linear differential equations1

6

Click here to load reader

Upload: sebastian-vattamattam

Post on 14-Jun-2015

458 views

Category:

Education


4 download

TRANSCRIPT

Page 1: Linear Differential Equations1

LINEAR DIFFERENTIAL EQUATIONS

SEBASTIAN VATTAMATTAM

1. Homogeneous Equations

Example 1.1. Solve

d2y

dx2+ a

dy

dx+ by = 0, a, b ∈ R....(1)

Suppose y = emx....(2) is a solution of (1).Then,

m2emx + amemx + bemx = 0⇔ m2 + am+ b = 0....(3)

So, (2) is a solution of (1) iff m is a root of (3).Let m1,m2 be the roots of (3).

Case 1: m1,m2 are real and distinct.

y = c1em1x + c2e

m2x

Case 2: m1 = p+ iq,m2 = p− iq

y = epx(c1 cos qx+ c2 sin qx)

Case 3: m1 = m2 = m

(c1 + c2x)emx

Example 1.2. Solve

y′′ + y′ − 2y = 0

The auxiliary equation is

m2 +m− 2 = 0⇒ m1 = −1,m2 = 2

Date: 15 June 2010.Key words and phrases. Complementary Function, Particular Integral, Complete Solution.

1

Page 2: Linear Differential Equations1

2 SEBASTIAN VATTAMATTAM

General Solution is

y = c1e−x + c2e

2x

Example 1.3. Solve

y′′ − 2y′ + 10y = 0

The auxiliary equation is

m2 − 2m+ 10 = 0⇒ m1 = 1 + 3i,m2 = 1− 3i

General Solution is

y = ex(c1 cos 3x+ c2 sin 3x

Example 1.4. Solve

y′′ − 2y′ + 10y = 0 given that y(0) = 4, y′(0) = 1

The auxiliary equation is

m2 − 2m+ 10 = 0⇒ m1 = 1 + 3i,m2 = 1− 3i

General Solution is

y(x) = ex(c1 cos 3x+ c2 sin 3x)

y(0) = c1 ⇒ c1 = 4....(1)

y′(x) = ex(c1 cos 3x+ c2 sin 3x− 3c1 sin 3x+ 3c2 cos 3x)

Therefore

y′(0) = c1 + 3c2 ⇒ c1 + 3c2 = 1....(2)

From (1) and (2), c1 = 4, c2 = −1 Therefore, the solutionis

y(x) = ex(4 cos 3x− sin 3x)

Rememberd

dxexf(x) = ex[f(x) + f ′(x)]

Example 1.5. Solve 1

y′′ + n2y = 0

1Similar to Ex 4, p.190 in [1]

Page 3: Linear Differential Equations1

ORDINARY DIFFERENTIAL EQUATIONS 3

The auxiliary equation is

m2 + n2 = 0⇒ m1 = ni,m2 = −niGeneral Solution is

y = c1 cosnx+ c2 sinnx

Example 1.6. Solve

y′′ + 8y′ + 16y = 0

The auxiliary equation is

m2 + 8m+ 16 = 0⇒ m1 = −4,−4

General Solution is

y(x) = (c1 + c2x)e−4x

Example 1.7. Solve

y′′ − 4y′ + 4y = 0, y(0) = 3, y′(0) = 1

General Solution is

y(x) = (c1 + c2x)e2x

y(0) = c1 ⇒ c1 = 3....(1)

y′(x) = c2e2x + 2(c1 + c2x)e2x

Therefore

y′(0) = c2 + 2c1 ⇒ c2 + 2c1 = 1....(2)

From (1) and (2), c1 = 3, c2 = −5 Therefore, the solutionis

y(x) = (3− 5x)e2x

Example 1.8. Solve 2

2y′′′ − 5y′′ − 4y′ + 3y = 0

The auxiliary equation is

2m3 − 5m2 − 4m+ 3 = 0

2Ex 1, p.88 of [1]

Page 4: Linear Differential Equations1

4 SEBASTIAN VATTAMATTAM

Solution by synthetic division:

Trym = 11 2 -5 -4 3

2 -3 -72 -3 -7 [-4]

Trym = −1-1 2 -5 -4 3

-2 7 -32 -7 3 [0]

2m3−5m2−4m+3 = (m+1)(2m2−7m+3) = (m+1)(2m−1)(m−3) = 0

⇒ m = 1/2,−1, 3

General Solution is

y = Aex/2 +Be−x + Ce3x

Example 1.9. Solve 3

y′′′ + 3y′′ + 3y′ + 2y = 0

The auxiliary equation is

m3 + 3m2 + 3m+ 2 = 0

Solution by synthetic division:

Trym = −1-1 1 3 3 2

-1 -2 -11 2 1 [1]

Trym = −2-2 1 3 3 2

-2 -2 -21 1 1 [0]

m3 + 3m2 + 3m+ 2 = 0 = (m+ 2)(m2 +m+ 1) = 0

⇒ m = −2,−1/2± i1/2General Solution is

y = Ae−2x + e−x/2(C cos

√3x

2+D sin

√3x

2)

2. Non-homogeneous Equations

Inverse Operators

(1)1

Dφ(x) =

∫φ(x)dx

3Ex 3, p.190 in [1]

Page 5: Linear Differential Equations1

ORDINARY DIFFERENTIAL EQUATIONS 5

(2)1

D − aφ(x) = eax

∫φ(x)e−axdx

(3)1

f(D)eax =

1

f(a)eax, if f(a) 6= 0

(4) If f(a) = 0, then

1

f(D)eax = x

1

f ′(a)eax, if f ′(a) 6= 0

(5) If f ′(a) = 0, then

1

f(D)eax = x2

1

f ′′(a)eax, if f ′′(a) 6= 0

(6)

1

f(D2)sin(ax+ b) =

1

f(−a2)sin(ax+ b), if f(−a2) 6= 0

(7) If f(−a2) = 0, then

1

f(D2)sin(ax+ b) = x

1

f ′(−a2)sin(ax+ b), if f ′(−a2) 6= 0

(8)1

f(D)eaxφ(x) = eax

1

f(D + a)φ(x)

Example 2.1. Solve

(D − 2)2y = 8(e2x + sin 2x+ x2)

(1) Find the Complementary Function (CF)

(m− 2)2 = 0⇒ m = 2, 2

CF = (c1 + c2x)e2x

(2) Find Particular Integrals(PI)(a)

PI1 =1

(D − 2)2e2x = x

1

2(D − 2)e2x = x2

1

2e2x =

x2

2e2x

Note that f(2) = f ′(2) = 0

Page 6: Linear Differential Equations1

6 SEBASTIAN VATTAMATTAM

(b)

PI2 =1

(D − 2)2sin 2x =

1

D2 − 4D + 4sin 2x =

1

−4− 4D + 4sin 2x = −1

4

1

Dsin 2x = −1

4

∫sin 2x =

cos 2x

8

(c)

PI3 =1

(D − 2)2x2 =

1

(2−D)2x2 =

1

4(1−D/2)2x2 =

1

4(1−D/2)−2x2 =

1

4[1+

2D

2+−2×−3

2!

D2

4...]x2 =

1

4[x2+2x+

3x2

4]

(3) Complete solution is

y = CF + PI1 + PI2 + PI3

References[1] P. Kandasamy etc,Engineering Mathematics- For First Year ,S. Chand & Company Ltd

Mary Bhavan, Vallikkad Road, Ettumanoor - 686631

E-mail address: [email protected]