linearized lateral-directional equations of motion · 11/12/18 9 oblique wing concepts...

24
11/12/18 1 Linearized Lateral-Directional Equations of Motion Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/FlightDynamics.html Reading: Flight Dynamics 574-591 Learning Objectives 1 6 th -order -> 4 th -order -> hybrid equations Dynamic stability derivatives Dutch roll mode Roll and spiral modes 6-Component Lateral-Directional Equations of Motion x 1 x 2 x 3 x 4 x 5 x 6 = x LD 6 v y p r φ ψ = Side Velocity Crossrange Body-Axis Roll Rate Body-Axis Yaw Rate Roll Angle about Body x Axis Yaw Angle about Inertial x Axis 2 ! v = Y B / m + g sinφ cosθ ru + pw ! y I = cosθ sinψ ( ) u + cosφ cosψ + sinφ sinθ sinψ ( ) v + sinφ cosψ + cosφ sinθ sinψ ( ) w ! p = I zz L B + I xz N B I xz I yy I xx I zz ( ) p + I xz 2 + I zz I zz I yy ( ) r { } q ( ) ÷ I xx I zz I xz 2 ( ) ! r = I xz L B + I xx N B I xz I yy I xx I zz ( ) r + I xz 2 + I xx I xx I yy ( ) p { } q ( ) ÷ I xx I zz I xz 2 ( ) ! φ = p + q sinφ + r cosφ ( ) tanθ ! ψ = q sinφ + r cosφ ( ) secθ

Upload: hatu

Post on 20-Mar-2019

218 views

Category:

Documents


0 download

TRANSCRIPT

11/12/18

1

Linearized Lateral-Directional Equations of Motion

Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018

Copyright 2018 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE331.html

http://www.princeton.edu/~stengel/FlightDynamics.html

Reading:Flight Dynamics

574-591

Learning Objectives

1

• 6th-order -> 4th-order -> hybrid equations• Dynamic stability derivatives • Dutch roll mode• Roll and spiral modes

6-Component Lateral-Directional Equations of Motion

x1x2x3x4x5x6

⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥

= xLD6

vyprφψ

⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥

=

Side VelocityCrossrange

Body-Axis Roll RateBody-Axis Yaw Rate

Roll Angle about Body x AxisYaw Angle about Inertial x Axis

⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥ 2

!v = YB /m + gsinφ cosθ − ru + pw!yI = cosθ sinψ( )u + cosφ cosψ + sinφ sinθ sinψ( )v + −sinφ cosψ + cosφ sinθ sinψ( )w!p = IzzLB + IxzNB − Ixz Iyy − Ixx − Izz( ) p + Ixz

2 + Izz Izz − Iyy( )⎡⎣ ⎤⎦r{ }q( )÷ Ixx Izz − Ixz2( )

!r = IxzL B+IxxNB − Ixz Iyy − Ixx − Izz( )r + Ixz2 + Ixx Ixx − Iyy( )⎡⎣ ⎤⎦ p{ }q( )÷ Ixx Izz − Ixz

2( )!φ = p + qsinφ + r cosφ( ) tanθ!ψ = qsinφ + r cosφ( )secθ

11/12/18

2

4- Component Lateral-Directional

Equations of MotionNonlinear Dynamic Equations, neglecting

crossrange and yaw angle

x1x2x3x4

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

= xLD4

Eurofighter Typhoon

vprφ

⎢⎢⎢⎢

⎥⎥⎥⎥

=

Side VelocityBody-Axis Roll RateBody-Axis Yaw Rate

Roll Angle about Body x Axis

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥ 3

!v = YB /m + gsinφ cosθ − ru + pw

!p = IzzLB + IxzNB − Ixz Iyy − Ixx − Izz( ) p + Ixz2 + Izz Izz − Iyy( )⎡⎣ ⎤⎦r{ }q( )÷ Ixx Izz − Ixz

2( )!r = IxzLB + IxxNB − Ixz Iyy − Ixx − Izz( )r + Ixz

2 + Ixx Ixx − Iyy( )⎡⎣ ⎤⎦ p{ }q( )÷ Ixx Izz − Ixz2( )

!φ = p + qsinφ + r cosφ( ) tanθ

!v = YB /m + gsinφ cosθN − ruN + pwN

!p = IzzLB + IxzNB( ) Ixx Izz − Ixz2( )

!r = IxzLB + IxxNB( ) Ixx Izz − Ixz2( )

!φ = p + r cosφ( ) tanθN

Lateral-Directional Equations of Motion Assuming Steady, Level Longitudinal Flight

Longitudinal variables are constant

qN = 0γN = 0θN =αN

4

11/12/18

3

Lateral-Directional Force and Moments in Steady, Level Flight

YB = CYB

12ρNVN

2S

LB = ClB

12ρNVN

2Sb

NB = CnB

12ρNVN

2Sb

Body-Axis Side ForceBody-Axis Rolling MomentBody-Axis Yawing Moment

Dynamic pressure is constant

5

Linearized Lateral-Directional Equations of Motion in Steady,

Level Flight

6

11/12/18

4

Body-Axis Perturbation Equations of Motion

7

Δ !v(t)Δ!p(t)Δ!r(t)Δ !φ(t)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

=

F11 F12 F13 F14F21 F22 F23 F24F31 F32 F33 F34F41 F42 F43 F44

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

Δv(t)Δp(t)Δr(t)Δφ(t)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

+ Control[ ]+ Disturbance[ ]

Body-Axis Perturbation Variables

Δu1Δu2

⎣⎢⎢

⎦⎥⎥= ΔδA

ΔδR⎡

⎣⎢

⎦⎥ =

Aileron PerturbationRudder Perturbation

⎣⎢⎢

⎦⎥⎥

Δw1Δw2

⎣⎢⎢

⎦⎥⎥=

ΔvwindΔpwind

⎣⎢⎢

⎦⎥⎥=

Side Wind PerturbationVortical Wind Perturbation

⎣⎢⎢

⎦⎥⎥

ΔvΔpΔrΔφ

⎢⎢⎢⎢

⎥⎥⎥⎥

=

Side Velocity PerturbationBody-Axis Roll Rate PerturbationBody-Axis Yaw Rate Perturbation

Roll Angle about Body x Axis Perturbation

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

8

11/12/18

5

Vortical Wind PerturbationsWind Rotor Wake Vortex

TangentialVelocity,

ft/s

Radius, ft

Wake Vortex

Wind Rotor9

Dimensional Stability Derivatives

F11 F12 F13 F14F21 F22 F23 F24F31 F32 F33 F34F41 F42 F43 F44

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

Stability Matrix

=

Yv Yp +wN( ) Yr −uN( ) gcosθNLv Lp Lr 0

Nv Np Nr 0

0 1 tanθN 0

#

$

%%%%%%

&

'

((((((

10

11/12/18

6

Dimensional Control- and Disturbance-Effect Derivatives

G11 G12G21 G22

G31 G32

G41 G42

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

=

YδA YδRLδA LδR

NδA NδR

0 0

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

L11 L12L21 L22L31 L32L41 L42

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

=

Yv YpLv Lp

Nv Np

0 0

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

Control Effect Matrix

DisturbanceEffect Matrix

11

Rolling and yawing motions

LTI Body-Axis Perturbation Equations of Motion

12

Δ !v(t)Δ!p(t)Δ!r(t)Δ !φ(t)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

=

Yv Yp +wN( ) Yr − uN( ) gcosθN

Lv Lp Lr 0

Nv Np Nr 0

0 1 tanθN 0

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

Δv(t)Δp(t)Δr(t)Δφ(t)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

+

YδA YδRLδA LδR

NδA NδR

0 0

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

ΔδA(t)ΔδR(t)

⎣⎢⎢

⎦⎥⎥+

Yv YpLv Lp

Nv Np

0 0

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

ΔvwindΔpwind

⎣⎢⎢

⎦⎥⎥

11/12/18

7

Linearized Lateral-Directional Response to Initial Yaw Rate

~Roll response of roll angle

~Spiral response of crossrange

~Spiral response of yaw angle

~Dutch-roll response of side velocity

~Dutch-roll response of roll and yaw rates

13

Asymmetrical Aircraft: DC-2-1/2

14

DC-3 with DC-2 right wingQuick fix to fly aircraft out of harm�s way during WWII

11/12/18

8

Asymmetric Aircraft - WWIIBlohm und Voss, BV 141 B + V 141 derivatives

B + V P.202

Recent Asymmetric AircraftScaled Composites Ares

Scaled Composites Boomerang

11/12/18

9

Oblique Wing Concepts• High-speed benefits of wing sweep without the

heavy structure and complex mechanism required for symmetric sweep

• Blohm und Voss, R. T. Jones , Handley-Page concepts

• Improved supersonic L/D by reduction of shock-wave interference and elimination of the fuselage in flying-wing version

17

Handley-Page Oblique Wing Concepts• Advantages

– 10-20% higher L/D @ supersonic speed (compared to delta planform)

– Flying wing: no fuselage• Issues

– Which way do the passengers face?

– Where is the cockpit?– How are the engines and vertical

surfaces swiveled?– What does asymmetry do to

stability and control?

18

11/12/18

10

NASA Oblique Wing Test Vehicles• Stability and control issues

abound: The fact that birds and insects are symmetric should give us a clue (though they use huge asymmetry for control)– Strong aerodynamic and inertial

longitudinal-lateral-directional coupling

– High side force at zero sideslip angle

– Torsional divergence of the leading wing

• Test vehicles: Various model airplanes, NASA AD-1, and NASA DFBW F-8 (below, not built)

19

Stability Axis Representation of Dynamics

20

11/12/18

11

Stability Axes• Stability axes are an alternative set of body axes• Nominal x axis is offset from the body centerline by

the nominal angle of attack, αN

21

Transformation from Original Body Axes to Stability Axes

HBS =

cosαN 0 sinαN

0 1 0−sinαN 0 cosαN

#

$

%%%

&

'

(((

ΔuΔvΔw

"

#

$$$

%

&

'''S

= HBS

ΔuΔvΔw

"

#

$$$

%

&

'''B

ΔpΔqΔr

"

#

$$$

%

&

'''S

= HBS

ΔpΔqΔr

"

#

$$$

%

&

'''B

Side velocity (Δv) and pitch rate (Δq) are unchanged by the transformation 22

11/12/18

12

Stability-Axis State Vector Rotate body axes to stability axes

Δv(t)Δp(t)Δr(t)Δφ(t)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥Body−Axis

⇒!αN ⇒

Δv(t)Δp(t)Δr(t)Δφ(t)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥Stability−Axis

23

Stability-Axis State Vector

Δv(t)Δp(t)Δr(t)Δφ(t)

#

$

%%%%%

&

'

(((((Stability−Axis

⇒Δβ ≈ΔvVN

Δβ(t)Δp(t)Δr(t)Δφ(t)

#

$

%%%%%

&

'

(((((Stability−Axis

Replace side velocity by sideslip angle

24

11/12/18

13

Stability-Axis State VectorRevise state order

25

Δβ(t)Δp(t)Δr(t)Δφ(t)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥Stability−Axis

Δr(t)Δβ(t)Δp(t)Δφ(t)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥Stability−Axis

=

Stability-Axis Yaw Rate PerturbationSideslip Angle Perturbation

Stability-Axis Roll Rate PerturbationStability-Axis Roll Angle Perturbation

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

Stability-Axis Lateral-Directional Equations

26

Δ!r(t)

Δ !β(t)Δ!p(t)Δ !φ(t)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥S

=

Nr Nβ Np 0

YrVN

−1⎛⎝⎜

⎞⎠⎟

VN

YpVN

gVN

Lr Lβ Lp 0

0 0 1 0

⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥S

Δr(t)Δβ(t)Δp(t)Δφ(t)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥S

+

NδA NδR

YδAVN

YδRVN

LδA LδR

0 0

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥S

ΔδA(t)ΔδR(t)

⎣⎢⎢

⎦⎥⎥+

Nβ Np

VN

YpVN

Lβ Lp

0 0

⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥S

Δβwind

Δpwind

⎣⎢⎢

⎦⎥⎥

11/12/18

14

Why Modify the Equations?Dutch-roll motion is primarily described by stability-

axis yaw rate and sideslip angle

Roll and spiral motions are primarily described by stability-axis roll rate and roll angle

Stable Spiral

Unstable SpiralRoll

Dutch Roll, top Dutch Roll, front

27

Why Modify the Equations?

FLD =FDR FRS

DR

FDRRS FRS

⎣⎢⎢

⎦⎥⎥=

FDR smallsmall FRS

⎣⎢⎢

⎦⎥⎥≈

FDR 00 FRS

⎣⎢⎢

⎦⎥⎥

Effects of Dutch roll perturbations on Dutch roll motion

Effects of Dutch roll perturbations on roll-spiral motion

Effects of roll-spiral perturbations on Dutch roll motion

Effects of roll-spiral perturbations on roll-spiral motion

... but are the off-diagonal blocks really small?

28

11/12/18

15

Stability, Control, and Disturbance Matrices

FLD =FDR FRS

DR

FDRRS FRS

⎣⎢⎢

⎦⎥⎥=

Nr Nβ Np 0

YrVN

−1⎛⎝⎜

⎞⎠⎟

VN

YpVN

gVN

Lr Lβ Lp 0

0 0 1 0

⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥

GLD =

NδA NδR

YδAVN

YδRVN

LδA LδR

0 0

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

LLD =

Nβ Np

VN

YpVN

Lβ Lp

0 0

⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥

Δx1Δx2Δx3Δx4

"

#

$$$$$

%

&

'''''

=

ΔrΔβ

ΔpΔφ

"

#

$$$$$

%

&

'''''

Δu1Δu2

"

#$$

%

&''=

ΔδAΔδR

"

#$

%

&'

Δw1Δw2

"

#$$

%

&''=

ΔδAΔδR

"

#$

%

&'

29

2nd-Order Approximate Modes of Lateral-Directional

Motion

30

11/12/18

16

2nd-Order Approximations in System Matrices

FLD =FDR 00 FRS

⎣⎢⎢

⎦⎥⎥=

Nr Nβ 0 0

YrVN

−1⎛⎝⎜

⎞⎠⎟

VN0 0

0 0 Lp 0

0 0 1 0

⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥

GLD =

NδR 0YδRVN

0

0 LδA

0 0

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

LLD =

Nβ 0

VN0

0 Lp

0 0

⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥ 31

2nd-Order Models of Lateral-Directional Motion

Approximate Spiral-Roll Equation

Approximate Dutch Roll Equation

Δ!xDR =Δ!rΔ !β

⎣⎢⎢

⎦⎥⎥≈

Nr Nβ

YrVN

−1⎛⎝⎜

⎞⎠⎟

VN

⎢⎢⎢⎢

⎥⎥⎥⎥

ΔrΔβ

⎣⎢⎢

⎦⎥⎥+

NδR

YδRVN

⎢⎢⎢

⎥⎥⎥ΔδR +

VN

⎢⎢⎢

⎥⎥⎥Δβwind

ΔxRS =ΔpΔ φ

#

$%%

&

'((≈

Lp 0

1 0

#

$%%

&

'((

ΔpΔφ

#

$%%

&

'((+

LδA0

#

$%%

&

'((ΔδA +

Lp

0

#

$%%

&

'((Δpwind

32

11/12/18

17

Comparison of 4th- and 2nd-Order Dynamic Models

33

Comparison of 2nd- and 4th-Order Initial-Condition Responses of Business Jet

Fourth-Order Response Second-Order Response

Speed and damping of responses is adequately portrayed by 2nd-order modelsRoll-spiral modes have little effect on yaw rate and sideslip angle responses

BUT Dutch roll mode has large effect on roll rate and roll angle responses34

4 initial conditions [r(0), β(0), p(0), ϕ(0)]

11/12/18

18

Next Time:Analysis of Time Response

Reading:Flight Dynamics298-313, 338-342

35

• Methods of time-domain analysis– Continuous- and discrete-time models– Transient response to initial conditions and inputs– Steady-state (equilibrium) response– Phase-plane plots– Response to sinusoidal input

Learning Objectives

Supplemental Material

36

11/12/18

19

Side Velocity DynamicsNonlinear equation

First row of linearized dynamic equation

Δ !v(t) = F11Δv(t)+ F12Δp(t)+ F13Δr(t)+ F14Δφ(t)[ ]+ G11ΔδA(t)+G12ΔδR(t)[ ]+ L11Δvwind + L12Δpwind[ ]

37

!v = YB /m + gsinφ cosθN − ruN + pwN

F11 =

1m

CYv

ρNVN2

2S⎛

⎝⎜⎞⎠⎟! Yv

Coefficients in first row of F

Side Velocity Sensitivity to State Perturbations

38

F12 =

1m

CYp

ρNVN2

2S⎛

⎝⎜⎞⎠⎟+wN ! Yp +wN

F14 = gcosφ cosαN ≈ g

!v = YB /m + gsinφ cosθN − ruN + pwN

F13 =

1m

CYr

ρNVN2

2S⎛

⎝⎜⎞⎠⎟− uN ! Yr − uN

11/12/18

20

Side Velocity Sensitivity to Control and Disturbance Perturbations

G11 =1m

CYδA

ρNVN2

2S⎡

⎣⎢

⎦⎥ ! YδA

G12 =1m

CYδR

ρNVN2

2S⎡

⎣⎢

⎦⎥ ! YδR

Coefficients in first rows of G and L

L11 = −F11L12 = −F12

39

Roll Rate DynamicsNonlinear equation

Second row of linearized dynamic equation

40

!p = IzzLB + IxzNB( ) Ixx Izz − Ixz

2( )

Δ!p(t) = F21Δv(t)+ F22Δp(t)+ F23Δr(t)+ F24Δφ(t)[ ]+ G21ΔδA(t)+G22ΔδR(t)[ ]+ L21Δvwind + L22Δpwind[ ]

11/12/18

21

F21 = Izz

∂LB∂v

+ Ixz∂NB

∂v⎛⎝⎜

⎞⎠⎟ Ixx Izz − Ixz

2( ) ! Lv

Coefficients in second row of F

Roll Rate Sensitivity to State Perturbations

41

F24 = 0

!p = IzzLB + IxzNB( ) Ixx Izz − Ixz

2( )

F22 = Izz

∂LB∂p

+ Ixz∂NB

∂p⎛⎝⎜

⎞⎠⎟

Ixx Izz − Ixz2( ) ! Lp

F23 = Izz

∂LB∂r

+ Ixz∂NB

∂r⎛⎝⎜

⎞⎠⎟ Ixx Izz − Ixz

2( ) ! Lr

Yaw Rate DynamicsNonlinear equation

Third row of linearized dynamic equation

42

!r = IxzLB + IxxNB( ) Ixx Izz − Ixz

2( )

Δ!r(t) = F31Δv(t)+ F32Δp(t)+ F33Δr(t)+ F34Δφ(t)[ ]+ G31ΔδA(t)+G32ΔδR(t)[ ]+ L31Δvwind + L32Δpwind[ ]

11/12/18

22

F31 = Ixz

∂LB∂v

+ Ixx∂NB

∂v⎛⎝⎜

⎞⎠⎟ Ixx Izz − Ixz

2( ) ! Nv

Coefficients in third row of F

Yaw Rate Sensitivity to State Perturbations

43F34 = 0

!r = IxzLB + IxxNB( ) Ixx Izz − Ixz

2( )

F32 = Ixz

∂LB∂p

+ Ixx∂NB

∂p⎛⎝⎜

⎞⎠⎟

Ixx Izz − Ixz2( ) ! Np

F33 = Ixz

∂LB∂r

+ Ixx∂NB

∂r⎛⎝⎜

⎞⎠⎟ Ixx Izz − Ixz

2( ) ! Nr

Roll Angle DynamicsNonlinear equation

Fourth row of linearized dynamic equation

44

!φ = p + r cosφ( ) tanθN

Δ !φ(t) = F41Δv(t)+ F42Δp(t)+ F43Δr(t)+ F44Δφ(t)[ ]+ G41ΔδA(t)+G42ΔδR(t)[ ]+ L41Δvwind + L42Δpwind[ ]

11/12/18

23

F41 = 0Coefficients in fourth row of F

Roll Angle Sensitivity to State Perturbations

45

!φ = p + r cosφ( ) tanθN

F42 = 1

F43 = cosφN tanθN ≈ tanθN

F44 = rN sinφN tanθN = 0

Primary Lateral-Directional Control Derivatives

LδA = ClδA

ρNVN2

2Ixx

⎛⎝⎜

⎞⎠⎟Sb

NδR = CnδR

ρNVN2

2Izz

⎛⎝⎜

⎞⎠⎟Sb

46

11/12/18

24

Initial Condition Response of Approximate Dutch Roll Mode

Δr t( ) Δβ t( )

47

Dutch roll VideoCalspan Variable-Stability Learjet Dutch roll Oscillation

http://www.youtube.com/watch?v=1_TW9oz99NQ

48