linear nonlinear amp

Upload: elaine-morato

Post on 03-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Linear Nonlinear Amp

    1/29

    Linear and Nonlinear Power Amplifier

    EE542 Microwave Engineering Class

    The material is from the book, Solid-State Microwave Amplifier Design, Tri T. Ha

    Nov. , 2011, Fall , KAIST1EE542 Microwave Engineering,

    Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    2/29

    Characterizing Nonlinear Behavior

    Power amplifiers require additional measurements tocharacterize nonlinear behavior

    power sweeps (using network analyzer)Gain com ression

    H ACTIVECHANNEL

    RESPONSE

    STIMULUS

    ENTRY

    INSTRUMENTSTATE RCHANNEL

    NETWORKANALYZER50MHz-20GHz

    AM to PM conversionsingle-tone harmonic

    RL

    T

    S

    HP-IBSTATUS

    PORT 2PORT 1

    secon armon cthird harmonic

    multi-tone intermodulationthird-order intercept using two toneshigh-order intermodulation using many carriers

    di ital modulationadjacent-channel power

    g )

    Lower Adjacent Channel

    Upper Adjacent Channel

    Nov. , 2011, Fall , KAIST2

    frequency

    p o w e r

    ( l Carrier Channel

    EE542 Microwave Engineering,

    Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    3/29

    Power Sweep Compression (AM-to-AM Conversion)

    Saturatedoutput power

    r ( d B m

    )

    u t P o w Compression

    region

    O u

    t

    Linear region(slope = small-signal gain)

    Nov. , 2011, Fall , KAIST3

    EE542 Microwave Engineering,

    Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    4/29

    Measured Gain Compression

    CH1 S 21 log MAG 1 dB/ REF 25 dB

    CH2 B log MAG REF 26 dBm5 dBm/

    1_: 25.018 dB

    -12.6 dBm

    1_ -12.418 dBm

    1 dB compression :input power resulting in

    C2

    PRm

    1

    1

    2_: 23.933 dB

    1 dB drop in gainratioed measurementoutput power available (non-

    2

    _ 3.7 Bm

    2

    use power-meter calibrationfor best accuracy

    PRm

    2

    2_ 27.633 dBm3.7 dBm

    1

    CH1 START -15.0 dBm STOP 9.0 dBmCW 1.880 000 000 GHz CH2 START -15.0 dBm STOP 9.0 dBmCW 1.880 000 000 GHz

    Nov. , 2011, Fall , KAIST4

    1dB Compression Results:Input power: 3.7 dBm Output power: 27.633 dBm Gain,1dB : 23.933 dB

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    5/29

    Single Frequency Input Test (AM-to-AM Conversion)

    Single Frequency Input Testingle Frequency Input Test 1( ) cos x t A t

    2 2 3 3

    2 31 2 3( ) ( ) ( ) ( ) y t k x t k x t k x t

    1 1 2 1 3 1

    2 31 1 2 1 3 1 1

    1 1 3 12 3

    2 2 4 4cos ( cos ) ( cos cos )k A t k A t k A t t

    2 3 2 32 1 3 1 2 1 3 12 32 4 2 4

    ( )cos cos cosk A k A k A t k A t k A t

    )3

    log(2043

    log20 231

    331

    Ak k Ak Ak

    GThe gain at the fundamental frequency 1 is given by

    11

    0 log20log20 k A Ak G

    dBGG dB 101 12

    31 891.03

    k Ak k

    As compared to the linear gain G0 defined as

    1-dB gain compression point is defined as the signal level where

    0,145.0 33

    12 k k k

    AHence at the 1-dB compression point the amplitude of is limited as

    The input and output powers P 1 and P 0 at the fundamental frequency 1 is given in dBm as

    dBm A

    Pi 32 10

    log10 Ak Ak

    3

    23

    31 1043

    Nov. , 2011, Fall , KAIST5dBmPG

    R

    i

    02

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    6/29

    Single Frequency Input Test (AM-to-AM Conversion)

    The output power at 1dB gain compression point P 1dB is

    1 1 0 1dB dB i iP G P G P dBm

    dBm Rk

    k GP dB

    3

    3

    101

    102145.0

    log101

    dBm Rk

    k Rk k

    3

    3

    3

    1

    3

    3

    1 1033.17

    1log1070.57log10

    Nov. , 2011, Fall , KAIST6EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    7/29

    Example

    Consider a two port with the following transfer characteristic (assumingR=50 )

    3( ) 15 ( ) 2 ( ) y t x t x t

    Linear gain G 0 =23.5dB and 1dB gain compression point is G 1dB =22.5dB. Atthis point the amplitude is limited to

    1/ 2

    10.145 , 1.044k

    A V

    Saturatedoutput power

    and the output power is

    3

    e r ( d B m

    )

    P 1dB =32.89dB

    u t p u

    t P o Compression

    region

    O

    Linear region= -

    Nov. , 2011, Fall , KAIST7EE542 Microwave Engineering,

    Park, 2012. Fall, KAISTInput Power (dBm)

  • 7/28/2019 Linear Nonlinear Amp

    8/29

  • 7/28/2019 Linear Nonlinear Amp

    9/29

    Nonlinearity of Power Amplifiers

    Input(x(t)) output (y(t))

    1 2 3

    1 2

    ( ) ( ) ( ) ( )

    ( ) c o s c o s

    y t k x t k x t k x t

    x t A t A t

    2 2 3

    2 2 1 2 1 3 1

    3 3 31 3 2 3 1 2 3 2 1

    ( ) cos( ) ( ) cos( )9

    4 3 3( ) cos cos(2 ) cos(2 )

    9 4 4

    y t k A k A k A k A t

    k A k A t k A t k A t

    2 2 22 1 2 2 1 2 2cos( ) cos(2 ) cos 22 2

    k A t k A t k A t

    In-band and out-of-band distortion P y

    B f f B N

    a N

    B N a BN a a a

    d R f P y y

    )2(4

    32

    )29

    36(

    )()(

    22302

    3022

    023031

    21

    Distortion

    gna

    B f f B N

    a N

    B N a BN a a a

    d R f P y y

    )2(4

    32

    )29

    36(

    )()(

    22302

    3022

    023031

    21

    Nov. , 2011, Fall , KAIST9

    B f B f B N

    a 3)2(4

    3 2023 B

    f -B

    B f B f B N

    a 3)2(4

    3 2023

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    10/29

    Two Frequency Input Test (AM-to-AM Conversion)2 2 3 3

    1 1 2 2 1 2 3 1 2

    2 2 32 2 1 2 1 3 1

    94

    ( ) (cos cos ) (cos cos ) (cos cos )

    cos( ) ( )cos

    y t k A t t k A t t k A t t

    k A k A t k A k A t

    3 31 3 2 3 1 2

    3 2 2

    9 32

    4 43 1

    ( )cos cos( )k A k A t k A t

    3 2 1 2 1 2 2 1

    22

    4 212

    ck A

    3 32 3 1 2 3 2 1

    3 32 2 2

    4 4os cos( ) cos( )t k A t k A t

    3 33 1 3 21 13 34 4

    cos cosk A t k A t

    At hi her ower levels the res onse of P will be com ressed and will deviate from the res onse of P

    dBm Ak

    P 32

    10

    10log10

    dBm R

    Ak Ak P

    w

    3

    23

    31

    )1(

    10

    249

    log10

    Ak

    3

    23

    3 103

    Nov. , 2011, Fall , KAIST10

    m Rww

    )212(2

    og

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    11/29

    Harmonics and Conversion Gain Measurement

    Harmonics

    20Input : 3.4- 4.2 GHzOutput 950 ~ 1750 MHz

    )

    0

    Stability : 25 KHzLO : 5.15 GHzGain : 65 dB

    t p o w e r

    ( d B

    -40

    -

    o u

    t p

    -80

    -601st at 1350 MHz2nd at 2700 MHz3rd at 4050 MHz

    Input power (dBm)

    -120 -100 -80 -60 -40 -20-100

    2 2 32 2 1 2 1 3 1

    3 3 31 3 2 3 1 2 3 2 1

    4( ) c o s ( ) ( ) c o s ( )

    94 3 3

    ( ) c o s c o s ( 2 ) c o s ( 2 )9 4 4

    y t k A k A k A k A t

    k A k A t k A t k A t

    Nov. , 2011, Fall , KAIST11

    2 2 22 1 2 2 1 2 2

    1 1c o s ( ) c o s ( 2 ) c o s 22 2k A t k A t k A t

    Park, 2012. Fall, KAISTEE542 Microwave Engineering,

  • 7/28/2019 Linear Nonlinear Amp

    12/29

    Harmonics and Conversion Gain Measurement

    SG : -80 ~ -10 dBm SA

    RF Input

    LNB

    RF Input IF Output

    RF = 3.8GHz, IF = 1.317 GHz RF = 4.2GHz, IF = 0.903 GHz

    Parameter Specification

    Nov. , 2011, Fall , KAIST12

    RF Input Frequency Range 3.7 ~ 4.2 GHz

    IF Output Frequency Range 950 ~ 1750 MHz

    Local Oscillator Frequency 5150 MHz Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    13/29

    Cross Modulation of PAs

    1 21( ) ( cos )cos cosm y t A M t t A t

    One modulated and the other initially unmodulated as follows;

    1 1 1 2

    2 21 22

    1

    1 1 1 1 1 11 2 2 2 2

    ( ) ( cos )cos cos

    cos cos cos cos

    m

    m m

    y t k A M t t k A t

    M t M M t t t

    2

    1 2 1 2

    3 2 3

    1

    1 1 3 1

    cos cos( ) cos( )m M t t t

    3 2

    2 2 4 4m m

    2 21 1

    3 1 1 13 3 1 2 2

    4 4 2 2( cos cos ) ( cos cos )

    m

    m mt t M t M M t

    1 2 2 1 2 2

    1 1 1 1 3 12 3 1 2 3

    2 2 2 2 4 4( cos )cos ( cos )( cos )cos cos cos ]mt t M t t t t t

    t t M Ak t Ak Ak e mCM

    '

    23

    323

    31 cos)cos3(cos)43

    (

    CM

    2' 3 M Ak

    Nov. , 2011, Fall , KAIST13

    t t mCM 2coscos 331 4

    3 Ak Ak E

    CM 231 43

    Ak k

    M where

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    14/29

    t t M E

    t t M Ak t Ak Ak e

    mCM

    mCM

    2'

    2332331

    cos)cos1(

    cos)cos3(cos)4(

    ])cos(21

    )cos(21

    [cos 2'

    2'

    2 t M t M t E e mmCM CM

    2'

    231

    3

    43

    Ak k M CM

    233k Ak

    CM

    2

    1

    233log10log20)(k

    Ak CM dBCM

    At a lower level signal, CM can be approximated by

    The relation between CM(dB) and the intermodulation distortion of the twounmodulated carriers at 1 and 2 with the same amplitude A

    dBPPPP

    dBPPdBCM

    I w I

    oww

    12)(212)(2

    12)(

    )1(0

    )212(

    Nov. , 2011, Fall , KAIST14EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    15/29

    The amplitude modulated input signal can be expressed as

    0

    0

    2 2cos cos( ) cos( )

    i m

    i ii o m o m

    ME ME E t t t

    The output signal of the system under test with small-signal gain K can becan be expressed as

    2 21

    ( ) cos ( ) cos( )( ) cos( )( )[ cos ( )]cos ( )

    i i

    i o d o m d o m d

    i m d o d

    y t KE t t t t t t KE M t t t t

    Where t d is the group delay of the system under test, assumed to be constantfrom c - m and c + m

    p )/180(

    Nov. , 2011, Fall , KAIST15

    M P )1log(20

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    16/29

    AM-to-PM Conversion

    Consider a system whose output phase shift is a function of theinstantaneous input amplitude of an amplitudemodulated signal as follows:

    ( ) (1 cos )ma t A M t ( ) cos ca t t

    )()( 2 t caa

    radianst M t M cAa mm )coscos21()(222

    t

    M t M cA

    mPo

    m

    cos

    1),cos21(2

    The peak phase error K p is given by

    dBreecA M

    cMA M

    cMAK P /deg2.1369.8

    )/180(2)1log(20

    )/180(2 222

    Nov. , 2011, Fall , KAIST16EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    17/29

    Linearization of PAs

    Back off re s or on

    - Look up table based- Nonlinear component to compensate of PAnonlinearity

    w Harmonic feedback Envelope feedback

    LINC Cartesian Feedback- IF / Base band feedback)

    Nov. , 2011, Fall , KAIST17EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    18/29

    Feedforward LPA

    Advantage-

    more than 30 dB IMD or ACPR- Wideband width

    sa van age- Additional amplifier- Power loss in lossy delay line cable

    - Low efficienc- Complexity- Hi h Cos

    Nov. , 2011, Fall , KAIST18

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    19/29

    Linear Power Amplifier Issue

    Linearity- Not a problem in Feedforward scheme=> Adaptive control with compact, low cost

    - Marginal in only Predistortion scheme=> More study is needed for linearization algorithm=> Adaptive control

    Adaptive control- Different component, Current setting- Environment variation (Temperature)

    - Aging effects (slow response)- Mechanical impacts- No manual tuning => Low cost

    Nov. , 2011, Fall , KAIST19

    an w t

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    20/29

    Linearization technique

    PhasePout

    Operationat small out ut ower

    AttenuatorPhase shifter

    Pin

    Amp

    2f 0

    In OutCombiner

    out ut sam lin

    Back off -low efficiency

    Second HarmonicFeedback

    Amp

    GainControl

    In Out

    Phase shifter

    PhOP

    Ampdetector

    Power divider Phasedetector

    Envelop feedback

    Nov. , 2011, Fall , KAIST20

    -

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    21/29

    Feedforward Linearization

    Nov. , 2011, Fall , KAIST21EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    22/29

    Designs of LPA

    Amplifiers- near y , , c ency, a y, a nflatness

    ,

    - Flatness, LinearityOne chi solution

    Coupler,Delay Line,Power Divider (Combiner )

    - Loss , Flatness,directivitMetal Cavity delay module

    Housing

    Nov. , 2011, Fall , KAIST22- Thermal dissipation, RF signal Isolation

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    23/29

    RF Power and Gain Budgeting

    Main Amp

    Gain : 38+24 dB

    Delay line

    Output20dB

    46 dBm avg / 23 dBc

    44 dBm avg / 60dBc

    3dBInput~ -12 dBm avg ~ 16 dBm / 60 dBc

    10dB

    ~ 33 dBm av / 30 dBc

    VM2

    Error Amp50 + 20dB

    Signal Amp ~ -10 dBm distortion only

    Nov. , 2011, Fall , KAIST23EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    24/29

    Stability of LPA

    L I DC GT lineVM comb MainAmp 1211

    - Bias circuits optimization- cou ler ldirectionao Directivit : D

    Amplifier of Gain:G

    L DC DGT lineVM ErrorAmp

    13212

    Loop oscillation- Hi h ain of Am lifiers

    Loss: L

    coupler ldirectionaof Coupling:C

    - Need of High directivityin directional coupler

    - Inclusion of Isolato- Ground leak

    3

    Nov. , 2011, Fall , KAIST24EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    25/29

    High directivity directional coupler

    V1(In)

    V3(Coupled )

    V2(Through)

    V4(Isolated)

    -20

    Coupling (S31) )

    -50

    -40

    -

    Directivity

    n i t u

    d e ( d

    Even-odd modecompensation

    -70

    -60

    Isolation (S41)

    M a

    3

    110PP

    logCoupling

    . . . . . . .

    Frequency (GHz) 4310

    Plog y Directivit

    Nov. , 2011, Fall , KAIST25

    - Isolator unnecessary

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    26/29

    Experimental results

    PA out ut

    Nov. , 2011, Fall , KAIST26Linearized PA

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    27/29

    Continued

    Power = 44 dBm

    Nov. , 2011, Fall , KAIST27IS97 Recommendation

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    28/29

    Pilot tone controller

    nc us on o p o one

    DownConv

    BPF

    A/DDownConv

    PilotDSPA/DPilotDSP

    BPF

    Nov. , 2011, Fall , KAIST28

    mon or on ro er

    EE542 Microwave Engineering, Park, 2012. Fall, KAIST

  • 7/28/2019 Linear Nonlinear Amp

    29/29

    Predistortion Linearizer

    Pre-distortorHigh Power AMP

    IN OUT

    Gain GainGain-

    Phase Phase Phase

    AM-PM distortion

    Nov. , 2011, Fall , KAIST29EE542 Microwave Engineering, Park, 2012. Fall, KAIST