is, for each Lie algebra   g, there is anassociative algebra U g  with a  k-linear map  i :  g → U g  satisfying  i[x, y] = [i(x), i(y)],such that for any algebra A and linear map f   : g → A satisfying f [x, y] = [f (x), f (y)],there is a unique extension  f   : U g → A  such that  f  =  f  ◦ i.

We can construct the universal enveloping algebra

 U g   directly. Let

 T g   =n0 g⊗n be the tensor algebra of  g. It is easy to see that U g  is the quotient of  T g

by the relations {x ⊗ y − y ⊗ x − [x, y] : x, y ∈ g}.There is an obvious filtration on T g, for which T mg =

mn g

⊗m. It induces afiltration on U g. The Poincare-Birkhoff-Witt theorem is an explicit description of the graded ring gr U (g).

Define a map  ϕ : T g → gr( U g) by the obvious surjections

T mg =  g⊗m → U mg grm U (g).

This is a homomorphism of graded k-algebras. Moreover, since, for x ∈ U 2g, we have

U 2  x ⊗ y − y ⊗ x = [x, y] ∈ U 1,

it follows that the map  ϕ  factors through the symmetric algebra S g.

Theorem 6.8.1   (Poincare-Birkhoff-Witt).   Let  g  be a Lie algebra over  k. The mapϕ : S (g) → gr U (g)   is an isomorphism of graded  k-agebras.

Proof.   This is [Lie1–3, I §2.7 th.1].

More concretely, suppose  g  has a basis  x1, . . . , xn  of  g. The PBW theorem tellsus that every element of  U g  can be written uniquely as a sum

i

λixei ,

where  i  ranges over all tuples (i1, . . . , ir) for which 1 i1 < · · · < ir   n. Here wewrite

xei = xe1i1· · ·

xerir .

The PBW theorem is used in many places – one application is a simpler (thoughless transparent) construction of free Lie algebras than the one in [Lie1–3, II §2].

6.9 Forms of algebraic groups8

We start by defining non-abelian cohomology, following  [Ber10, II.3]. Let Γ be aprofinite group,  G  a (possibly nonabelian) discrete group on which  G  acts continu-ously by automorphisms. The pointed set of 1-cocycles , denoted  Z 1(Γ, G), consistsof functions  c : Γ

 → G, written  σ

 → cσ, such that

cστ   = cσσ(cτ )

8Tao Ran Chen

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 73/81

Linear algebraic groups    73

for all   σ, τ  ∈   Γ. The distinguished 1-cocycle is   σ →   1. We put an equivalencerelation on  Z 1(Γ, G), namely c ∼ c if there exists  g ∈ G  such that

cσ  = gcσσ(g−1)

for all  σ ∈   Γ. Write H1

(Γ, G) =  Z 1

(Γ, G)/ ∼  be the set of equivalence classes of 1-cocycles.

Let X  be a Γ-set with (equivariant) G-action, such that the map G ×X  → X ×X given by (g, x) → (gx,x) is a bijection. (Such X  are called G-torsors  in the categoryof Γ-sets.) Choose  x0 ∈  X   and define   c   : Γ →  G  by  σ(x0) =   c−1

σ   · x0. One cancheck that  cσ  is a 1-cocycle that only depends on the isomorphism class of  X   asa Γ-equivariant  G-set. The “right perspective” here is that  G  is a group object inthe category of Γ-sets, and that  H1(Γ, G) classifies  G-torsors in that category. Moregenerally, let G  be a group object in an arbitrary topos T . A G-torsor   is a G-object

X  ∈ T   such that  X  → 1 is an isomorphism, and such that the obvious morphismG × X  → X × X   is an isomorphism. As in [Joh77, §8.3], one can define  H1(T , G) tobe the (pointed) set of isomorphism classes of  G-torsors in T . If  N  ⊂ G  is a normalsubgroup in T , there is a “short long exact sequence” of pointed sets:

1 H0(T , N ) H0(T , G) H0(T , G/N )

H1(

T , N ) H1(

T , G) H1(

T , G/N ).

Our main example is: Γ =  Gal(k/k) for  k  a field, in which case the categoryof Γ-sets is equivalent to   Sh(ket). We will write   H1(k, G) instead of   H1(ket, G)for  G ∈  Sh(ket). Suppose  X   is an “object we want to classify.” Let G  =  Aut X (internal automorphisms object in the category  Sh(ket)). If  X  is another object andϕ :  X ksep → X ksep  is an isomorphism, we can define a cocycle  c : Γ = Gal(ksep/k) →G(ksep) by cσ  = σ(ϕ) ◦ ϕ−1. This gives a map {k-forms of  X } → H1(k, G), whichwill generally be injective. We are interested in the case where X   is an algebraicgroup over k.

Let  k  be a field,  G/k   an algebraic group. A  k-form of  G  is an algebraic groupG/k  such that  G

ksep  Gksep . Two  k-forms  G, G are equivalent if  G  G over k.

Example 6.9.1.   Let K/k  be a finite Galois extension,  G/k  an algebraic group. Wedefined in Example 3.8.3 the Weil restriction  of an algebraic group; here we apply itto  GK . That is, we write RK/k G  for the algebraic group over  k  defined by

(RK/k G)(A) = G(A ⊗k K ),

for any k-algebra A. By [BLR90, §

7.6],  RK/k

 G  is actually an algebraic group. SinceK  ⊗k K  Γ K , where Γ = Gal(K/k), we have (RK/k G)K   Γ GK , i.e.  RK/k Gis a   k-form of 

 K  Γ. Interesting  k-forms of  G   can often be obtained by taking

appropriate subgroups of RK/k G.  

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 74/81

Linear algebraic groups    74

Example 6.9.2.  Apply the previous general construction to the extension  C/R.The group  S =  RC/R Gm  comes with a  norm map  N :  S → Gm, coming from the

“usual norm” N : C → R. Then  SN=1 is a  R-form of  Gm.  

Example 6.9.3.   Let  k   be a field. A  central simple algebra   over  k   is a (possibly

non-commutative)   k-algebra   R   that is simple and has   Z(R) =   k. The obviousexamples are  Mn(k), but there are others, for example any division algebra  D  withZ(D) =  k. If  R   is any central simple algebra, then  Rksep   Mn(ksep) for some  n.There is a norm map N : R → k, which we can use to define a group SL(R) by

SL(R)(A) = ker

(R ⊗k A)×  N−→ A×

,

for all  k-algebras A. Since  R  splits over ksep, we have SL(R)ksep  SL(n)ksep .  

When   k   =   R, it is well-known that there is only one division algebra, the

quaternions H. So the only obvious forms of  SL(2)R  are  SL(2) and SL(H). It turnsout that these are the only ones, but this is far from obvious.

It turns out that the set of  k-forms of an algebraic group  G  can be describedusing Galois cohomology. Write Aut(G) for the functor on  k-schemes defined by

Aut(G)(S ) = AutS (GS ).

This is a sheaf for the canonical topology. In particular, we can take  H1(k, Aut G) =H1(Gal(k/k), Autksep(G)). Let   G be a   k-form of   G. Choose an isomorphism

φ :  Gksep

−→ Gksep, and define  c :  Gal(ksep

/k) → Autksep(G) by cσ  = σ(φ) ◦ φ−1

. Itturns out that the class of  c  in  H1(k, Aut G) does not depend on the choice of  φ. Infact, we have the following result.

Theorem 6.9.4.   Let  k  be a field,  G/k  an algebraic group. Then the correspondence defined above induces a natural bijection between the set of equivalence classes of k-forms of  G  and the pointed set  H1(k, Aut G).

Proof.  This is Lemma 7.1.1 in  [Con].

Example 6.9.5.  As above, let   k   =

  R,   G   =   SL(2). Then   Aut G   =   PSL2   andGal(C/R) = Z/2. So the set of  R-forms of  SL(2) is in bijection with H1(R, PSL2) 

H2(R,µ2)[2], which classifies quaternion algebras over R. It is well-known that thereare only two such algebras, namely  M2(R) and  H. So our list above is complete.  

6.10 Arithmetic subgroups9

In what follows, we focus on arithmetic subgroups of real Lie groups. Margulisproved his arithmeticity and hyperrigidity theorems in much greater generality,e.g. for groups like GLn(Z[ 1

 p

]) ⊂

 GLn(R)×

GLn(Q p).

Definition 6.10.1.   Let  G   be an abstract group,  H 1, H 2  subgroups of  G. We say H 1   and  H 2   are  commensurable  if  H 1 ∩ H 2  has finite index in both  H 1   and  H 2.

9Ryan McDermott

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 75/81

Linear algebraic groups    75

As an exercise, check that commensurability is an equivalence relation on the setof subgroups of  G.

Definition 6.10.2.   Let   G/Q   be an algebraic group. A subgroup   Γ ⊂   G(R)   is arithmetic   if for some (hence any) embedding   G →   GL(n)Q, the group   G(Q) ∩GLn(Z)  is commensurable with  Γ.

Clearly SLn(Z) is an arithmetic subgroup of SLn(R).

Lemma 6.10.3.   Let  G/Q  be an algebraic group. If  Γ ⊂ G(R)  is arithmetic, then  Γis discrete in the induced (analytic) topology.

Proof.  The group Γ is a finite union of cosets of a subgroup of  G(Q) ∩ GLn(Z), soit suffices to prove that GLn(Z) is a discrete subgroup of  GLn(R). But  GLn(Z) ⊂Mn(Z) ⊂ Mn(R), and clearly Mn(Z) is a discrete subgroup of Mn(R).

It is well-known (see for example   [Int II7–9, VII §1.2 th.1]) that any locallycompact group   G   admits a unique (up to scalar) left-invariant Borel measure,called the  Haar measure   on  G. We say  G   is   unimodular   if this measure is alsoright-invariant. Left-invariant and right-invariant Haar measures are related via acontinuous homomorphism ∆ : G → R+, known as the  modulus   [Int II7–9, VII §1.3].If  G  is a Lie group, one has ∆(g) = (det ad g)−1 by [Lie1–3, III §3.16], so in particularG   is unimodular. If  G  is a general unimodular group and Γ ⊂ G  is discrete, then by[Int II7–9, VII §2.6 cor.2], there is a unique (up to scalar)  G-invariant measure onthe quotient space Γ

\G.

Definition 6.10.4.   Let  G  be a unimodular locally compact group,  Γ ⊂ G  a discrete subgroup. Then  Γ  is a   lattice   if  vol(Γ\G) < ∞.

Definition 6.10.5.   If  G = V   is a real vector space and  Γ = Λ ⊂ V   is a discrete abelian subgroup with   rk(Λ) =   dim(V ), then   V /Λ    (S 1)n  for some   n. This is compact, hence it has finite volume.

We can give a more general version of the definition of arithmetic subgroups.

Definition 6.10.6.   Let  H /R  be an almost-simple algebraic group. A subgroup  Γ ⊂H (R) is  arithmetic  if there exists an algebraic group  G/Q, a surjection  φ :  GR   H with compact kernel, and an arithmetic subgroup (in the old sense)  Γ ⊂ G(R)  such that  φ(Γ) is commensurable with  Γ.

As before, arithmetic subgroups are discrete. Moreover, Γ is discrete in G(R), soΓ∩ker φ(R) is finite. In other words, all arithmetic subgroups (in the new sense) arefinite quotients of arithmetic subgroups (in the old sense). Even this new definitionis a special case of the much more general one in  [Mar91, IX §1].

Define two quadratic forms, one on  Rn+1

and the other on  Cn+1

:

q 1(x) = x21 + · · · + x2

n − x2n+1

q 2(z) = |z1|2 + · · · + |zn|2 − |zn+1|2.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 76/81

Linear algebraic groups    76

From this, we define the associated “orthogonal groups:”

SO(1, n) = {g ∈ SLn+1(R) : q 1(gx) = q 1(x) for all  x ∈ Rn+1}SU(1, n) = {g ∈ SLn+1(C) : q 2(gz) = q 2(z) for all  x ∈ Cn+1}.

Note that   SO(1, n) and   SU(1, n) can be interpreted as the real points of simplealgebraic groups over  R, but we will not do this.

Theorem 6.10.7  (Margulis).   Let  H /R  be a simple algebraic group such that  H (R)is not compact,  Γ ⊂ H (R)   a lattice. Then  Γ  is arithmetic unless  H   is isogenous toSO(1, n)  or  SU(1, n).

Proof.  This is a special case of the “Theorem A” from  [Mar91, IX §1].

Since  SL2(R) is isogenous to  SO(1, 2), the theorem doesn’t apply to  SL2(R). Infact, it doesn’t hold in this setting. For, there are only countably many arithmetic

subgroups of  SL2(R). However, every compact Riemann surface of genus  g   2 isthe quotient of the upper half-plane  H = {z ∈ C  : z > 0}  by a discrete subgroupof  SL2(R). Since the “space of genus-g   compact Riemann surfaces,” denoted  M g, isitself (3g − 3)-dimensional variety over  C, there are uncountably many isomorphism-classes of lattices in  SL2(R). By cardinality considerations, there are non-arithmeticlattices in SL2(R).

6.11 Finite simple groups of Lie type

Consider for a moment how we might try to use algebraic geometry to constructsimple abstract groups. Clearly, if  G/S  is a group scheme, then  G(X ) is an abstractgroup for any  X /S . If  x ∈  X   is a point, then there is a natural homomorphismG(X ) → G(k(x)), probably with nontrivial kernel, so it makes sense to only studyG(k) for  k  a field and  G/k  an algebraic group. The unipotent radical RG  is normalin  G, so we may as well require that RG = 1, i.e. that  G   be semisimple. Simplefactors of  G  yield big normal subgroups, so we finally arrive at the case where  G isa simple algebraic group. One would think that we should look at  Gad(k), whereGad = G/ Z(G), but from the long exact sequence

1 → Z (k) → Gsc(k) → Gad(k) → H1(k, Z ) → · · ·  ,

we see that  Gad(k) will have an abelian quotient, namely (a subgroup of)  H1(k, Z ).Thus, it makes sense to consider

im(Gsc(k) → Gad(k)).

If  R   is a root system, write  GscR/Z   (resp.  Gad

R/Z) for the unique simply connected

(resp. adjoint) Chevalley-Demazure group scheme over  Z  with root system of typeR. If  q  is a prime power, we define

R(q ) = imGscR/Z(Fq) → Gad

R/Z(Fq) .

Note that R(q ) is not   the Fq-points of an algebraic group. We will use this construc-tion to give a complete (up to finitely many) list of all finite simple groups.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 77/81

Linear algebraic groups    77

Theorem 6.11.1  (Classification theorem).  Every finite simple group is one of the  following:

•   cyclic:   Z/p

•  alternating:   A

n  ( n 5)

•   Chevalley groups:

–   An(q ),  n 1

–   Bn(q ),  n 2

–   Cn(q ),  n 2

–   Dn(q ),  n 3

–   E6(q ),  E7(q ),  E8(q ),  F4(q ), and  G2(q )

•   Steinberg groups:

–   2An(q 2),  n 2

–   2Dn(q 2),  n 2

–   2E6(q 2),   3D4(q 3)

•   Suzuki groups:   2B2(22n+1),  n 1

• Ree groups:   2F4(22n+1),  n 1  and   2G2(32n+1),  n 1.

•   Tits group:   2F4(2)1.

•   The  26  sporadic groups.

Here,  q  ranges over all primes powers.

See the table in Chapter 1 of [GLS94] for a complete list that includes all thesporadics. The “groups of Lie type” which are not simple are All of these groupsare simple, except A1(2), A1(3), B2(2), G2(2), and   3A2(22).

Example 6.11.2   (type An).   One has An(q ) =   im(SLn+1(Fq) →   PGLn+1(Fq)).This group is often written   PSLn(q ), but as we have discussed elsewhere, thisnotation is misleading. For example, An(2f ) = SLn+1(F2f ).  

Example 6.11.3   (type Dn).   Recall that the simply-connected form of Dn   isSpin(2n), and the adjoint form is  SO(2n)/µ2. Thus Dn(q ) is an index-two subgroupof SO2n(Fq)/{±1}.  

Example 6.11.4   (type   2An).   These are constructed via “unitary groups.” Recall

that SL(n + 1) has Dynkin diagram

• • · · · • •   (n  vertices).

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 78/81

Linear algebraic groups    78

This has an automorphism (flip accross vertical axis). The induced outer automor-phism of SL(n + 1) is  g →   tg−1. One puts

SU(n) = {g ∈ SLn(C) : g =   tg−1}.

For a finite field  Fq, the appropriate analogue of complex conjugation is the uniquenontrivial element  σ ∈ Gal(Fq2/Fq). Put

2An(q 2) = {g ∈ SLn+1(Fq2) : σ(g) =   tg−1}/(center).

One obtains the other Steinberg groups similarly: they are of the form

{g

 ∈ R(q 2) : σ(g) = φ(g)

},

where φ is an automorphism of  Dyn(R) of order 2. For   3D4(q ), one chooses a gener-ator σ ∈ Gal(Fq3/Fq) and an outer automorphism  φ of D4  of order 3. Essentiallythe same construction can be done with  σ  and φ.

The Suzuki and Ree groups come from the so-called “special isogenies” incharacteristics 2 and 3. Roughly, these come from the fact that in characteristic  p,a directed multi-arrow in a Dynkin diagram should be replaced with  p undirectededges. Thus in characteristic 2, the Dynkin diagram for B2   is •  = •, which hasa nontrivial automorphism. Similarly, in characteristic 2, The Dynkin diagram of 

type F4   should be • − •  = • − •, which also has an automorphism. Finally, incharacteristic 3, Dyn(G2) should be • ≡ •.

Finite simple groups of exceptional Lie type can be quite large. For example,#E8(2) ≈ 3.3 · 1074. In contrast, the Monster group has cardinality ≈ 8.1 · 1053.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 79/81

REFERENCES    79

References

[Ber10]   Gregory Berhuy.  An introduction to Galois cohomology and its appli-cations . Vol. 377. London Mathematical Society Lecture Note Series.With a foreword by Jean-Pierre Tignol. Cambridge University Press,

2010.[Bor91]   Armand Borel.  Linear algebraic groups . Vol. 126. Graduate Texts in

Mathematics. Springer-Verlag, 1991.

[BW05]   James Borger and Ben Wieland. “Plethystic algebra”. In: Adv. Math.194.2 (2005), p. 246.

[BLR90]   Siegfried Bosch, Werner Lutkebohmert, and Michel Raynaud.  Neron models . Vol. 21. Ergebnisse der Mathematik und ihrer Grenzgebiete.Springer-Verlag, 1990.

[Alg4–7]   Nicolas Bourbaki.  Algebra. II. Chapters 4–7 . Elements of Mathematics.Translated from the French by P. M. Cohn and J. Howie. Springer-Verlag,1990.

[Top1–4]   Nicolas Bourbaki.  General topology. Chapters 1–4. Elements of mathe-matics. Translated from the French, Reprint of the 1989 English trans-lation. Springer-Verlag, 1998.

[Lie1–3]   Nicolas Bourbaki.  Lie groups and Lie algebras. Chapters 1–3 . Elementsof Mathematics. Translated from the French, Reprint of the 1989 English

translation. Berlin: Springer-Verlag, 1998.[Lie4–6]   Nicolas Bourbaki.  Lie groups and Lie algebras. Chapters 4–6 . Elements

of Mathematics. Translated from the 1968 French original by AndrewPressley. Berlin: Springer-Verlag, 2002.

[Int II7–9]   Nicolas Bourbaki. Integration. II. Chapters 7–9 . Elements of Mathemat-ics. Translated from the 1963 and 1969 French originals by Sterling K.Berberian. Springer-Verlag, 2004.

[Lie7–9]   Nicolas Bourbaki.  Lie groups and Lie algebras. Chapters 7–9 . Elements

of Mathematics. Translated from the 1975 and 1982 French originals byAndrew Pressley. Berlin: Springer-Verlag, 2005.

[Car07]   Pierre Cartier. “A primer of Hopf algebras”. In: Frontiers in number theory, physics, and geometry. II . Springer, 2007, pp. 537–615.

[Con]   Brian Conrad. “Reductive group schemes”. Available at  http://math.stanford.edu/~conrad/papers/luminysga3.pdf. Notes from a sum-mer school on SGA 3 in 2011.

[CGP10]   Brian Conrad, Ofer Gabber, and Gopal Prasad. Pseudo-reductive groups .

Vol. 17. New Mathematical Monographs. Cambridge University Press,2010.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 80/81

REFERENCES    80

[DM82]   P. Deligne and J.S. Milne. “Tannakian categories”. In:  Hodge cycles,motives and Shimura varieties . Vol. 900. Lecture Notes in Mathematics.Corrected and revised version available at   http://www.jmilne.org/ math/xnotes/tc.pdf. Springer, 1982, pp. 101–228.

[Del71]   Pierre Deligne. “Theorie de Hodge. II”. In:   Inst. Hautes   ´ Etudes Sci.Publ. Math.  40 (1971), pp. 5–57.

[DG80]   Michel Demazure and Peter Gabriel. Introduction to algebraic geometry and algebraic groups . Vol. 39. North-Holland Mathematical Studies.Translated from the French by J. Bell. North-Holland Publishing Co.,1980.

[EGA 2]   Jean Dieudonne and Alexandre Grothendieck.   ´ Elements de geometrie algebrique. II.   ´ Etude globale elementaire de quelques classes de mor-phismes . 8. 1961.

[EGA 3I]   Jean Dieudonne and Alexandre Grothendieck.   ´ Elements de geometrie algebrique. III.   ´ Etude cohomologique des faisceaux coherents, Premiere partie . 11. 1961.

[GLS94]   Daniel Gorenstein, Richard Lyons, and Ronald Solomon. The classifi-cation of the finite simple groups . Vol. 40. Mathematical Surveys andMonographs. American Mathematical Society, 1994.

[SGA 1]   Alexandre Grothendieck, ed. Revetements etales et groupe fondamentale (SGA 1). Vol. 224. Lecture Notes in Mathematics. Augmente de deux

exposes de M. Raynaud. Springer-Verlag, 1971.

[SGA 3I]   Alexandre Grothendieck and Michel Demazure, eds. Schemas en groupes (SGA 3). Tome I. Proprietes generales des schemas en groupes . Vol. 151.Lecture Notes in Mathematics. Springer-Verlag, 1970.

[SGA 3II]   Alexandre Grothendieck and Michel Demazure, eds. Schemas en groupes (SGA 3). Tome II. Groupes de type multiplicatif, et structure des schemas en groupes generaux . Vol. 152. Lecture Notes in Mathematics.Springer-Verlag, 1970.

[SGA 3III ]   Alexandre Grothendieck and Michel Demazure, eds. Schemas en groupes (SGA 3). Tome III. Structure des schemas en groupes reductifs . Vol. 153.Lecture Notes in Mathematics. Springer-Verlag, 1970.

[Har77] Robin Hartshorne.  Algebraic geometry . Springer-Verlag, 1977.

[Hum75]   James Humphreys. Linear algebraic groups . Graduate Texts in Mathe-matics 21. Springer-Verlag, 1975.

[Jac79]   Nathan Jacobson. Lie algebras . Republication of the 1962 original. NewYork: Dover Publ. Inc., 1979.

[Jan03]   Jens Carsten Jantzen.   Representations of algebraic groups . Second.Vol. 107. Mathematical Surveys and Monographs. American Mathemat-ical Society, 2003.

7/18/2019 Linear algebraic groups and their Lie algebras

http://slidepdf.com/reader/full/linear-algebraic-groups-and-their-lie-algebras 81/81

REFERENCES    81

[Joh77]   P. T. Johnstone. Topos theory . Vol. 10. London Mathematical SocietyMonographs. Academic Press, 1977.

[MLM94]   Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic .Universitext. Corrected reprint of the 1992 edition. Springer-Verlag,1994.

[Mar91]   Gregory Margulis. Discrete subgroups of semisimple Lie groups . Vol. 17.Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag,1991.

[Mil07]   J. S. Milne. Semisimple algebraic groups in characteristic zero. May 9,2007. arXiv:  0705.1348.

[Mil14]   James Milne. Algebraic groups . Online. 2014.  url: http://www.jmilne.org/math/CourseNotes/iAG.pdf (visited on 10/02/2014).

[Nit05]   Nitin Nitsure. “Construction of Hilbert and Quot schemes”. In: Fun-damental algebraic geometry . Vol. 123. Math. Surveys Monogr. Amer.Math. Soc., 2005, pp. 105–137.

[PS03]   Marius van der Put and Michael Singer.   Galois theory of linear dif- ferential equations . Vol. 328. Grundlehren der Mathematischen Wis-senschaften. Springer-Verlag, 2003.

[Spr09]   T. Springer. Linear algebraic groups . Second. Modern Mirkhauser Clas-sics. Birkhauser Boston, 2009.

[SV00]   Tonny Springer and Ferdinand Veldkamp. Octonions, Jordan algebras and exceptional groups . Springer Monographs in Mathematics. Springer-Verlag, 2000.

[TT79]   Carol Tretkoff and Marvin Tretkoff. “Solution of the inverse problemof differential Galois theory in the classical case”. In:  Amer. J. Math.101.6 (1979), pp. 1327–1332.

[Voj07]   Paul Vojta. “Jets via Hasse-Schmidt derivations”. In:  Diophantine geometry . Vol. 4. CRM Series. Pisa: Ed. Norm., 2007, pp. 335–361.

[Wat79]   William Waterhouse.   Introduction to affine group schemes . Vol. 66.Graduate Texts in Mathematics. New York-Berlin: Springer-Verlag,1979.