linear regression - math for college€¦ · 14 linear regression-criterion#2 for both regression...

33
7/17/2017 http://numericalmethods.eng.usf.edu 1 Linear Regression Major: All Engineering Majors Authors: Autar Kaw, Luke Snyder http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates

Upload: others

Post on 06-Dec-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/17/2017 http://numericalmethods.eng.usf.edu 1

    Linear Regression

    Major: All Engineering Majors

    Authors: Autar Kaw, Luke Snyder

    http://numericalmethods.eng.usf.eduTransforming Numerical Methods Education for STEM

    Undergraduates

    http://numericalmethods.eng.usf.edu/

  • Linear Regression

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • http://numericalmethods.eng.usf.edu 3

    What is Regression?What is regression? Given n data points

    best fit )(xfy = to the data.

    Residual at each point is

    )(xfy =

    Figure. Basic model for regression

    ),(),......,,(),,( 2211 nn yxyxyx

    )( iii xfyE −=

    y

    x

    ),( 11 yx

    ),( nn yx),( ii yx

    )( iii xfyE −=

  • http://numericalmethods.eng.usf.edu 4

    Linear Regression-Criterion#1Given n data points best fit xaay 10 += to the data.

    Does minimizing∑=

    n

    iiE

    1work as a criterion?

    x

    xaay 10 +=),( 11 yx

    ),( 22 yx),( 33 yx

    ),( nn yx

    ),( ii yx

    iii xaayE 10 −−=

    y

    Figure. Linear regression of y vs x data showing residuals at a typical point, xi .

    ),(),......,,(),,( 2211 nn yxyxyx

  • http://numericalmethods.eng.usf.edu 5

    Example for Criterion#1

    x y

    2.0 4.0

    3.0 6.0

    2.0 6.0

    3.0 8.0

    Example: Given the data points (2,4), (3,6), (2,6) and (3,8), best fit the data to a straight line using Criterion#1

    Figure. Data points for y vs x data.

    Table. Data Points

    0

    2

    4

    6

    8

    10

    0 1 2 3 4

    y

    x

    Minimize∑=

    n

    iiE

    1

    Chart1

    2

    3

    2

    3

    x

    y

    4

    6

    6

    8

    Sheet1

    xy

    24

    36

    26

    38

    Sheet1

    x

    y

    Sheet2

    Sheet3

  • http://numericalmethods.eng.usf.edu 6

    Linear Regression-Criteria#1

    04

    1=∑

    =iiE

    x y ypredicted E = y - ypredicted2.0 4.0 4.0 0.0

    3.0 6.0 8.0 -2.0

    2.0 6.0 4.0 2.0

    3.0 8.0 8.0 0.0

    Table. Residuals at each point for regression model y=4x − 4

    Figure. Regression curve y=4x − 4 and y vs x data

    0

    2

    4

    6

    8

    10

    0 1 2 3 4

    y

    x

    Using y=4x − 4 as the regression curve

    Chart2

    21.4

    31.6

    21.8

    32

    2.2

    2.4

    2.6

    2.8

    3

    3.2

    3.4

    x

    y

    4

    1.6

    6

    2.4

    6

    3.2

    8

    4

    4.8

    5.6

    6.4

    7.2

    8

    8.8

    9.6

    Sheet1

    xy

    24

    36

    26

    38

    y=4x-4y = 6

    1.41.66

    1.62.46

    1.83.26

    246

    2.24.86

    2.45.66

    2.66.46

    2.87.26

    386

    3.28.86

    3.49.66

    Sheet1

    x

    y

    Sheet2

    y =4x - 4

    y = 6

    y

    x

    Sheet3

  • http://numericalmethods.eng.usf.edu 7

    Linear Regression-Criterion#1

    x y ypredicted E = y - ypredicted2.0 4.0 6.0 -2.0

    3.0 6.0 6.0 0.0

    2.0 6.0 6.0 0.0

    3.0 8.0 6.0 2.0

    04

    1=∑

    =iiE

    0

    2

    4

    6

    8

    10

    0 1 2 3 4

    y

    x

    Table. Residuals at each point for regression model y=6

    Figure. Regression curve y=6 and y vs x data

    Using y=6 as a regression curve

    Chart1

    20.2

    30.4

    20.6

    30.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    2.6

    2.8

    3

    3.2

    3.4

    3.6

    3.8

    x

    y

    4

    6

    6

    6

    6

    6

    8

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    Sheet1

    xy

    24

    36

    26

    38

    y=4x-4y = 6

    06

    0.26

    0.46

    0.66

    0.86

    16

    1.26

    1.41.66

    1.62.46

    1.83.26

    246

    2.24.86

    2.45.66

    2.66.46

    2.87.26

    386

    3.28.86

    3.49.66

    3.66

    3.86

    Sheet1

    x

    y

    Sheet2

    y = 6

    Sheet3

  • http://numericalmethods.eng.usf.edu 8

    Linear Regression – Criterion #1

    04

    1=∑

    =iiE for both regression models of y=4x-4 and y=6

    The sum of the residuals is minimized, in this case it is zero, but the regression model is not unique.

    Hence the criterion of minimizing the sum of the residuals is a bad criterion.

    0

    2

    4

    6

    8

    10

    0 1 2 3 4

    y

    x

    Chart2

    21.4

    31.6

    21.8

    32

    2.2

    2.4

    2.6

    2.8

    3

    3.2

    3.4

    x

    y

    4

    1.6

    6

    2.4

    6

    3.2

    8

    4

    4.8

    5.6

    6.4

    7.2

    8

    8.8

    9.6

    Sheet1

    xy

    24

    36

    26

    38

    y=4x-4y = 6

    1.41.66

    1.62.46

    1.83.26

    246

    2.24.86

    2.45.66

    2.66.46

    2.87.26

    386

    3.28.86

    3.49.66

    Sheet1

    x

    y

    Sheet2

    y =4x - 4

    y = 6

    y

    x

    Sheet3

  • http://numericalmethods.eng.usf.edu 9

    Linear Regression-Criterion#1

    04

    1=∑

    =iiE

    x y ypredicted E = y - ypredicted2.0 4.0 4.0 0.0

    3.0 6.0 8.0 -2.0

    2.0 6.0 4.0 2.0

    3.0 8.0 8.0 0.0

    Table. Residuals at each point for regression model y=4x − 4

    Figure. Regression curve y=4x-4 and y vs x data

    0

    2

    4

    6

    8

    10

    0 1 2 3 4

    y

    x

    Using y=4x − 4 as the regression curve

    Chart2

    21.4

    31.6

    21.8

    32

    2.2

    2.4

    2.6

    2.8

    3

    3.2

    3.4

    x

    y

    4

    1.6

    6

    2.4

    6

    3.2

    8

    4

    4.8

    5.6

    6.4

    7.2

    8

    8.8

    9.6

    Sheet1

    xy

    24

    36

    26

    38

    y=4x-4y = 6

    1.41.66

    1.62.46

    1.83.26

    246

    2.24.86

    2.45.66

    2.66.46

    2.87.26

    386

    3.28.86

    3.49.66

    Sheet1

    x

    y

    Sheet2

    y =4x - 4

    y = 6

    y

    x

    Sheet3

  • http://numericalmethods.eng.usf.edu 10

    Linear Regression-Criterion#2

    x

    ),( 11 yx

    ),( 22 yx ),( 33 yx

    ),( nn yx

    ),( ii yx

    iii xaayE 10 −−=

    y

    Figure. Linear regression of y vs. x data showing residuals at a typical point, xi .

    Will minimizing ||1∑=

    n

    iiE work any better?

    xaay 10 +=

  • http://numericalmethods.eng.usf.edu 11

    Example for Criterion#2

    x y2.0 4.0

    3.0 6.0

    2.0 6.0

    3.0 8.0

    Example: Given the data points (2,4), (3,6), (2,6) and (3,8), best fit the data to a straight line using Criterion#2

    Figure. Data points for y vs. x data.

    Table. Data Points

    0

    2

    4

    6

    8

    10

    0 1 2 3 4

    y

    x

    Minimize∑=

    n

    iiE

    1||

    Chart1

    2

    3

    2

    3

    x

    y

    4

    6

    6

    8

    Sheet1

    xy

    24

    36

    26

    38

    Sheet1

    x

    y

    Sheet2

    Sheet3

  • http://numericalmethods.eng.usf.edu 12

    Linear Regression-Criterion#2

    4||4

    1=∑

    =iiE

    x y ypredicted E = y - ypredicted2.0 4.0 4.0 0.0

    3.0 6.0 8.0 -2.0

    2.0 6.0 4.0 2.0

    3.0 8.0 8.0 0.0

    Table. Residuals at each point for regression model y=4x − 4

    Figure. Regression curve y= y=4x − 4 and y vs. xdata

    0

    2

    4

    6

    8

    10

    0 1 2 3 4

    y

    x

    Using y=4x − 4 as the regression curve

    Chart2

    21.4

    31.6

    21.8

    32

    2.2

    2.4

    2.6

    2.8

    3

    3.2

    3.4

    x

    y

    4

    1.6

    6

    2.4

    6

    3.2

    8

    4

    4.8

    5.6

    6.4

    7.2

    8

    8.8

    9.6

    Sheet1

    xy

    24

    36

    26

    38

    y=4x-4y = 6

    1.41.66

    1.62.46

    1.83.26

    246

    2.24.86

    2.45.66

    2.66.46

    2.87.26

    386

    3.28.86

    3.49.66

    Sheet1

    x

    y

    Sheet2

    y =4x - 4

    y = 6

    y

    x

    Sheet3

  • http://numericalmethods.eng.usf.edu 13

    Linear Regression-Criterion#2

    x y ypredicted E = y - ypredicted2.0 4.0 6.0 -2.0

    3.0 6.0 6.0 0.0

    2.0 6.0 6.0 0.0

    3.0 8.0 6.0 2.0

    4||4

    1=∑

    =iiE

    0

    2

    4

    6

    8

    10

    0 1 2 3 4

    y

    x

    Table. Residuals at each point for regression model y=6

    Figure. Regression curve y=6 and y vs x data

    Using y=6 as a regression curve

    Chart1

    20.2

    30.4

    20.6

    30.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    2.6

    2.8

    3

    3.2

    3.4

    3.6

    3.8

    x

    y

    4

    6

    6

    6

    6

    6

    8

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    6

    Sheet1

    xy

    24

    36

    26

    38

    y=4x-4y = 6

    06

    0.26

    0.46

    0.66

    0.86

    16

    1.26

    1.41.66

    1.62.46

    1.83.26

    246

    2.24.86

    2.45.66

    2.66.46

    2.87.26

    386

    3.28.86

    3.49.66

    3.66

    3.86

    Sheet1

    x

    y

    Sheet2

    y = 6

    Sheet3

  • http://numericalmethods.eng.usf.edu 14

    Linear Regression-Criterion#2for both regression models of y=4x − 4 and y=6.

    The sum of the absolute residuals has been made as small as possible, that is 4, but the regression model is not unique.

    Hence the criterion of minimizing the sum of the absolute value of the residuals is also a bad criterion.

    44

    1=∑

    =iiE

  • http://numericalmethods.eng.usf.edu 15

    Least Squares CriterionThe least squares criterion minimizes the sum of the square of the

    residuals in the model, and also produces a unique line.

    ( )2

    110

    1

    2 ∑ −−=∑===

    n

    iii

    n

    iir xaayES

    x

    11, yx

    22, yx

    33, yx

    nnyx ,

    iiyx ,

    y

    Figure. Linear regression of y vs x data showing residuals at a typical point, xi .

    xaay 10 +=

    iii xaayE 10 −−=

  • http://numericalmethods.eng.usf.edu16

    Finding Constants of Linear Model( )

    2

    110

    1

    2 ∑ −−=∑===

    n

    iii

    n

    iir xaayESMinimize the sum of the square of the residuals:

    To find

    ( )( ) 0121

    100

    =−−−−=∂∂ ∑

    =

    n

    iii

    r xaayaS

    ( )( ) 021

    101

    =−−−−=∂∂ ∑

    =

    n

    iiii

    r xxaayaS

    giving

    i

    n

    iii

    n

    ii

    n

    ixyxaxa ∑∑∑

    ===

    =+1

    2

    11

    10

    0a and 1a we minimize with respect to 1a 0aandrS .

    ∑∑∑===

    =+n

    iii

    n

    i

    n

    iyxaa

    111

    10

  • http://numericalmethods.eng.usf.edu17

    Finding Constants of Linear Model0aSolving for

    2

    11

    2

    1111

    −=

    ∑∑

    ∑∑∑

    ==

    ===

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    iii

    xxn

    yxyxna

    and

    2

    11

    2

    1111

    2

    0

    −=

    ∑∑

    ∑∑∑∑

    ==

    ====

    n

    ii

    n

    ii

    n

    iii

    n

    ii

    n

    ii

    n

    ii

    xxn

    yxxyxa

    1aand directly yields,

    xaya 10 −=

  • http://numericalmethods.eng.usf.edu18

    Example 1The torque, T needed to turn the torsion spring of a mousetrap through an angle, is given below.

    Angle, θ Torque, T

    Radians N-m

    0.698132 0.188224

    0.959931 0.209138

    1.134464 0.230052

    1.570796 0.250965

    1.919862 0.313707

    Table: Torque vs Angle for a torsional spring

    Find the constants for the model given byθ21 kkT +=

    Figure. Data points for Torque vs Angle data

    0.1

    0.2

    0.3

    0.4

    0.5 1 1.5 2

    θ (radians)

    Torq

    ue (N

    -m)

    Chart2

    0.698132

    0.959931

    1.134464

    1.570796

    1.919862

    θ (radians)

    Torque (N-m)

    0.188224

    0.209138

    0.230052

    0.250965

    0.313707

    Sheet1

    0.6981320.188224

    0.9599310.209138θ

    1.1344640.230052

    1.5707960.250965

    1.9198620.313707

    Sheet1

    θ (radians)

    Torque (N-m)

    Sheet2

    Sheet3

  • http://numericalmethods.eng.usf.edu19

    Example 1 cont.

    1a

    The following table shows the summations needed for the calculations of the constants in the regression model.

    θ 2θ θTRadians N-m Radians2 N-m-Radians

    0.698132 0.188224 0.487388 0.131405

    0.959931 0.209138 0.921468 0.200758

    1.134464 0.230052 1.2870 0.260986

    1.570796 0.250965 2.4674 0.394215

    1.919862 0.313707 3.6859 0.602274

    6.2831 1.1921 8.8491 1.5896

    Table. Tabulation of data for calculation of important

    ∑=

    =5

    1i

    5=nUsing equations described for

    25

    1

    5

    1

    2

    5

    1

    5

    1

    5

    12

    −=

    ∑∑

    ∑∑∑

    ==

    ===

    ii

    ii

    ii

    ii

    iii

    n

    TTnk

    θθ

    θθ

    ( ) ( )( )( ) ( )228316849185

    1921128316589615..

    ...−

    −=

    21060919 −×= . N-m/rad

    summations

    0aT and with

  • http://numericalmethods.eng.usf.edu20

    Example 1 cont.

    n

    TT i

    i∑==

    5

    1_

    Use the average torque and average angle to calculate 1k

    _

    2

    _

    1 θkTk −=

    ni

    i∑==

    5

    1_

    θθ

    51921.1

    =

    1103842.2 −×=

    52831.6

    =

    2566.1=

    Using,

    )2566.1)(106091.9(103842.2 21 −− ×−×=1101767.1 −×= N-m

  • http://numericalmethods.eng.usf.edu21

    Example 1 Results

    Figure. Linear regression of Torque versus Angle data

    Using linear regression, a trend line is found from the data

    Can you find the energy in the spring if it is twisted from 0 to 180 degrees?

  • http://numericalmethods.eng.usf.edu22

    Linear Regression (special case)

    Given

    best fit

    to the data.

    ),( , ... ),,(),,( 2211 nn yxyx yx

    xay 1=

  • http://numericalmethods.eng.usf.edu23

    Linear Regression (special case cont.)

    Is this correct?

    2

    11

    2

    1111

    −=

    ∑∑

    ∑∑∑

    ==

    ===

    n

    ii

    n

    ii

    n

    ii

    n

    ii

    n

    iii

    xxn

    yxyxna

    xay 1=

  • http://numericalmethods.eng.usf.edu24

    x

    11, yx

    ii xax 1,

    nnyx ,

    iiyx ,

    iii xay 1−=ε

    y

    Linear Regression (special case cont.)

  • http://numericalmethods.eng.usf.edu25

    Linear Regression (special case cont.)

    iii xay 1−=ε

    ∑=

    =n

    iirS

    1

    ( )2

    11∑

    =

    −=n

    iii xay

    Residual at each data point

    Sum of square of residuals

  • http://numericalmethods.eng.usf.edu26

    Linear Regression (special case cont.)

    Differentiate with respect to

    gives

    ( )( )∑=

    −−=n

    iiii

    r xxaydadS

    11

    1

    2

    ( )∑=

    +−=n

    iiii xaxy

    1

    2122

    01

    =dadSr

    =

    == n

    ii

    n

    iii

    x

    yxa

    1

    2

    11

    1a

  • http://numericalmethods.eng.usf.edu27

    Linear Regression (special case cont.)

    =

    == n

    ii

    n

    iii

    x

    yxa

    1

    2

    11

    ( )∑=

    +−=n

    iiii

    r xaxydadS

    1

    21

    1

    22

    021

    22

    1

    2

    >= ∑=

    n

    ii

    r xda

    Sd

    =

    == n

    ii

    n

    iii

    x

    yxa

    1

    2

    11

    Does this value of a1 correspond to a local minima or local maxima?

    Yes, it corresponds to a local minima.

  • http://numericalmethods.eng.usf.edu28

    Linear Regression (special case cont.)

    Is this local minima of an absolute minimum of ?rS rS

    1a

    rS

  • http://numericalmethods.eng.usf.edu29

    Example 2

    Strain Stress

    (%) (MPa)

    0 0

    0.183 306

    0.36 612

    0.5324 917

    0.702 1223

    0.867 1529

    1.0244 1835

    1.1774 2140

    1.329 2446

    1.479 2752

    1.5 2767

    1.56 2896

    To find the longitudinal modulus of composite, the following data is collected. Find the longitudinal modulus, Table. Stress vs. Strain data

    E using the regression modelεσ E= and the sum of the square of the

    0.0E+00

    1.0E+09

    2.0E+09

    3.0E+09

    0 0.005 0.01 0.015 0.02

    Strain, ε (m/m)

    Stre

    ss, σ

    (Pa)

    residuals.

    Figure. Data points for Stress vs. Strain data

    Chart3

    0

    0.00183

    0.0036

    0.005324

    0.00702

    0.00867

    0.010244

    0.011774

    0.01329

    0.01479

    0.015

    0.0156

    Strain, ε (m/m)

    Stress, σ (Pa)

    0

    306000000

    612000000

    917000000

    1223000000

    1529000000

    1835000000

    2140000000

    2446000000

    2752000000

    2767000000

    2896000000

    Sheet1

    0.6981320.188224

    0.9599310.209138θ

    1.1344640.230052

    1.5707960.2509650000

    1.9198620.3137070.1833060.00183306000000

    0.366120.0036612000000

    0.53249170.005324917000000

    0.70212230.007021223000000

    σε0.86715290.008671529000000

    ε1.024418350.0102441835000000

    1.177421400.0117742140000000

    1.32924460.013292446000000

    Є1.47927520.014792752000000

    1.527670.0152767000000

    1.5628960.01562896000000

    Sheet1

    θ (radians)

    Torque (N-m)

    Sheet2

    Strain, ε (m/m)

    Stress, σ (Pa)

    Sheet3

  • http://numericalmethods.eng.usf.edu30

    Example 2 cont.

    i ε σ ε 2 εσ

    1 0.0000 0.0000 0.0000 0.0000

    2 1.8300×10−3 3.0600×108 3.3489×10−6 5.5998×105

    3 3.6000×10−3 6.1200×108 1.2960×10−5 2.2032×106

    4 5.3240×10−3 9.1700×108 2.8345×10−5 4.8821×106

    5 7.0200×10−3 1.2230×109 4.9280×10−5 8.5855×106

    6 8.6700×10−3 1.5290×109 7.5169×10−5 1.3256×107

    7 1.0244×10−2 1.8350×109 1.0494×10−4 1.8798×107

    8 1.1774×10−2 2.1400×109 1.3863×10−4 2.5196×107

    9 1.3290×10−2 2.4460×109 1.7662×10−4 3.2507×107

    10 1.4790×10−2 2.7520×109 2.1874×10−4 4.0702×107

    11 1.5000×10−2 2.7670×109 2.2500×10−4 4.1505×107

    12 1.5600×10−2 2.8960×109 2.4336×10−4 4.5178×107

    1.2764×10−3 2.3337×108

    Table. Summation data for regression model

    ∑=

    12

    1i

    ∑=

    −×=12

    1

    32 102764.1i

    ∑=

    ×=12

    1

    8103337.2i

    iiεσ

    =

    == 12

    1

    2

    12

    1

    ii

    iii

    εσ

    3

    8

    102764.1103337.2

    −××

    =

    GPa84.182=

    =

    == n

    ii

    n

    iii

    E

    1

    2

    1

    ε

    εσ

  • http://numericalmethods.eng.usf.edu31

    Example 2 Resultsεσ 91084.182 ×=The equation

    Figure. Linear regression for stress vs. strain data

    describes the data.

  • Additional ResourcesFor all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

    http://numericalmethods.eng.usf.edu/topics/linear_regression.html

    http://numericalmethods.eng.usf.edu/topics/linear_regression.html

  • THE END

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

    Linear RegressionLinear Regression�� ��http://numericalmethods.eng.usf.edu��What is Regression?Linear Regression-Criterion#1Example for Criterion#1Linear Regression-Criteria#1Linear Regression-Criterion#1Linear Regression – Criterion #1Linear Regression-Criterion#1Linear Regression-Criterion#2Example for Criterion#2Linear Regression-Criterion#2Linear Regression-Criterion#2Linear Regression-Criterion#2Least Squares Criterion Finding Constants of Linear ModelFinding Constants of Linear ModelExample 1Example 1 cont.Example 1 cont.Example 1 ResultsLinear Regression (special case)Linear Regression (special case cont.)Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Example 2Example 2 cont.Example 2 ResultsAdditional ResourcesSlide Number 33

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages false /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.00000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages false /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.00000 /EncodeMonoImages true /MonoImageFilter /FlateEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (GRACoL2006_Coated1v2) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description