linear bounded automata lbas

61
1 Linear Bounded Automata LBAs

Upload: monita

Post on 11-Jan-2016

72 views

Category:

Documents


2 download

DESCRIPTION

Linear Bounded Automata LBAs. Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference:. The input string tape space is the only tape space allowed to use. Linear Bounded Automaton (LBA). Input string. Working space in tape. Left-end marker. Right-end marker. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Linear Bounded Automata LBAs

1

Linear Bounded AutomataLBAs

Page 2: Linear Bounded Automata LBAs

2

Linear Bounded Automata (LBAs)are the same as Turing Machineswith one difference:

The input string tape spaceis the only tape space allowed to use

Page 3: Linear Bounded Automata LBAs

3

[ ]a b c d e

Left-endmarker

Input string

Right-endmarker

Working space in tape

All computation is done between end markers

Linear Bounded Automaton (LBA)

Page 4: Linear Bounded Automata LBAs

4

We define LBA’s as NonDeterministic

Open Problem:

NonDeterministic LBA’shave same power withDeterministic LBA’s ?

Page 5: Linear Bounded Automata LBAs

5

Example languages accepted by LBAs:

}{ nnn cbaL

}{ !naL

LBA’s have more power than NPDA’s

Conclusion:

Page 6: Linear Bounded Automata LBAs

6

Later in class we will prove:

LBA’s have less powerthan Turing Machines

Page 7: Linear Bounded Automata LBAs

7

A Universal Turing Machine

Page 8: Linear Bounded Automata LBAs

8

Turing Machines are “hardwired”

they executeonly one program

A limitation of Turing Machines:

Real Computers are re-programmable

Page 9: Linear Bounded Automata LBAs

9

Solution: Universal Turing Machine

• Reprogrammable machine

• Simulates any other Turing Machine

Attributes:

Page 10: Linear Bounded Automata LBAs

10

Universal Turing Machine

simulates any other Turing MachineM

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M

Page 11: Linear Bounded Automata LBAs

11

Universal Turing Machine M

Description of

Tape Contents of

M

State of M

Three tapes

Tape 2

Tape 3

Tape 1

Page 12: Linear Bounded Automata LBAs

12

We describe Turing machine as a string of symbols:

We encode as a string of symbols

M

M

Description of M

Tape 1

Page 13: Linear Bounded Automata LBAs

13

Alphabet Encoding

Symbols: a b c d

Encoding: 1 11 111 1111

Page 14: Linear Bounded Automata LBAs

14

State Encoding

States: 1q 2q 3q 4q

Encoding: 1 11 111 1111

Head Move Encoding

Move:

Encoding:

L R

1 11

Page 15: Linear Bounded Automata LBAs

15

Transition Encoding

Transition: ),,(),( 21 Lbqaq

Encoding: 10110110101

separator

Page 16: Linear Bounded Automata LBAs

16

Machine Encoding

Transitions:

),,(),( 21 Lbqaq

Encoding:

10110110101

),,(),( 32 Rcqbq

110111011110101100

separator

Page 17: Linear Bounded Automata LBAs

17

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine as a binary string of 0’s and 1’s

M

Page 18: Linear Bounded Automata LBAs

18

A Turing Machine is described with a binary string of 0’s and 1’s

The set of Turing machines forms a language:

each string of the language isthe binary encoding of a Turing Machine

Therefore:

Page 19: Linear Bounded Automata LBAs

19

Language of Turing Machines

L = { 010100101,

00100100101111,

111010011110010101, …… }

(Turing Machine 1)

(Turing Machine 2)

……

Page 20: Linear Bounded Automata LBAs

20

Countable Sets

Page 21: Linear Bounded Automata LBAs

21

Infinite sets are either: Countable

or

Uncountable

Page 22: Linear Bounded Automata LBAs

22

Countable set:

There is a one to one correspondencebetween elements of the setand positive integers

Page 23: Linear Bounded Automata LBAs

23

Example:

Even integers: ,6,4,2,0

The set of even integersis countable

Positive integers:

Correspondence:

,4,3,2,1

n2 corresponds to 1n

Page 24: Linear Bounded Automata LBAs

24

Example: The set of rational numbersis countable

Rational numbers: ,87,43,21

Page 25: Linear Bounded Automata LBAs

25

Naïve Proof

Rational numbers: ,31,21,11

Positive integers:

Correspondence:

,3,2,1

Doesn’t work:

we will never count numbers with nominator 2:

,32,22,12

Page 26: Linear Bounded Automata LBAs

26

Better Approach

11

21

31

41

12

22

32

13

23

14

Page 27: Linear Bounded Automata LBAs

27

11

21

31

41

12

22

32

13

23

14

Page 28: Linear Bounded Automata LBAs

28

11

21

31

41

12

22

32

13

23

14

Page 29: Linear Bounded Automata LBAs

29

11

21

31

41

12

22

32

13

23

14

Page 30: Linear Bounded Automata LBAs

30

11

21

31

41

12

22

32

13

23

14

Page 31: Linear Bounded Automata LBAs

31

11

21

31

41

12

22

32

13

23

14

Page 32: Linear Bounded Automata LBAs

32

Rational Numbers: ,22,31,12,21,11

Correspondence:

Positive Integers: ,5,4,3,2,1

Page 33: Linear Bounded Automata LBAs

33

We proved:

the set of rational numbers is countable by describing an enumeration procedure

Page 34: Linear Bounded Automata LBAs

34

Definition

An enumeration procedure for is aTuring Machine that generatesall strings of one by one

Let be a set of strings S

S

S

and

Each string is generated in finite time

Page 35: Linear Bounded Automata LBAs

35

EnumerationMachine for

,,, 321 sss

Ssss ,,, 321

Finite time: ,,, 321 ttt

strings

Soutput

(on tape)

Page 36: Linear Bounded Automata LBAs

36

Enumeration MachineConfiguration

Time 0

0q

Time

sq

1x 1s#1t

Page 37: Linear Bounded Automata LBAs

37

Time

sq

3x 3s#3t

Time

sq

2x 2s#2t

Page 38: Linear Bounded Automata LBAs

38

A set is countable if there is anenumeration procedure for it

Observation:

Page 39: Linear Bounded Automata LBAs

39

Example:

The set of all stringsis countable

},,{ cba

We will describe the enumeration procedure

Proof:

Page 40: Linear Bounded Automata LBAs

40

Naive procedure:

Produce the strings in lexicographic order:

aaaaaa

......

Doesn’t work: strings starting with will never be produced

b

aaaa

Page 41: Linear Bounded Automata LBAs

41

Better procedure:

1. Produce all strings of length 1

2. Produce all strings of length 2

3. Produce all strings of length 3

4. Produce all strings of length 4

..........

Proper Order

Page 42: Linear Bounded Automata LBAs

42

Produce strings in Proper Order:

aaabacbabbbccacbcc

aaaaabaac......

length 2

length 3

length 1abc

Page 43: Linear Bounded Automata LBAs

43

Theorem: The set of all Turing Machinesis countable

Proof:

Find an enumeration procedure for the set of Turing Machine strings

Any Turing Machine can be encodedwith a binary string of 0’s and 1’s

Page 44: Linear Bounded Automata LBAs

44

1. Generate the next binary string of 0’s and 1’s in proper order

2. Check if the string describes a Turing Machine if YES:YES: print string on output tape if NO:NO: ignore string

Enumeration Procedure:

Repeat

Page 45: Linear Bounded Automata LBAs

45

Uncountable Sets

Page 46: Linear Bounded Automata LBAs

46

A set is uncountable if it is not countable

Definition:

Page 47: Linear Bounded Automata LBAs

47

Theorem:

Let be an infinite countable set

The powerset of is uncountable S2 S

S

Page 48: Linear Bounded Automata LBAs

48

Proof:

Since is countable, we can write S

},,,{ 321 sssS

Elements of S

Page 49: Linear Bounded Automata LBAs

49

Elements of the powerset have the form:

},{ 31 ss

},,,{ 10975 ssss

……

Page 50: Linear Bounded Automata LBAs

50

We encode each element of the power setwith a binary string of 0’s and 1’s

1s 2s 3s 4s

1 0 0 0}{ 1s

Powersetelement

Encoding

0 1 1 0},{ 32 ss

1 0 1 1},,{ 431 sss

Page 51: Linear Bounded Automata LBAs

51

Let’s assume (for contradiction) that the powerset is countable.

Then: we can enumerate the elements of the powerset

Page 52: Linear Bounded Automata LBAs

52

1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

Powerset element Encoding

1t

2t

3t

4t

Page 53: Linear Bounded Automata LBAs

53

Take the powerset elementwhose bits are the complements in the diagonal

Page 54: Linear Bounded Automata LBAs

54

1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

1t

2t

3t

4t

New element: 0011

(birary complement of diagonal)

Page 55: Linear Bounded Automata LBAs

55

The new element must be someof the powerset

it

However, that’s impossible:

the i-th bit of must be the complement of itself

from definition of it

it

Contradiction!!!

Page 56: Linear Bounded Automata LBAs

56

Since we have a contradiction:

The powerset of is uncountable S2 S

Page 57: Linear Bounded Automata LBAs

57

An Application: Languages

Example Alphabet : },{ ba

The set of all Strings:

},,,,,,,,,{},{ * aabaaabbbaabaababaS infinite and countable

Page 58: Linear Bounded Automata LBAs

58

Example Alphabet : },{ ba

The set of all Strings:

},,,,,,,,,{},{ * aabaaabbbaabaababaS infinite and countable

A language is a subset of :

},,{ aababaaL

S

Page 59: Linear Bounded Automata LBAs

59

Example Alphabet : },{ ba

The set of all Strings:

},,,,,,,,,{},{ * aabaaabbbaabaababaS infinite and countable

The powerset of contains all languages:

}},,,}{,{},{},{{2 aababaabaaS 1L 2L 3L 4L

uncountable

S

Page 60: Linear Bounded Automata LBAs

60

Languages: uncountable

Turing machines: countable

1L 2L 3L kL

1M 2M 3M

?

There are infinitely many more languagesthan Turing Machines

Page 61: Linear Bounded Automata LBAs

61

There are some languages not acceptedby Turing Machines

These languages cannot be describedby algorithms

Conclusion: