linear stability analysis

35
1 Linear stability analysis Transcription-translation model Nullclines and critical points Eigenvectors and eigenvalues The cribsheet of linear stability ana f m x [ βˆ† ( + βˆ† ) βˆ† ( + βˆ† ) ] β‰… [ βˆ† ( ) βˆ† ( ) ] + βˆ† [ βˆ† / βˆ† / ]

Upload: lolita

Post on 06-Feb-2016

62 views

Category:

Documents


1 download

DESCRIPTION

Linear stability analysis. x. Transcription-translation model. Eigenvectors and eigenvalues. Nullclines and critical points. The cribsheet of linear stability analysis. f. m. Transcription-translation model. m. x. +1. -1. +1. -1. f. Nullclines and critical points. x. 1.0. f. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Linear stability analysis

1

Linear stability analysis

Transcription-translation model

Nullclines and critical points

Eigenvectors and eigenvalues

The cribsheet of linear stability analysis

f

m

x

[βˆ†π‘š (𝑑+βˆ† 𝑑 )βˆ†π‘₯ (𝑑+βˆ†π‘‘ ) ]β‰… [βˆ†π‘š (𝑑 )

βˆ† π‘₯ (𝑑 ) ]+βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

Page 2: Linear stability analysis

𝑑π‘₯𝑑𝑑

=πœ• π‘₯

πœ•π‘…+¿𝑑𝑅+ΒΏ

𝑑𝑑+ πœ• π‘₯πœ•π‘…βˆ’

𝑑 π‘…βˆ’

𝑑𝑑¿¿

π‘‘π‘šπ‘‘π‘‘

=πœ•π‘š

πœ•π‘…π‘š+ΒΏπ‘‘π‘…π‘š+ΒΏ

𝑑𝑑+ πœ•π‘šπœ•π‘…π‘šβˆ’

𝑑 π‘…π‘šβˆ’

𝑑𝑑¿¿

2

Transcription-translation model

f

π›½π‘š

𝛽

π›Όπ‘š

𝛼

m

x

π›½π‘š+1 π›Όπ‘šπ‘š-1 π›½π‘š+1 𝛼 π‘₯-1

π‘‘π‘šπ‘‘π‘‘

=π›½π‘šβˆ’π›Όπ‘šπ‘šπ‘‘π‘₯𝑑𝑑

=π›½π‘šβˆ’π›Ό π‘₯

π‘…π‘š+ΒΏ ΒΏ

π‘…π‘šβˆ’

𝑅+ΒΏΒΏ

π‘…βˆ’

π›½π‘š=1π›Όπ‘š=2

𝛼=1𝛽=1

Page 3: Linear stability analysis

3

Nullclines and critical points

π‘‘π‘šπ‘‘π‘‘

=π›½π‘šβˆ’π›Όπ‘šπ‘š=0

𝑑π‘₯𝑑𝑑

=π›½π‘šβˆ’π›Ό π‘₯=0

π›½π‘š=π›Όπ‘šπ‘šπ›½π‘š

π›Όπ‘š

=π‘š

π›½π‘š=𝛼 π‘₯π›½π›Όπ‘š=π‘₯

π‘šπΆ=π›½π‘šπ›Όπ‘š

π‘₯𝐢=π›½π›Όπ›½π‘š

π›Όπ‘š

m

x

0

π‘₯=π›½π›Όπ‘š

π›½π‘š=1π›Όπ‘š=2

𝛼=1𝛽=1

0.5

1.0

1.00.5π‘š=π›½π‘š

π›Όπ‘š

π‘‘π‘š

/𝑑𝑑=

0

𝑑π‘₯/𝑑𝑑=0

f

Page 4: Linear stability analysis

4

Nullclines and critical points

π‘‘π‘šπ‘‘π‘‘

=π›½π‘šβˆ’π›Όπ‘šπ‘š

𝑑π‘₯𝑑𝑑

=π›½π‘šβˆ’π›Ό π‘₯

π‘šπΆ=π›½π‘šπ›Όπ‘š

π‘₯𝐢=π›½π›Όπ›½π‘š

π›Όπ‘š

m

x

0

π‘₯=π›½π›Όπ‘š

βˆ†π‘šβ‰…π‘‘π‘šπ‘‘π‘‘

βˆ† 𝑑>0

π›½π‘š=1π›Όπ‘š=2

𝛼=1𝛽=1

0.5

1.0

1.00.5π‘š=π›½π‘š

π›Όπ‘š

π‘‘π‘š

/𝑑𝑑=

0

𝑑π‘₯/𝑑𝑑=0

f

Page 5: Linear stability analysis

5

Nullclines and critical points

π‘‘π‘šπ‘‘π‘‘

=π›½π‘šβˆ’π›Όπ‘šπ‘š

𝑑π‘₯𝑑𝑑

=π›½π‘šβˆ’π›Ό π‘₯

π‘šπΆ=π›½π‘šπ›Όπ‘š

π‘₯𝐢=π›½π›Όπ›½π‘š

π›Όπ‘š

m

x

0

π‘₯=π›½π›Όπ‘š

βˆ†π‘šβ‰…π‘‘π‘šπ‘‘π‘‘

βˆ† 𝑑>0

βˆ† π‘₯≅𝑑π‘₯π‘‘π‘‘βˆ† 𝑑>0

π›½π‘š=1π›Όπ‘š=2

𝛼=1𝛽=1

0.5

1.0

1.00.5π‘š=π›½π‘š

π›Όπ‘š

π‘‘π‘š

/𝑑𝑑=

0

𝑑π‘₯/𝑑𝑑=0

f

Page 6: Linear stability analysis

6

Nullclines and critical points

m

x

0

π‘₯=π›½π›Όπ‘šπ‘‘π‘š

𝑑𝑑=π›½π‘šβˆ’π›Όπ‘šπ‘š

𝑑π‘₯𝑑𝑑

=π›½π‘šβˆ’π›Ό π‘₯

π‘šπΆ=π›½π‘šπ›Όπ‘š

π‘₯𝐢=π›½π›Όπ›½π‘š

π›Όπ‘š

βˆ†π‘šβ‰…π‘‘π‘šπ‘‘π‘‘

βˆ† 𝑑>0

βˆ† π‘₯≅𝑑π‘₯π‘‘π‘‘βˆ† 𝑑>0

π‘‘π‘šπ‘‘π‘‘

=π›½π‘šβˆ’π›Όπ‘šπ‘šπ‘‘π‘₯𝑑𝑑

=π›½π‘šβˆ’π›Ό π‘₯

π›½π‘š=1π›Όπ‘š=2

𝛼=1𝛽=1

0.5

1.0

1.00.5π‘š=π›½π‘š

π›Όπ‘š

π‘‘π‘š

/𝑑𝑑=

0

𝑑π‘₯/𝑑𝑑=0

f

Page 7: Linear stability analysis

7

Nullclines and critical points

m

x

0 π‘‘π‘šπ‘‘π‘‘

=π›½π‘šβˆ’π›Όπ‘šπ‘šπ‘‘π‘₯𝑑𝑑

=π›½π‘šβˆ’π›Ό π‘₯

π›½π‘š=1π›Όπ‘š=2

𝛼=1𝛽=1

1.00.5

π‘‘π‘š/𝑑𝑑=0

𝑑π‘₯/𝑑𝑑=0

f

0 1 2 3 4 5t

0.5

0.6

0.7

0.8

0.9

1.0

x or m

mRN

A

Protein

Page 8: Linear stability analysis

8

Linear stability analysis

Transcription-translation model

Nullclines and critical points

Eigenvectors and eigenvalues

The cribsheet of linear stability analysis

f

m

x

[βˆ†π‘š (𝑑+βˆ† 𝑑 )βˆ†π‘₯ (𝑑+βˆ†π‘‘ ) ]β‰… [βˆ†π‘š (𝑑 )

βˆ† π‘₯ (𝑑 ) ]+βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

Page 9: Linear stability analysis

9

Unbending trajectories

m

x

0 π‘‘π‘šπ‘‘π‘‘

=π›½π‘šβˆ’π›Όπ‘šπ‘šπ‘‘π‘₯𝑑𝑑

=π›½π‘šβˆ’π›Ό π‘₯

π›½π‘š=1π›Όπ‘š=2

𝛼=1𝛽=1

1.00.5

f

Page 10: Linear stability analysis

10

Finding the β€œspecial” direction

m

x

0

Dx

Dm

π‘šπΆ=π›½π‘šπ›Όπ‘š

π‘₯𝐢=π›½π›Όπ›½π‘š

π›Όπ‘š

π‘‘π‘šπ‘‘π‘‘

=π›½π‘šβˆ’π›Όπ‘šπ‘šπ‘‘π‘₯𝑑𝑑

=π›½π‘šβˆ’π›Ό π‘₯

π›½π‘š=1π›Όπ‘š=2

𝛼=1𝛽=1

0.5

1.0

1.00.5

-0.25

0.25

0.25-0.25

f

Page 11: Linear stability analysis

11m

x Dx

Dm

π‘šπΆ=π›½π‘šπ›Όπ‘š

π‘₯𝐢=π›½π›Όπ›½π‘š

π›Όπ‘š

βˆ†π‘šβ‰”π‘šβˆ’π›½π‘šπ›Όπ‘š

π‘‘βˆ†π‘šπ‘‘π‘‘

= 𝑑𝑑𝑑 (π‘šβˆ’ π›½π‘š

π›Όπ‘š)

π‘‘π‘šπ‘‘π‘‘

=π›½π‘šβˆ’π›Όπ‘šπ‘šπ‘‘π‘₯𝑑𝑑

=π›½π‘šβˆ’π›Ό π‘₯

π‘‘π‘šπ‘‘π‘‘

=βˆ’π›Όπ‘š(π‘šβˆ’ π›½π‘šπ›Όπ‘š

)

π‘‘βˆ†π‘šπ‘‘π‘‘

=βˆ’π›Όπ‘šβˆ†π‘š+0

βˆ† π‘₯≔π‘₯βˆ’ π›½π›Όπ›½π‘š

π›Όπ‘š

π‘‘βˆ† π‘₯𝑑𝑑

=𝑑π‘₯𝑑𝑑

π‘‘βˆ† π‘₯𝑑𝑑

=π›½βˆ†π‘šβˆ’π›Ό βˆ† π‘₯

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]

π‘‘π‘šπ‘‘π‘‘

=π›½π‘šβˆ’π›Όπ‘šπ‘šπ‘‘π‘₯𝑑𝑑

=π›½π‘šβˆ’π›Ό π‘₯

Finding the β€œspecial” direction

π‘šπΆ=π›½π‘šπ›Όπ‘š

π‘₯𝐢=π›½π›Όπ›½π‘š

π›Όπ‘š

ΒΏπ‘‘π‘šπ‘‘π‘‘

Page 12: Linear stability analysis

12

Finding the β€œspecial” direction

m

x Dx

Dm

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ] [βˆ†π‘š (𝑑+βˆ† 𝑑 )βˆ†π‘₯ (𝑑+βˆ†π‘‘ ) ]β‰… [βˆ†π‘š (𝑑 )

βˆ† π‘₯ (𝑑 ) ]+βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]

0.5

-0.5

0.5-0.5

Page 13: Linear stability analysis

13

Finding the β€œspecial” direction

m

x Dx

Dm

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ] [βˆ†π‘š (𝑑+βˆ† 𝑑 )βˆ†π‘₯ (𝑑+βˆ†π‘‘ ) ]β‰… [βˆ†π‘š (𝑑 )

βˆ† π‘₯ (𝑑 ) ]+βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

[βˆ†π‘šβˆ†π‘₯ ]= 1πœ† Ξ” 𝑑

βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=πœ†[βˆ†π‘šβˆ† π‘₯ ][βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]Want eigenvectors!

(βˆ’π›Όπ‘šβˆ’ πœ†) (βˆ’π›Όβˆ’ πœ† )βˆ’π›½ βˆ™0=0

πœ†1=βˆ’π›Όπ‘š πœ†2=βˆ’π›Ό

𝑏1β†’[ 1𝛽 / (π›Όβˆ’π›Όπ‘š ) ]𝑏2β†’[01 ]

0.5

-0.5

0.5-0.5

Page 14: Linear stability analysis

m

x

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ] [βˆ†π‘š (𝑑+βˆ† 𝑑 )βˆ†π‘₯ (𝑑+βˆ†π‘‘ ) ]β‰… [βˆ†π‘š (𝑑 )

βˆ† π‘₯ (𝑑 ) ]+βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

[βˆ†π‘šβˆ†π‘₯ ]= 1πœ† Ξ” 𝑑

βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=πœ†[βˆ†π‘šβˆ† π‘₯ ][βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]Want eigenvectors!

(βˆ’π›Όπ‘šβˆ’ πœ†) (βˆ’π›Όβˆ’ πœ† )βˆ’π›½ βˆ™0=0

πœ†1=βˆ’π›Όπ‘š

𝑏1β†’[ 1𝛽 / (π›Όβˆ’π›Όπ‘š ) ]

πœ†2=βˆ’π›Ό

𝑏2β†’[01 ]

Finding the β€œspecial” direction

Dx

Dm

14

0.25𝑏2β†’[ 00.25]

0.5

-0.5

0.5-0.5

Page 15: Linear stability analysis

m

x

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ] [βˆ†π‘š (𝑑+βˆ† 𝑑 )βˆ†π‘₯ (𝑑+βˆ†π‘‘ ) ]β‰… [βˆ†π‘š (𝑑 )

βˆ† π‘₯ (𝑑 ) ]+βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

[βˆ†π‘šβˆ†π‘₯ ]= 1πœ† Ξ” 𝑑

βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=πœ†[βˆ†π‘šβˆ† π‘₯ ][βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]Want eigenvectors!

(βˆ’π›Όπ‘šβˆ’ πœ†) (βˆ’π›Όβˆ’ πœ† )βˆ’π›½ βˆ™0=0

πœ†1=βˆ’π›Όπ‘š

𝑏1β†’[ 1𝛽 / (π›Όβˆ’π›Όπ‘š ) ]

πœ†2=βˆ’π›Ό

𝑏2β†’[01 ]

Finding the β€œspecial” direction

Dm

15

?𝑏2β†’? [01 ]

0.5

-0.5

0.5-0.5

Dx

Page 16: Linear stability analysis

m

x

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ] [βˆ†π‘š (𝑑+βˆ† 𝑑 )βˆ†π‘₯ (𝑑+βˆ†π‘‘ ) ]β‰… [βˆ†π‘š (𝑑 )

βˆ† π‘₯ (𝑑 ) ]+βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

[βˆ†π‘šβˆ†π‘₯ ]= 1πœ† Ξ” 𝑑

βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=πœ†[βˆ†π‘šβˆ† π‘₯ ][βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]Want eigenvectors!

(βˆ’π›Όπ‘šβˆ’ πœ†) (βˆ’π›Όβˆ’ πœ† )βˆ’π›½ βˆ™0=0

πœ†2=βˆ’π›Ό

𝑏2β†’[01 ]

Finding the β€œspecial” direction

πœ†1=βˆ’π›Όπ‘š

𝑏1β†’[ 1𝛽 / (π›Όβˆ’π›Όπ‘š ) ]

Dx

Dm

16

π›½π‘š=1π›Όπ‘š=2

𝛼=1𝛽=1

βˆ’1

0.25𝑏1β†’[ 0.25βˆ’0.25]

0.5

-0.5

0.5-0.5

Page 17: Linear stability analysis

m

x

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ] [βˆ†π‘š (𝑑+βˆ† 𝑑 )βˆ†π‘₯ (𝑑+βˆ†π‘‘ ) ]β‰… [βˆ†π‘š (𝑑 )

βˆ† π‘₯ (𝑑 ) ]+βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

[βˆ†π‘šβˆ†π‘₯ ]= 1πœ† Ξ” 𝑑

βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=πœ†[βˆ†π‘šβˆ† π‘₯ ][βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]Want eigenvectors!

(βˆ’π›Όπ‘šβˆ’ πœ†) (βˆ’π›Όβˆ’ πœ† )βˆ’π›½ βˆ™0=0

πœ†2=βˆ’π›Ό

𝑏2β†’[01 ]

Finding the β€œspecial” direction

πœ†1=βˆ’π›Όπ‘š

𝑏1β†’[ 1𝛽 / (π›Όβˆ’π›Όπ‘š ) ]

Dx

Dm

17

π›½π‘š=1π›Όπ‘š=2

𝛼=1𝛽=1

βˆ’1

?𝑏1β†’? [ 1βˆ’1]

0.5

-0.5

0.5-0.5

Page 18: Linear stability analysis

Dx

m

x

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]

πœ†1=βˆ’π›Όπ‘š

𝑏1β†’[ 1𝛽 / (π›Όβˆ’π›Όπ‘š ) ]

πœ†2=βˆ’π›Ό

𝑏2β†’[01 ]

Finding the β€œspecial” direction

Dm

18

Trajectories along these directions do not bend0.5

-0.5

0.5-0.5

Page 19: Linear stability analysis

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]Eigenvectors and eigenvalues provide analytic solution

Dx

m

x

Dm

19

[βˆ†π‘š(𝑑)βˆ†π‘₯ (𝑑) ]=𝑠1 (𝑑 )[ 1

𝛽 / (π›Όβˆ’π›Όπ‘š )]

πœ†1=βˆ’π›Όπ‘š

𝑏1β†’[ 1𝛽 / (π›Όβˆ’π›Όπ‘š ) ]

πœ†2=βˆ’π›Ό

𝑏2β†’[01 ]

π‘‘βˆ†π‘šπ‘‘π‘‘

=𝑑𝑠1𝑑𝑑

π‘‘βˆ† π‘₯𝑑𝑑

=𝑑𝑑𝑑 [𝑠1 (𝑑 ) 𝛽

π›Όβˆ’π›Όπ‘š ][βˆ’π›Όπ‘š 0𝛽 βˆ’π›Ό]

βˆ’π›Όπ‘š

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]= 𝑑𝑠1

𝑑𝑑 [ 1𝛽 /(π›Όβˆ’π›Όπ‘š )]=βˆ’π›Όπ‘šπ‘ 1 (𝑑 )[ 1

𝛽 / (π›Όβˆ’π›Όπ‘š )]

π›½π›Όβˆ’π›Όπ‘š

𝑑 𝑠1𝑑𝑑

𝑑𝑠1𝑑𝑑

=βˆ’π›Όπ‘š 𝑠1 βŸΉπ‘ 1 (𝑑 )=𝑀1π‘’βˆ’π›Όπ‘š 𝑑

[βˆ†π‘š(𝑑)βˆ†π‘₯ (𝑑) ]=𝑀1𝑒

βˆ’π›Όπ‘š 𝑑 [ 1𝛽 /(π›Όβˆ’π›Όπ‘š )]

Trajectories along these directions do not bend

[βˆ’π›Όπ‘š 0𝛽 βˆ’π›Ό]

Page 20: Linear stability analysis

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]Eigenvectors and eigenvalues provide analytic solution

Dx

m

x

Dm

20

[βˆ†π‘š(𝑑)βˆ†π‘₯ (𝑑) ]=𝑠2 (𝑑 )[01]

πœ†1=βˆ’π›Όπ‘š

𝑏1β†’[ 1𝛽 / (π›Όβˆ’π›Όπ‘š ) ]

πœ†2=βˆ’π›Ό

𝑏2β†’[01 ]

π‘‘βˆ†π‘šπ‘‘π‘‘

=0 π‘‘βˆ† π‘₯𝑑𝑑

=𝑑𝑠2𝑑𝑑

[βˆ’π›Όπ‘š 0𝛽 βˆ’π›Ό] βˆ’π›Ό

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]= 𝑑𝑠2

𝑑𝑑 [01]=βˆ’π›Όπ‘ 2 (𝑑 )[01 ]𝑑𝑠2𝑑𝑑

=βˆ’π›Ό 𝑠2 βŸΉπ‘ 2 (𝑑 )=𝑀2π‘’βˆ’π›Όπ‘‘

[βˆ†π‘š(𝑑)βˆ†π‘₯ (𝑑) ]=𝑀2𝑒

βˆ’π›Ό 𝑑[01 ]

Trajectories along these directions do not bend

Page 21: Linear stability analysis

21

Eigenvectors and eigenvalues provide analytic solution

[βˆ†π‘š(𝑑)βˆ†π‘₯ (𝑑) ]=𝑀1𝑒

βˆ’π›Όπ‘š 𝑑 [ 1𝛽 /(π›Όβˆ’π›Όπ‘š )]+𝑀2𝑒

βˆ’π›Όπ‘‘[01 ][π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ][βˆ’π›Όπ‘š 0𝛽 βˆ’π›Ό] βˆ’π›Όβˆ’π›Όπ‘š

[βˆ’π›Όπ‘š 0𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]=βˆ’π›Όπ‘šπ‘€1𝑒

βˆ’π›Όπ‘š 𝑑[ 1𝛽/ (π›Όβˆ’π›Όπ‘š )]βˆ’π›Όπ‘€2𝑒

βˆ’π›Όπ‘‘ [01 ][βˆ’π›Όπ‘š 0𝛽 βˆ’π›Ό]

[βˆ’π›Όπ‘š 0𝛽 βˆ’π›Ό]

Page 22: Linear stability analysis

22

Eigenvectors and eigenvalues provide analytic solution

[βˆ†π‘š(𝑑)βˆ†π‘₯ (𝑑) ]=𝑀1𝑒

βˆ’π›Όπ‘š 𝑑 [ 1𝛽 /(π›Όβˆ’π›Όπ‘š )]+𝑀2𝑒

βˆ’π›Όπ‘‘[01 ][π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[ 𝑑

𝑑𝑑(𝑀1𝑒

βˆ’π›Όπ‘šπ‘‘ βˆ™1+𝑀2π‘’βˆ’π›Όπ‘‘ βˆ™0 )

𝑑𝑑𝑑 (𝑀1𝑒

βˆ’π›Όπ‘šπ‘‘ βˆ™π›½

π›Όβˆ’π›Όπ‘š

+𝑀2π‘’βˆ’π›Όπ‘‘ βˆ™1) ]

βˆ’π›Όπ‘š

βˆ’π›Όβˆ’π›Όπ‘š

ΒΏ [ βˆ’π›Όπ‘š  π‘€1π‘’βˆ’π›Όπ‘šπ‘‘ βˆ™1

βˆ’π›Όπ‘š  π‘€1π‘’βˆ’π›Όπ‘š 𝑑 βˆ™

π›½π›Όβˆ’π›Όπ‘š

βˆ’π›Ό  π‘€2π‘’βˆ’π›Όπ‘‘ βˆ™1]

[βˆ’π›Όπ‘š 0𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ]=βˆ’π›Όπ‘šπ‘€1𝑒

βˆ’π›Όπ‘š 𝑑[ 1𝛽/ (π›Όβˆ’π›Όπ‘š )]βˆ’π›Όπ‘€2𝑒

βˆ’π›Όπ‘‘ [01 ]

Page 23: Linear stability analysis

23

Eigenvectors and eigenvalues provide analytic solution

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ] [βˆ†π‘š(𝑑)βˆ†π‘₯ (𝑑) ]=𝑀1𝑒

βˆ’π›Όπ‘š 𝑑 [ 1𝛽 /(π›Όβˆ’π›Όπ‘š )]+𝑀2𝑒

βˆ’π›Όπ‘‘[01 ]General solution

Dx

m

x

Dm

[βˆ†π‘š(0)βˆ†π‘₯ (0) ]=𝑀1[ 1

𝛽 / (π›Όβˆ’π›Όπ‘š) ]+𝑀2[01]Initial conditions

Differential equations

0.5

-0.5

0.5-0.5

Page 24: Linear stability analysis

Dx

m

x

Dm

24

Eigenvectors and eigenvalues provide analytic solution

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ] [βˆ†π‘š(𝑑)βˆ†π‘₯ (𝑑) ]=𝑀1𝑒

βˆ’π›Όπ‘š 𝑑 [ 1𝛽 /(π›Όβˆ’π›Όπ‘š )]+𝑀2𝑒

βˆ’π›Όπ‘‘[01 ]General solution

[βˆ†π‘š(0)βˆ†π‘₯ (0) ]=𝑀1[ 1

𝛽 / (π›Όβˆ’π›Όπ‘š) ]+𝑀2[01]Initial conditions

Differential equations

0.5

-0.5

0.5-0.5

Page 25: Linear stability analysis

f

Dx

m

x

Dm

0.5

-0.5

0.5-0.5

25

Eigenvectors and eigenvalues provide analytic solution

[π‘‘βˆ†π‘š/π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]=[βˆ’π›Όπ‘š 0

𝛽 βˆ’π›Ό] [βˆ†π‘šβˆ† π‘₯ ] [βˆ†π‘š(𝑑)βˆ†π‘₯ (𝑑) ]=𝑀1𝑒

βˆ’π›Όπ‘š 𝑑 [ 1𝛽 /(π›Όβˆ’π›Όπ‘š )]+𝑀2𝑒

βˆ’π›Όπ‘‘[01 ]General solution

[βˆ†π‘š(0)βˆ†π‘₯ (0) ]=𝑀1[ 1

𝛽 / (π›Όβˆ’π›Όπ‘š) ]+𝑀2[01]Initial conditions

Differential equations

π›½π‘š=1π›Όπ‘š=2

𝛼=1𝛽=1

0 1 2 3 4 5t

0.0

0.1

0.2

0.3

0.4

0.5

Dxor

Dm

mRN

AProtein

Page 26: Linear stability analysis

26

Linear stability analysis

Transcription-translation model

Nullclines and critical points

Eigenvectors and eigenvalues

The cribsheet of linear stability analysis

f

m

x

[βˆ†π‘š (𝑑+βˆ† 𝑑 )βˆ†π‘₯ (𝑑+βˆ†π‘‘ ) ]β‰… [βˆ†π‘š (𝑑 )

βˆ† π‘₯ (𝑑 ) ]+βˆ† 𝑑 [π‘‘βˆ†π‘š /π‘‘π‘‘π‘‘βˆ†π‘₯ /𝑑𝑑 ]

Page 27: Linear stability analysis

27

Distinct positive eigenvalues

[π‘₯ (𝑑)𝑦 (𝑑)]=𝑀1𝑒

πœ†1𝑑 [𝑏π‘₯1

𝑏 𝑦1 ]+𝑀2𝑒

πœ†2𝑑 [𝑏π‘₯2

𝑏 𝑦2 ][𝑑π‘₯ /𝑑𝑑

𝑑 𝑦 /𝑑𝑑 ]=[π‘Ž 𝑏𝑐 𝑑] [π‘₯𝑦 ]

General solution Initial conditions

[π‘₯ (0)𝑦 (0)]=𝑀1[𝑏π‘₯

1

𝑏𝑦1 ]+𝑀2[𝑏π‘₯

2

𝑏 𝑦2 ]

Differential equations

πœ†1>πœ†2>0

Page 28: Linear stability analysis

28

Distinct positive eigenvalues

[π‘₯ (𝑑)𝑦 (𝑑)]=𝑀1𝑒

πœ†1𝑑 [𝑏π‘₯1

𝑏 𝑦1 ]+𝑀2𝑒

πœ†2𝑑 [𝑏π‘₯2

𝑏 𝑦2 ][𝑑π‘₯ /𝑑𝑑

𝑑 𝑦 /𝑑𝑑 ]=[π‘Ž 𝑏𝑐 𝑑] [π‘₯𝑦 ]

General solution Initial conditions

[π‘₯ (0)𝑦 (0)]=𝑀1[𝑏π‘₯

1

𝑏𝑦1 ]+𝑀2[𝑏π‘₯

2

𝑏 𝑦2 ]

Differential equations

πœ†1>πœ†2>0

Page 29: Linear stability analysis

29

Distinct positive eigenvalues

[π‘₯ (𝑑)𝑦 (𝑑)]=𝑀1𝑒

πœ†1𝑑 [𝑏π‘₯1

𝑏 𝑦1 ]+𝑀2𝑒

πœ†2𝑑 [𝑏π‘₯2

𝑏 𝑦2 ][𝑑π‘₯ /𝑑𝑑

𝑑 𝑦 /𝑑𝑑 ]=[π‘Ž 𝑏𝑐 𝑑] [π‘₯𝑦 ]

General solution Initial conditions

[π‘₯ (0)𝑦 (0)]=𝑀1[𝑏π‘₯

1

𝑏𝑦1 ]+𝑀2[𝑏π‘₯

2

𝑏 𝑦2 ]

Differential equations

πœ†1>πœ†2>0Node

Page 30: Linear stability analysis

30

Distinct negative eigenvalues

[π‘₯ (𝑑)𝑦 (𝑑)]=𝑀1𝑒

πœ†1𝑑 [𝑏π‘₯1

𝑏 𝑦1 ]+𝑀2𝑒

πœ†2𝑑 [𝑏π‘₯2

𝑏 𝑦2 ][𝑑π‘₯ /𝑑𝑑

𝑑 𝑦 /𝑑𝑑 ]=[π‘Ž 𝑏𝑐 𝑑] [π‘₯𝑦 ]

General solution Initial conditions

[π‘₯ (0)𝑦 (0)]=𝑀1[𝑏π‘₯

1

𝑏𝑦1 ]+𝑀2[𝑏π‘₯

2

𝑏 𝑦2 ]

Differential equations

πœ†1>πœ†2>0

πœ†1<πœ†2<0

Node

Node

Page 31: Linear stability analysis

31

Eigenvalues of opposite signs

[π‘₯ (𝑑)𝑦 (𝑑)]=𝑀1𝑒

πœ†1𝑑 [𝑏π‘₯1

𝑏 𝑦1 ]+𝑀2𝑒

πœ†2𝑑 [𝑏π‘₯2

𝑏 𝑦2 ][𝑑π‘₯ /𝑑𝑑

𝑑 𝑦 /𝑑𝑑 ]=[π‘Ž 𝑏𝑐 𝑑] [π‘₯𝑦 ]

General solution Initial conditions

[π‘₯ (0)𝑦 (0)]=𝑀1[𝑏π‘₯

1

𝑏𝑦1 ]+𝑀2[𝑏π‘₯

2

𝑏 𝑦2 ]

Differential equations

πœ†1>πœ†2>0

πœ†1<πœ†2<0

πœ†1<0<πœ†2

Node

Node

Saddle

Page 32: Linear stability analysis

32

Equal eigenvalues

[π‘₯ (𝑑)𝑦 (𝑑)]=𝑀1𝑒

πœ†1𝑑 [𝑏π‘₯1

𝑏 𝑦1 ]+𝑀2𝑒

πœ†2𝑑 [𝑏π‘₯2

𝑏 𝑦2 ][𝑑π‘₯ /𝑑𝑑

𝑑 𝑦 /𝑑𝑑 ]=[π‘Ž 𝑏𝑐 𝑑] [π‘₯𝑦 ]

General solution Initial conditions

[π‘₯ (0)𝑦 (0)]=𝑀1[𝑏π‘₯

1

𝑏𝑦1 ]+𝑀2[𝑏π‘₯

2

𝑏 𝑦2 ]

Differential equations

πœ†1>πœ†2>0

πœ†1<πœ†2<0

πœ†1<0<πœ†2

πœ†1=πœ†2>0

πœ†1=πœ†2<0

Node

Node

Saddle

Star

Star

Degenerate node

Degenerate node

Page 33: Linear stability analysis

33

Complex eigenvalues

[π‘₯ (𝑑)𝑦 (𝑑)]=𝑀1𝑒

πœ†1𝑑 [𝑏π‘₯1

𝑏 𝑦1 ]+𝑀2𝑒

πœ†2𝑑 [𝑏π‘₯2

𝑏 𝑦2 ][𝑑π‘₯ /𝑑𝑑

𝑑 𝑦 /𝑑𝑑 ]=[π‘Ž 𝑏𝑐 𝑑] [π‘₯𝑦 ]

General solution Initial conditions

[π‘₯ (0)𝑦 (0)]=𝑀1[𝑏π‘₯

1

𝑏𝑦1 ]+𝑀2[𝑏π‘₯

2

𝑏 𝑦2 ]

Differential equations

πœ†1>πœ†2>0

πœ†1<πœ†2<0

πœ†1<0<πœ†2

πœ†1=πœ†2>0

πœ†1=πœ†2<0

πœ†Β±=𝜎 Β± π‘–πœ”Node

Node

Saddle

Star

Star

Degenerate node

Degenerate node

Page 34: Linear stability analysis

34

Complex eigenvalues: Oscillatory and spiral solutions

[π‘₯ (𝑑)𝑦 (𝑑)]=𝑀1𝑒

πœ†1𝑑 [𝑏π‘₯1

𝑏 𝑦1 ]+𝑀2𝑒

πœ†2𝑑 [𝑏π‘₯2

𝑏 𝑦2 ][𝑑π‘₯ /𝑑𝑑

𝑑 𝑦 /𝑑𝑑 ]=[π‘Ž 𝑏𝑐 𝑑] [π‘₯𝑦 ]

General solution Initial conditions

[π‘₯ (0)𝑦 (0)]=𝑀1[𝑏π‘₯

1

𝑏𝑦1 ]+𝑀2[𝑏π‘₯

2

𝑏 𝑦2 ]

Differential equations

πœ†Β±=𝜎 Β± π‘–πœ”

[π‘₯ (𝑑)𝑦 (𝑑)]=𝑀+ΒΏ 𝑒 (𝜎 + 𝑖 πœ” ) 𝑑¿ ΒΏ

[π‘₯ (𝑑)𝑦 (𝑑)]=π‘’πœŽπ‘‘ ΒΏ

[π‘₯ (𝑑)𝑦 (𝑑)]=π‘’πœŽπ‘‘ ΒΏ

Scaling Rotation

Page 35: Linear stability analysis

35

The big cribsheet of linear stability analysis

[π‘₯ (𝑑)𝑦 (𝑑)]=𝑀1𝑒

πœ†1𝑑 [𝑏π‘₯1

𝑏 𝑦1 ]+𝑀2𝑒

πœ†2𝑑 [𝑏π‘₯2

𝑏 𝑦2 ][𝑑π‘₯ /𝑑𝑑

𝑑 𝑦 /𝑑𝑑 ]=[π‘Ž 𝑏𝑐 𝑑] [π‘₯𝑦 ]

General solution Initial conditions

[π‘₯ (0)𝑦 (0)]=𝑀1[𝑏π‘₯

1

𝑏𝑦1 ]+𝑀2[𝑏π‘₯

2

𝑏 𝑦2 ]

Differential equations

πœ†1>πœ†2>0

πœ†1<πœ†2<0

πœ†1<0<πœ†2

πœ†1=πœ†2>0

πœ†1=πœ†2<0

πœ†Β±=𝜎 Β± π‘–πœ”

𝜎 <0

𝜎=0

𝜎 >0Node

Node

Saddle

Star

Star

Degenerate node

Degenerate node

Center

Spiral

Spiral